Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Feb 28;74(Pt 3):414–418. doi: 10.1107/S2056989018003092

(1R,2S,5R)-5-Methyl-2-[2-(4-nitro­phen­yl)propan-2-yl]cyclo­hexyl 2-(4-meth­oxy­phen­yl)-2,5-di­hydro-1H-pyrrole-1-carboxyl­ate: crystal structure and Hirshfeld analysis

Julio Zukerman-Schpector a,*, Monica Soto-Monsalve b, Regina H De Almeida Santos b, Angelo H L Machado c,, Carlos Roque D Correia c, Mukesh M Jotani d, Edward R T Tiekink e,§
PMCID: PMC5947815  PMID: 29765735

The mol­ecule in the title compound approximates a U-shape with the nitro­benzene and ester substituents lying to the same side of the mol­ecule. In the crystal, linear supra­molecular chains are sustained by methyl­ene-C—H⋯O(carbon­yl) inter­actions.

Keywords: crystal structure, pyrrolidine alkaloid, Heck reaction, Hirshfeld surface analysis

Abstract

In the title compound, C28H34N2O5, the adjacent ester and nitro­benzene substituents are connected via an intra­molecular methyl­ene-C—H⋯π(nitrobenzene) inter­action and the mol­ecule approximates to a U-shape. The di­hydro­pyrrole ring (r.m.s. deviation = 0.003 Å) is almost co-planar with the carboxyl­ate residue [Cm—N—C1—Oc (m = methine, c = carbox­yl) torsion angle = 1.8 (4)°] but is orthogonal to the 4-meth­oxy­benzene ring [dihedral angle = 84.34 (17)°]. In the crystal, methyl­ene-CHO(carbon­yl) inter­actions lead to linear supra­molecular chains along the b-axis direction, which pack without directional inter­actions between them. The analysis of the calculated Hirshfeld surface points to the importance of weak inter­atomic H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts in the crystal.

Chemical context  

The reaction of an unsaturated halide species with an alkene, in the presence of both a base and a organopalladium catalyst, to form a substituted alkene, is termed the Heck reaction (Heck, 1982; Crisp, 1998). As part of our investigations into the scope of the Heck reaction in the total, enanti­oselective and efficient synthesis of pyrrolidine alkaloids, such as the natural product (–)-codonopsinine (Severino & Correia, 2001), an enecarbamate containing the chiral auxiliary residue, 8-(4-nitro­phen­yl)menthol, was submitted to a Heck aryl­ation reaction with 4-meth­oxy­phenyl­diazo­nium tetra­fluoro­borate. The reaction yielded the title compound, 8-(4-nitro­phen­yl)menthyl 2-(4-meth­oxy­phen­yl)pyrroline-3-carboxyl­ate, (I), as the sole crystalline material (Machado, 2001). Herein, the crystal and mol­ecular structures of (I) are described along with an analysis of the calculated Hirshfeld surfaces.

Structural commentary  

The mol­ecular structure of (I), Fig. 1, comprises a 1-, 2- and 5-substituted cyclo­hexyl ring (chair conformation) with the chirality at these equatorially substituted centres, i.e. C14, C15 and C18, established from the synthesis, being R, S and R, respectively. The di­hydro­pyrrole ring is essentially planar, with an r.m.s. deviation of 0.003 Å for the five constituent atoms; the N1 and C5 atoms lie 0.037 (2) and 0.030 (3) Å to opposite sides of the plane. The chirality of the C2 centre is R. The carboxyl­ate residue is almost co-planar with the five-membered pyrrole ring as seen in the value of the C2—N1—C13—O2 torsion angle of 1.8 (4)°. However, the appended 4-meth­oxy­benzene ring is almost orthogonal to the pyrrole ring, forming a dihedral angle of 84.34 (17)°; the meth­oxy group is co-planar with the benzene ring with the C12—O3—C9—C10 torsion angle being 178.0 (4)°. In the same way, the nitro group is co-planar with the benzene ring to which it is connected with the O5—N2—C27—C28 torsion angle being 1.2 (5)°. In the mol­ecule, there is a close pyrrole-methyl­ene-C5—H⋯π(C24–C29) inter­action, Table 1, which connects the substituents at the cyclo­hexyl-C14 and C15 atoms which lie to the same side of the mol­ecule and which define a shape corresponding to the letter U.graphic file with name e-74-00414-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of (I), showing the atom-labelling scheme and displacement ellipsoids at the 35% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the ring centroid of the C24–C29 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5ACg1 0.97 2.67 3.612 (3) 163
C19—H19B⋯O2i 0.97 2.60 3.472 (4) 150

Symmetry code: (i) Inline graphic.

Supra­molecular features  

The mol­ecular packing of (I) features a number of weak non-covalent contacts as discussed below in the Hirshfeld surface analysis (§4). In accord with the distance criteria assumed in PLATON (Spek, 2009), there is only one directional inter­action of note, Table 1. Thus, methyl­ene-C19—H⋯O2(carbon­yl) inter­actions connect mol­ecules into a linear supra­molecular chain along the b-axis direction, Fig. 2 a. These assemble in the crystal with no directional inter­actions between them, Fig. 2 b.

Figure 2.

Figure 2

Mol­ecular packing in (I): (a) view of the supra­molecular chain along the b axis and (b) a view of the unit-cell contents shown in projection down the b axis. The C—H⋯O contacts are shown as orange dashed lines.

Hirshfeld surface analysis  

The Hirshfeld surfaces calculated for (I) were conducted as reported recently for a related organic mol­ecule (Zukerman-Schpector et al., 2017) and provide information on the influence of short inter­atomic non-bonded contacts upon the mol­ecular packing.

With reference to Fig. 3, in addition to the bright-red spots near the methyl­ene-H19B and carbonyl-O2 atoms, representing the C—H⋯O inter­action listed in Table 1, the diminutive-red spots near the O3, C9 and H17B atoms, corresponding to short inter­atomic O3⋯H17B and C9⋯H17B contacts (Table 2), on the Hirshfeld surface mapped over d norm suggest they also have some influence on the mol­ecular packing in the crystal. The effect of other short inter­atomic O⋯H/H⋯O and C⋯H/H⋯C contacts listed in Table 2 are also viewed as faint-red spots near the O3, H4, O5 and H20B atoms in Fig. 3. The influence of the short inter­atomic O⋯H, C⋯H and H⋯H contacts in the mol­ecular packing are also illustrated in Fig. 4 a and b, which show the Hirshfeld surface mapped over the shape-index property and d norm, respectively. The intra­molecular C—H⋯π contact between the pyrrole-H5A atom and the nitro­benzene ring [H5ACg(C24–C29) = 2.67 Å, C5⋯Cg(C24–C29) = 3.612 (3) Å and C—H5ACg(C24–C29) angle = 163°] is shown as a black-dotted line within the Hirshfeld surfaces mapped over the electrostatic potential in Fig. 5.

Figure 3.

Figure 3

Two views of the Hirshfeld surface for (I) mapped over d norm in the range −0.071 to +1.718 au.

Table 2. Summary of short inter­atomic contacts (Å) in (I) .

Contact Distance Symmetry operation
H2⋯H5B 2.31 x, 1 + y, z
H7⋯H5B 2.28 x, 1 + y, z
H22A⋯H25 2.31 x, 1 + y, z
O3⋯H17B 2.52 1 + x, 1 + y, z
O3⋯H20B 2.56 2 − x, − Inline graphic + y, 2 − z
O4⋯H4 2.56 2 − x, − Inline graphic + y, 1 − z
O5⋯H22C 2.60 1 − x, − Inline graphic + y, 1 − z
C9⋯H17B 2.72 1 + x, 1 + y, z
C9⋯H12C 2.80 2 − x, − Inline graphic + y, 2 − z
C23⋯H3 2.84 −1 + x, −1 + y, z

Figure 4.

Figure 4

Views of Hirshfeld surfaces mapped (a) with shape-index property highlighting short inter­atomic O⋯H/H⋯O and C⋯H/H⋯C contacts by red and sky-blue dashed lines, respectively, and (b) over d norm showing intra-layer inter­atomic H⋯H contacts by black dashed lines.

Figure 5.

Figure 5

A view of the Hirshfeld surface mapped over the electrostatic potential for (I) in the range −0.079 to +0.038 au, highlighting the intra­molecular C—H⋯π contact by a black dotted line. The red and blue regions represent negative and positive electrostatic potentials, respectively.

The overall two-dimensional fingerprint plot for (I), Fig. 6 a, and those delineated into H⋯H, O⋯H/H⋯O and C⋯H/H⋯C contacts (McKinnon et al., 2007) are illustrated in Fig. 6 b-d, respectively. The fingerprint plots also reflect the presence of the short inter­atomic contacts on the packing, Table 2. This is also evident from the percentage contribution from different inter­atomic contacts to the Hirshfeld surface summarized in Table 3: the H⋯H, O⋯H/H⋯O and C⋯H/H⋯C inter­atomic contacts make the greatest contribution to the Hirshfeld surface and account for 97.9% of the overall surface. The broad feather-like distribution of points with a peak at d e + d i ∼2.3 Å in the fingerprint plot delineated into H⋯H contacts in Fig. 5 b represent H⋯H contacts in the structure and make the greatest, i.e. 61.7%, contribution to the surface. The inter­atomic O⋯H/H⋯O contacts having a 23.9% contribution to the Hirshfeld surface arise from the C—H⋯O contact (Table 1) and short inter­atomic O⋯H/H⋯O contacts (Table 2), and are viewed as the pair of green aligned points beginning at d e + d i ∼2.6 Å and a pair of jaw-shaped distribution of points in the range d e + d i ∼2.5–2.6 Å in Fig. 6 c. The points distributed around the pair of forceps-like peaks at d e + d i ∼2.8 Å in the fingerprint plot delineated into C⋯H/H⋯C contacts (Fig. 6 d) represent the formation of such intra- and inter-layer contacts in the crystal. The small contribution from other inter­atomic contacts summarized in Table 3 appear to have a negligible impact on the mol­ecular packing.

Figure 6.

Figure 6

(a) The full two-dimensional fingerprint plot for (I) and fingerprint plots delineated into (b) H⋯H, (c) O⋯H/H⋯O and (d) C⋯H/H⋯C contacts.

Table 3. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for (I) .

Contact Percentage contribution
H⋯H 61.7
O⋯H/H⋯O 23.9
C⋯H/H⋯C 12.3
N⋯H/H⋯N 1.1
O⋯O 0.7
C⋯O/O⋯C 0.2
C⋯C 0.1

Database survey  

The (1R,2S,5R)-menthyl substrate is important as a chiral source for the synthesis of natural products and, as such, has been found in a number of crystal structures related to (I). Owing to the dictates of the chirality at the C1 and C2 positions, a parallel alignment of the substituents at these positions usually result in U-shaped geometries (Aoyagi et al., 1998; Singh et al., 1990; Streith et al., 1995), except in circumstances where steric hindrance precludes such an arrangement (Comins & Killpack, 1992).

Synthesis and crystallization  

As detailed previously (Machado, 2001), for the Heck aryl­ation of (1R,2S,5R)-5-methyl-2-[2-(4-nitro­phen­yl)propan-2-yl]cyclo­hexyl 2,3-di­hydro-1H-pyrrole-1-carboxyl­ate, a stoichiometric qu­antity of 4-meth­oxy­phenyl­diazo­nium tetra­fluoro­borate was used along with 1 mol equivalent of Pd0 and 400 mol equivalent of sodium acetate. The reaction was conducted in aceto­nitrile at room temperature for 15 min, yielding (1R,2S,5R)-5-methyl-2-[2-(4-nitro­phen­yl)propan-2-yl]cyclo­hexyl (2S)-2-(4-meth­oxy­phen­yl)-2,5-di­hydro-1H-pyrrole-1-carboxyl­ate and the title compound, (I), the latter being the only crystalline product, obtained as irregular colourless chunks by slow evaporation of an n-hexa­ne–ethyl acetate solution (8:2 v/v). M.p 378–380 K. ESI–MS (m/z) calculatedd for C28H34N2O5 [M]+ 478.24677, found 478.24676. [α]D 20 = +85.6 9c = 0.7; ethyl­acetate). R F = 0.40 (hexa­ne–ethyl acetate, 8:2 v/v).

The reported 1H and 13C NMR reflect the presence of two conformational rotamers in solution. 1H NMR (500 MHz, CCl4): δ [8.01 (d, J = 9 Hz) + 7.94 (d, J = 9 Hz) = 2H]; [7.43 (d, J = 9 Hz) + 7.16 (d, J = 9 Hz) = 2H]; [7.05 (d, J = 9 Hz) + 7.00 (d, J = 9 Hz) = 2H]; [6.77 (d, J = 9 Hz) + 6.70 (d, J = 9 Hz) = 2H]; 5.88 (br d, J = 6 Hz) + 5.67–5.59 (m) = 1H]; [5.67–5.59 (m) + 5.51 (dd, J = 7 Hz, 1 Hz) = 1H]; [5.27 (br s) + 5.19 (br s) = 1H]; 4.70 (td, J = 10 Hz and 5 Hz, 1H); [4.36 (br d, J = 15 Hz) + 4.21 (m) + 3.53 (dd, J = 15 and 5Hz) + 2.59 (dd, J = 15 and 2 Hz) = 2H]; [3.77 (s) + 3.72 (s) = 3H]; 2.04–0.49 (m, 11H); [1.43 (s) + 1.25 (s) = 3H]; [1.21 (s) + 1.11 (s) = 3H]. 13C NMR (75.5 MHz, CCl4): δ 159.1, 158.5, 151.6, 132.2, 130.9, 130.5, 128.0, 127.8, 125.9, 125.5, 123.9, 123.7, 122.3, 113.3, 113.1, 95.8, 73.5, 72.7, 67.3, 66.8, 54.6, 54.3, 51.7, 51.5, 42.4, 39.9, 34.3, 31.1, 30.2, 29.4, 26.0, 21.6, 21.5.

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 4. The C-bound H atoms were placed in calculated positions (C—H = 0.93–0.98 Å) and were included in the refinement in the riding model approximation, with U iso(H) set to 1.2–1.5U eq(C).

Table 4. Experimental details.

Crystal data
Chemical formula C28H34N2O5
M r 478.57
Crystal system, space group Monoclinic, P21
Temperature (K) 293
a, b, c (Å) 10.3142 (10), 6.1114 (8), 20.844 (3)
β (°) 92.83 (1)
V3) 1312.3 (3)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.08
Crystal size (mm) 0.40 × 0.25 × 0.20
 
Data collection
Diffractometer Enraf–Nonius TurboCAD4
Absorption correction ψ scan (CAD-4 EXPRESS; Enraf–Nonius, 1989)
No. of measured, independent and observed [I > 2σ(I)] reflections 4246, 4145, 2310
R int 0.054
(sin θ/λ)max−1) 0.703
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.056, 0.144, 0.98
No. of reflections 4145
No. of parameters 320
No. of restraints 1
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.27, −0.16
Absolute structure No quotients, so Flack parameter determined by classical intensity fit
Absolute structure parameter −1.1 (16)

Computer programs: CAD-4 EXPRESS (Enraf–Nonius, 1989), XCAD4 (Harms & Wocadlo, 1995), SIR2014 (Burla et al., 2015), SHELXL2014 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006), MarvinSketch (ChemAxon, 2010) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018003092/hb7734sup1.cif

e-74-00414-sup1.cif (370.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018003092/hb7734Isup2.hkl

e-74-00414-Isup2.hkl (330.2KB, hkl)

CCDC reference: 1825237

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The Brazilian agencies Coordination for the Improvement of Higher Education Personnel, CAPES and National Council for Scientific and Technological Development, CNPq, for a scholarship to JZ-S (305626/2013–2) are acknowledged for support.

Funding information: Funding for this research was provided by: Conselho Nacional de Desenvolvimento Científico e Tecnológico (award No. 305626/2013–2).

supplementary crystallographic information

Crystal data

C28H34N2O5 F(000) = 512
Mr = 478.57 Dx = 1.211 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 10.3142 (10) Å Cell parameters from 25 reflections
b = 6.1114 (8) Å θ = 11.8–18.2°
c = 20.844 (3) Å µ = 0.08 mm1
β = 92.83 (1)° T = 293 K
V = 1312.3 (3) Å3 Irregular, colourles
Z = 2 0.40 × 0.25 × 0.20 mm

Data collection

Enraf–Nonius TurboCAD4 diffractometer Rint = 0.054
Radiation source: Enraf–Nonius FR590 θmax = 30.0°, θmin = 2.3°
non–profiled ω/2θ scans h = −14→14
Absorption correction: ψ scan (CAD-4 EXPRESS; Enraf–Nonius, 1989) k = 0→8
l = −29→0
4246 measured reflections 3 standard reflections every 60 min
4145 independent reflections intensity decay: 1%
2310 reflections with I > 2σ(I)

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.056 w = 1/[σ2(Fo2) + (0.0751P)2] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.144 (Δ/σ)max < 0.001
S = 0.98 Δρmax = 0.27 e Å3
4145 reflections Δρmin = −0.16 e Å3
320 parameters Absolute structure: No quotients, so Flack parameter determined by classical intensity fit
1 restraint Absolute structure parameter: −1.1 (16)
Primary atom site location: structure-invariant direct methods

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.8239 (2) 0.1157 (4) 0.71804 (11) 0.0477 (6)
N2 0.7587 (3) −0.3619 (8) 0.48894 (14) 0.0797 (11)
O1 0.66501 (17) −0.1036 (3) 0.74757 (9) 0.0433 (5)
O2 0.6807 (2) 0.2399 (4) 0.78790 (11) 0.0609 (6)
O3 1.1526 (2) 0.4302 (5) 0.96516 (11) 0.0708 (7)
O4 0.8084 (4) −0.5387 (8) 0.48479 (16) 0.1195 (13)
O5 0.7743 (3) −0.2175 (7) 0.45058 (14) 0.1154 (13)
C2 0.9005 (3) 0.3194 (5) 0.71908 (15) 0.0505 (8)
H2 0.8431 0.4434 0.7086 0.061*
C3 0.9859 (3) 0.2781 (7) 0.66428 (16) 0.0667 (10)
H3 1.0448 0.3799 0.6498 0.080*
C4 0.9688 (3) 0.0841 (8) 0.63905 (16) 0.0678 (11)
H4 1.0140 0.0321 0.6047 0.081*
C5 0.8683 (3) −0.0446 (6) 0.67187 (15) 0.0553 (8)
H5A 0.7983 −0.0899 0.6420 0.066*
H5B 0.9055 −0.1725 0.6933 0.066*
C6 0.9711 (3) 0.3593 (5) 0.78309 (15) 0.0475 (7)
C7 0.9543 (3) 0.5462 (6) 0.81758 (16) 0.0564 (8)
H7 0.9012 0.6560 0.7999 0.068*
C8 1.0136 (3) 0.5782 (6) 0.87811 (16) 0.0605 (9)
H8 1.0002 0.7076 0.9003 0.073*
C9 1.0914 (3) 0.4197 (6) 0.90480 (15) 0.0546 (8)
C10 1.1126 (3) 0.2279 (7) 0.87032 (17) 0.0638 (9)
H10 1.1667 0.1196 0.8880 0.077*
C11 1.0541 (3) 0.1994 (6) 0.81092 (16) 0.0574 (8)
H11 1.0693 0.0715 0.7883 0.069*
C12 1.1372 (5) 0.6248 (10) 1.0010 (2) 0.1029 (17)
H12A 1.1692 0.7469 0.9775 0.154*
H12B 1.1851 0.6128 1.0415 0.154*
H12C 1.0469 0.6465 1.0082 0.154*
C13 0.7197 (3) 0.0966 (5) 0.75437 (13) 0.0409 (6)
C14 0.5631 (2) −0.1508 (5) 0.79199 (12) 0.0399 (6)
H14 0.5190 −0.0143 0.8024 0.048*
C15 0.4655 (2) −0.3067 (5) 0.75898 (12) 0.0386 (6)
H15 0.5117 −0.4430 0.7505 0.046*
C16 0.3628 (3) −0.3597 (7) 0.80803 (14) 0.0563 (8)
H16A 0.3163 −0.2271 0.8181 0.068*
H16B 0.3006 −0.4633 0.7892 0.068*
C17 0.4248 (3) −0.4550 (6) 0.86912 (15) 0.0604 (9)
H17A 0.4659 −0.5927 0.8592 0.072*
H17B 0.3576 −0.4852 0.8989 0.072*
C18 0.5250 (3) −0.3043 (6) 0.90138 (13) 0.0568 (8)
H18 0.4813 −0.1693 0.9135 0.068*
C19 0.6253 (3) −0.2468 (6) 0.85248 (13) 0.0474 (7)
H19A 0.6868 −0.1424 0.8715 0.057*
H19B 0.6729 −0.3777 0.8418 0.057*
C20 0.5893 (4) −0.4048 (9) 0.96163 (17) 0.0898 (14)
H20A 0.5242 −0.4410 0.9912 0.135*
H20B 0.6493 −0.3018 0.9813 0.135*
H20C 0.6351 −0.5350 0.9504 0.135*
C21 0.4069 (3) −0.2208 (5) 0.69281 (13) 0.0416 (6)
C22 0.3634 (3) 0.0191 (5) 0.69810 (16) 0.0530 (8)
H22A 0.4380 0.1103 0.7068 0.079*
H22B 0.3051 0.0330 0.7323 0.079*
H22C 0.3201 0.0636 0.6584 0.079*
C23 0.2859 (3) −0.3568 (6) 0.67073 (15) 0.0565 (8)
H23A 0.2172 −0.3298 0.6991 0.085*
H23B 0.3075 −0.5096 0.6716 0.085*
H23C 0.2582 −0.3151 0.6278 0.085*
C24 0.5042 (2) −0.2514 (5) 0.63983 (12) 0.0415 (6)
C25 0.5699 (3) −0.4489 (5) 0.63403 (14) 0.0511 (7)
H25 0.5574 −0.5593 0.6638 0.061*
C26 0.6534 (3) −0.4855 (6) 0.58506 (14) 0.0573 (8)
H26 0.6975 −0.6177 0.5822 0.069*
C27 0.6697 (3) −0.3229 (7) 0.54084 (13) 0.0557 (8)
C28 0.6056 (3) −0.1281 (7) 0.54376 (14) 0.0608 (9)
H28 0.6167 −0.0207 0.5129 0.073*
C29 0.5237 (3) −0.0928 (6) 0.59349 (14) 0.0530 (8)
H29 0.4806 0.0405 0.5959 0.064*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0418 (12) 0.0409 (14) 0.0610 (14) −0.0140 (12) 0.0090 (11) −0.0041 (13)
N2 0.078 (2) 0.115 (3) 0.0474 (16) 0.007 (2) 0.0169 (14) −0.005 (2)
O1 0.0397 (10) 0.0395 (11) 0.0520 (10) −0.0127 (9) 0.0150 (8) −0.0037 (9)
O2 0.0527 (12) 0.0405 (12) 0.0911 (16) −0.0101 (11) 0.0204 (11) −0.0158 (13)
O3 0.0637 (13) 0.088 (2) 0.0603 (13) −0.0025 (15) −0.0009 (11) 0.0014 (14)
O4 0.141 (3) 0.129 (3) 0.094 (2) 0.037 (3) 0.059 (2) −0.009 (2)
O5 0.131 (3) 0.142 (3) 0.0780 (19) 0.015 (3) 0.0538 (19) 0.027 (2)
C2 0.0430 (15) 0.0399 (17) 0.0684 (19) −0.0163 (13) −0.0002 (14) 0.0094 (14)
C3 0.0557 (19) 0.082 (3) 0.064 (2) −0.034 (2) 0.0138 (16) 0.015 (2)
C4 0.0537 (18) 0.094 (3) 0.0569 (19) −0.024 (2) 0.0169 (15) 0.004 (2)
C5 0.0540 (17) 0.060 (2) 0.0531 (16) −0.0135 (17) 0.0160 (14) −0.0087 (16)
C6 0.0368 (14) 0.0436 (17) 0.0625 (17) −0.0125 (13) 0.0072 (12) 0.0034 (15)
C7 0.0477 (16) 0.051 (2) 0.070 (2) −0.0005 (15) 0.0012 (15) 0.0039 (17)
C8 0.0575 (18) 0.059 (2) 0.0652 (19) 0.0002 (17) 0.0066 (15) −0.0121 (18)
C9 0.0442 (15) 0.065 (2) 0.0552 (17) −0.0055 (17) 0.0070 (13) 0.0046 (17)
C10 0.0536 (18) 0.060 (2) 0.077 (2) 0.0071 (18) −0.0029 (17) 0.004 (2)
C11 0.0509 (16) 0.0486 (19) 0.072 (2) −0.0037 (16) 0.0005 (15) −0.0021 (17)
C12 0.127 (4) 0.110 (4) 0.070 (3) 0.007 (4) −0.014 (3) −0.028 (3)
C13 0.0362 (13) 0.0360 (15) 0.0506 (15) −0.0067 (12) 0.0046 (11) −0.0015 (13)
C14 0.0367 (13) 0.0397 (15) 0.0445 (14) −0.0087 (12) 0.0159 (11) −0.0044 (13)
C15 0.0331 (12) 0.0370 (15) 0.0466 (14) −0.0065 (11) 0.0099 (10) −0.0013 (12)
C16 0.0427 (15) 0.070 (2) 0.0573 (17) −0.0166 (16) 0.0125 (13) −0.0001 (18)
C17 0.0599 (18) 0.066 (2) 0.0576 (18) −0.0162 (18) 0.0227 (15) 0.0081 (17)
C18 0.0626 (18) 0.064 (2) 0.0447 (15) −0.0054 (17) 0.0128 (13) 0.0004 (16)
C19 0.0435 (14) 0.0507 (18) 0.0480 (15) −0.0111 (14) 0.0032 (12) −0.0050 (15)
C20 0.101 (3) 0.106 (4) 0.062 (2) −0.016 (3) 0.002 (2) 0.021 (3)
C21 0.0383 (13) 0.0396 (16) 0.0470 (15) −0.0021 (12) 0.0050 (12) −0.0028 (13)
C22 0.0511 (17) 0.0450 (18) 0.0636 (18) 0.0069 (14) 0.0104 (15) 0.0012 (16)
C23 0.0448 (15) 0.060 (2) 0.0637 (18) −0.0143 (15) −0.0027 (13) 0.0000 (17)
C24 0.0393 (14) 0.0444 (16) 0.0406 (14) −0.0068 (13) −0.0005 (11) −0.0010 (13)
C25 0.0631 (18) 0.0438 (17) 0.0472 (15) −0.0021 (15) 0.0103 (14) 0.0015 (14)
C26 0.0671 (19) 0.0546 (19) 0.0504 (16) 0.0024 (17) 0.0063 (15) −0.0097 (16)
C27 0.0545 (16) 0.078 (2) 0.0349 (14) −0.0034 (18) 0.0029 (12) −0.0059 (16)
C28 0.0618 (19) 0.075 (3) 0.0455 (16) −0.0021 (19) 0.0035 (15) 0.0150 (18)
C29 0.0536 (16) 0.054 (2) 0.0516 (16) 0.0037 (16) 0.0034 (13) 0.0093 (16)

Geometric parameters (Å, º)

N1—C13 1.350 (3) C15—C16 1.543 (4)
N1—C5 1.463 (4) C15—C21 1.569 (4)
N1—C2 1.474 (4) C15—H15 0.9800
N2—O4 1.201 (5) C16—C17 1.513 (4)
N2—O5 1.207 (5) C16—H16A 0.9700
N2—C27 1.473 (4) C16—H16B 0.9700
O1—C13 1.352 (3) C17—C18 1.517 (5)
O1—C14 1.463 (3) C17—H17A 0.9700
O2—C13 1.202 (3) C17—H17B 0.9700
O3—C9 1.381 (4) C18—C20 1.520 (5)
O3—C12 1.417 (6) C18—C19 1.529 (4)
C2—C3 1.498 (5) C18—H18 0.9800
C2—C6 1.508 (4) C19—H19A 0.9700
C2—H2 0.9800 C19—H19B 0.9700
C3—C4 1.306 (6) C20—H20A 0.9600
C3—H3 0.9300 C20—H20B 0.9600
C4—C5 1.494 (4) C20—H20C 0.9600
C4—H4 0.9300 C21—C22 1.539 (4)
C5—H5A 0.9700 C21—C24 1.540 (4)
C5—H5B 0.9700 C21—C23 1.550 (4)
C6—C7 1.365 (5) C22—H22A 0.9600
C6—C11 1.405 (4) C22—H22B 0.9600
C7—C8 1.389 (4) C22—H22C 0.9600
C7—H7 0.9300 C23—H23A 0.9600
C8—C9 1.359 (5) C23—H23B 0.9600
C8—H8 0.9300 C23—H23C 0.9600
C9—C10 1.398 (5) C24—C29 1.390 (4)
C10—C11 1.361 (5) C24—C25 1.393 (4)
C10—H10 0.9300 C25—C26 1.386 (4)
C11—H11 0.9300 C25—H25 0.9300
C12—H12A 0.9600 C26—C27 1.371 (5)
C12—H12B 0.9600 C26—H26 0.9300
C12—H12C 0.9600 C27—C28 1.365 (6)
C14—C19 1.505 (4) C28—C29 1.386 (4)
C14—C15 1.525 (4) C28—H28 0.9300
C14—H14 0.9800 C29—H29 0.9300
C13—N1—C5 126.5 (2) C17—C16—H16A 109.4
C13—N1—C2 120.4 (2) C15—C16—H16A 109.4
C5—N1—C2 113.0 (2) C17—C16—H16B 109.4
O4—N2—O5 122.6 (4) C15—C16—H16B 109.4
O4—N2—C27 118.8 (4) H16A—C16—H16B 108.0
O5—N2—C27 118.5 (4) C16—C17—C18 113.0 (3)
C13—O1—C14 114.9 (2) C16—C17—H17A 109.0
C9—O3—C12 117.4 (3) C18—C17—H17A 109.0
N1—C2—C3 100.5 (3) C16—C17—H17B 109.0
N1—C2—C6 112.6 (2) C18—C17—H17B 109.0
C3—C2—C6 115.2 (2) H17A—C17—H17B 107.8
N1—C2—H2 109.4 C17—C18—C20 112.4 (3)
C3—C2—H2 109.4 C17—C18—C19 108.2 (2)
C6—C2—H2 109.4 C20—C18—C19 111.2 (3)
C4—C3—C2 112.8 (3) C17—C18—H18 108.3
C4—C3—H3 123.6 C20—C18—H18 108.3
C2—C3—H3 123.6 C19—C18—H18 108.3
C3—C4—C5 112.1 (3) C14—C19—C18 111.9 (2)
C3—C4—H4 123.9 C14—C19—H19A 109.2
C5—C4—H4 123.9 C18—C19—H19A 109.2
N1—C5—C4 101.3 (3) C14—C19—H19B 109.2
N1—C5—H5A 111.5 C18—C19—H19B 109.2
C4—C5—H5A 111.5 H19A—C19—H19B 107.9
N1—C5—H5B 111.5 C18—C20—H20A 109.5
C4—C5—H5B 111.5 C18—C20—H20B 109.5
H5A—C5—H5B 109.3 H20A—C20—H20B 109.5
C7—C6—C11 117.1 (3) C18—C20—H20C 109.5
C7—C6—C2 122.2 (3) H20A—C20—H20C 109.5
C11—C6—C2 120.7 (3) H20B—C20—H20C 109.5
C6—C7—C8 122.3 (3) C22—C21—C24 111.7 (2)
C6—C7—H7 118.8 C22—C21—C23 107.4 (3)
C8—C7—H7 118.8 C24—C21—C23 105.4 (2)
C9—C8—C7 119.8 (3) C22—C21—C15 110.9 (3)
C9—C8—H8 120.1 C24—C21—C15 110.7 (2)
C7—C8—H8 120.1 C23—C21—C15 110.6 (2)
C8—C9—O3 125.0 (3) C21—C22—H22A 109.5
C8—C9—C10 119.4 (3) C21—C22—H22B 109.5
O3—C9—C10 115.6 (3) H22A—C22—H22B 109.5
C11—C10—C9 120.1 (3) C21—C22—H22C 109.5
C11—C10—H10 119.9 H22A—C22—H22C 109.5
C9—C10—H10 119.9 H22B—C22—H22C 109.5
C10—C11—C6 121.3 (3) C21—C23—H23A 109.5
C10—C11—H11 119.3 C21—C23—H23B 109.5
C6—C11—H11 119.3 H23A—C23—H23B 109.5
O3—C12—H12A 109.5 C21—C23—H23C 109.5
O3—C12—H12B 109.5 H23A—C23—H23C 109.5
H12A—C12—H12B 109.5 H23B—C23—H23C 109.5
O3—C12—H12C 109.5 C29—C24—C25 117.2 (2)
H12A—C12—H12C 109.5 C29—C24—C21 122.4 (3)
H12B—C12—H12C 109.5 C25—C24—C21 120.3 (3)
O2—C13—N1 124.1 (3) C26—C25—C24 121.8 (3)
O2—C13—O1 124.8 (2) C26—C25—H25 119.1
N1—C13—O1 111.1 (2) C24—C25—H25 119.1
O1—C14—C19 108.5 (2) C27—C26—C25 118.6 (3)
O1—C14—C15 108.43 (19) C27—C26—H26 120.7
C19—C14—C15 112.3 (2) C25—C26—H26 120.7
O1—C14—H14 109.2 C28—C27—C26 121.8 (3)
C19—C14—H14 109.2 C28—C27—N2 119.7 (3)
C15—C14—H14 109.2 C26—C27—N2 118.5 (4)
C14—C15—C16 107.0 (2) C27—C28—C29 118.9 (3)
C14—C15—C21 113.9 (2) C27—C28—H28 120.5
C16—C15—C21 113.9 (2) C29—C28—H28 120.5
C14—C15—H15 107.2 C28—C29—C24 121.7 (3)
C16—C15—H15 107.2 C28—C29—H29 119.2
C21—C15—H15 107.2 C24—C29—H29 119.2
C17—C16—C15 111.3 (2)
C13—N1—C2—C3 −170.1 (3) C19—C14—C15—C21 −175.3 (2)
C5—N1—C2—C3 6.0 (3) C14—C15—C16—C17 −56.9 (4)
C13—N1—C2—C6 66.8 (3) C21—C15—C16—C17 176.4 (3)
C5—N1—C2—C6 −117.1 (3) C15—C16—C17—C18 58.3 (4)
N1—C2—C3—C4 −3.6 (4) C16—C17—C18—C20 −178.3 (3)
C6—C2—C3—C4 117.7 (4) C16—C17—C18—C19 −55.1 (4)
C2—C3—C4—C5 0.0 (5) O1—C14—C19—C18 −179.1 (2)
C13—N1—C5—C4 169.8 (3) C15—C14—C19—C18 −59.3 (3)
C2—N1—C5—C4 −6.0 (3) C17—C18—C19—C14 55.0 (4)
C3—C4—C5—N1 3.6 (4) C20—C18—C19—C14 179.0 (3)
N1—C2—C6—C7 −123.2 (3) C14—C15—C21—C22 −46.9 (3)
C3—C2—C6—C7 122.4 (3) C16—C15—C21—C22 76.2 (3)
N1—C2—C6—C11 54.4 (4) C14—C15—C21—C24 77.7 (3)
C3—C2—C6—C11 −60.1 (4) C16—C15—C21—C24 −159.3 (3)
C11—C6—C7—C8 −1.3 (4) C14—C15—C21—C23 −165.9 (2)
C2—C6—C7—C8 176.4 (3) C16—C15—C21—C23 −42.8 (3)
C6—C7—C8—C9 −0.1 (5) C22—C21—C24—C29 −14.5 (4)
C7—C8—C9—O3 −178.1 (3) C23—C21—C24—C29 101.8 (3)
C7—C8—C9—C10 1.2 (5) C15—C21—C24—C29 −138.6 (3)
C12—O3—C9—C8 −2.7 (5) C22—C21—C24—C25 170.2 (3)
C12—O3—C9—C10 178.0 (4) C23—C21—C24—C25 −73.5 (3)
C8—C9—C10—C11 −0.9 (5) C15—C21—C24—C25 46.1 (3)
O3—C9—C10—C11 178.4 (3) C29—C24—C25—C26 1.3 (4)
C9—C10—C11—C6 −0.4 (5) C21—C24—C25—C26 176.9 (3)
C7—C6—C11—C10 1.5 (4) C24—C25—C26—C27 −0.9 (5)
C2—C6—C11—C10 −176.2 (3) C25—C26—C27—C28 −0.3 (5)
C5—N1—C13—O2 −173.7 (3) C25—C26—C27—N2 179.8 (3)
C2—N1—C13—O2 1.8 (4) O4—N2—C27—C28 −175.6 (4)
C5—N1—C13—O1 5.8 (4) O5—N2—C27—C28 1.2 (5)
C2—N1—C13—O1 −178.7 (2) O4—N2—C27—C26 4.2 (5)
C14—O1—C13—O2 −8.9 (4) O5—N2—C27—C26 −179.0 (4)
C14—O1—C13—N1 171.6 (2) C26—C27—C28—C29 1.1 (5)
C13—O1—C14—C19 −88.2 (3) N2—C27—C28—C29 −179.0 (3)
C13—O1—C14—C15 149.6 (2) C27—C28—C29—C24 −0.7 (5)
O1—C14—C15—C16 177.8 (2) C25—C24—C29—C28 −0.5 (4)
C19—C14—C15—C16 58.0 (3) C21—C24—C29—C28 −175.9 (3)
O1—C14—C15—C21 −55.4 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the ring centroid of the C24–C29 ring.

D—H···A D—H H···A D···A D—H···A
C5—H5A···Cg1 0.97 2.67 3.612 (3) 163
C19—H19B···O2i 0.97 2.60 3.472 (4) 150

Symmetry code: (i) x, y−1, z.

References

  1. Aoyagi, S., Tanaka, R., Naruse, M. & Kibayashi, C. (1998). J. Org. Chem. 63, 8397–8406.
  2. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  3. Burla, M. C., Caliandro, R., Carrozzini, B., Cascarano, G. L., Cuocci, C., Giacovazzo, C., Mallamo, M., Mazzone, A. & Polidori, G. (2015). J. Appl. Cryst. 48, 306–309.
  4. ChemAxon (2010). Marvinsketch. http://www.chemaxon.com.
  5. Comins, D. L. & Killpack, M. O. (1992). J. Am. Chem. Soc. 114, 10972–10974.
  6. Crisp, G. T. (1998). Chem. Soc. Rev. 27, 427–436.
  7. Enraf–Nonius (1989). CAD-4 EXPRESS. Enraf–Nonius, Delft, The Netherlands.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
  10. Heck, R. F. (1982). Org. React. 27, 345–390.
  11. Machado, A. H. L. (2001). MSc Thesis. Universidade Estadual de Campinas (UNICAMP), Campinas, São Paulo, Brasil.
  12. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  13. Severino, E. A. & Correia, C. R. D. (2001). Org. Lett. 2, 3039–3042.
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Singh, P., Comins, D. L. & Killpack, M. O. (1990). Acta Cryst. C46, 1955–1957.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Streith, J., Boiron, A., Paillaud, J.-L., Rodriguez-Perez, E.-M., Strehler, C., Tschamber, T. & Zehnder, M. (1995). Helv. Chim. Acta, 78, 61–72.
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  19. Zukerman-Schpector, J., Sugiyama, F. H., Garcia, A. L. L., Correia, C. R. D., Jotani, M. M. & Tiekink, E. R. T. (2017). Acta Cryst. E73, 1218–1222. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018003092/hb7734sup1.cif

e-74-00414-sup1.cif (370.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018003092/hb7734Isup2.hkl

e-74-00414-Isup2.hkl (330.2KB, hkl)

CCDC reference: 1825237

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES