Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jan 12;74(Pt 2):158–162. doi: 10.1107/S2056989018000488

Crystal structure of catena-poly[[[di­chlorido­copper(II)]-{μ-tert-butyl N-methyl-N-[4-(6-{[4-(pyridin-2-yl-κN)-1H-1,2,3-triazol-1-yl-κN 3]meth­yl}-1,3-benzo­thia­zol-2-yl)phen­yl]carbamato}] aceto­nitrile monosolvate]

Alexandre Pocinho a, Carine Duhayon a, Emmanuel Gras a,*, Christelle Hureau a
PMCID: PMC5956327  PMID: 29850044

The title coordination polymer was obtained by combining an aqueous solution of copper(II) dichloride with the ligand {tert-butyl­meth­yl[4-(6-{[4-(pyridin-2-yl-)1H-1,2,3-triazol-1-yl]meth­yl}-1,3-benzo­thia­zol-2-yl)phen­yl]carbamate in aceto­nitrile.

Keywords: crystal structure, pyridine–triazole, Alzheimer’s disease, copper(II) complex, hydrogen bonding, C—H⋯π inter­actions, offset π–π inter­actions

Abstract

In the title coordination polymer, {[CuCl2(C27H26N6O2S)]·CH3CN}n, the copper(II) ion is fivefold coordinated, with an almost perfect square-pyramidal coordination sphere. In the equatorial plane, it is ligated to a pyridine N atom and an N atom of the triazole unit and to two Cl ions, while the apical position is occupied by the carbonyl O atom of the tert-butyl carbamate group. In the crystal, the polymer chains propagate in the [11-1] direction, with the aceto­nitrile solvent mol­ecules linked to the chain by C—H⋯N hydrogen bonds. The chains are linked by C—H⋯Cl hydrogen bonds forming sheets parallel to the plane (011). The crystal packing is further consolidated by C—H⋯π inter­actions and offset π–π stacking inter­actions [inter­centroid distance = 3.6805 (15) Å], forming a three-dimensional supra­molecular structure.

Chemical context  

Alzheimer’s Disease (AD) is a neurodegenerative disease characterized by aggregation of amyloid peptide and extensive inflammation related to a strong oxidative stress (Cheignon et al., 2018). Metals are known to play a key role in this oxidative stress and also to be associated with peptide aggregation, at the core of the pathology (Faller et al., 2013; Viles, 2012). More specifically, CuII has been found to form a complex with the amyloid peptide for which aggregation is one of the major hallmarks of AD (Eury et al., 2011; Faller et al., 2014). This has triggered significant ongoing inter­est in the development of chelators able to inter­act with metals in the context of AD (Santos et al., 2016; Conte-Daban et al., 2017).

In the course of our studies on the development of bifunctional mol­ecules able to target amyloid fibrils, for example via a 2-aryl­benzo­thia­zole core (Noel et al., 2013), and inter­act with copper ions found within the senile plaques, we have designed and synthesized a benzo­thia­zole moiety decorated with a triazole-pyridine subunit, viz. tert-butyl meth­yl[4-(6-{[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]meth­yl} benzo[d]thia­zol-2-yl]phen­yl}carbamate (L). Indeed integrating the N-binding from the triazole moiety in the binding site of a chelator has been shown to be a successful approach (Jones et al., 2012, 2017). Compared to these seminal works, the additional aryl-benzo­thia­zole moiety in compound L is expected to enhance the ability of the chelator to inter­act with amyloid aggregates and thus to retrieve deleterious CuII ions from Aβ fibrils. Investigation of the ability to chelate CuII ions, by studying the reaction of L with CuCl2, led to the formation of the title coordination polymer whose synthesis and mol­ecular and crystal structures are described herein.graphic file with name e-74-00158-scheme1.jpg

Structural commentary  

The mol­ecular structure of the asymmetric unit of the title coordination polymer is shown in Fig. 1. Selected bond lengths and bond angles are given in Table 1. The ligand is L-shaped with the benzo­thia­zole ring system (S1/N3/C2/C4–C9; r.m.s. deviation = 0.01 Å) being inclined to the triazole ring (N17-N197C20/C21) by 79.54 (12)°. The benzene ring is inclined to the benzo­thia­zole ring system by 12.27 (11)°, while the pyridine ring is inclined to the triazole ring by 4.07 (14)°. The copper(II) ion is fivefold coordinate with an almost perfect square-pyramidal coordination sphere. In the equatorial plane, the copper(II) ion coordinates the pyridine N atom N27 and atom N19 of the triazole unit and two Cl anions, while the apical position is occupied by the carbonyl O atom, O31, of the tert-butyl­oxycarbamate group. The τ5 descriptor for the fivefold coordination sphere is 0.08 (τ5 = 0 for an ideal square-pyramidal coordination sphere, and = 1 for an ideal trigonal–pyramidal coordination sphere; Addison et al., 1984). The triazole ring (N17–N19/C20/C21) exhibits a slightly shorter Cu1—N19 bond length [2.004 (2) Å] than the pyridine Cu1—-N27 bond length [2.054 (2) Å], yet no trans effect is observed as the two Cu—-Cl bond lengths are very close [2.2344 (7) and 2.2380 (7) Å]. These bond lengths are similar to those observed for a related complex, viz. di­chloro-(4-{2-[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]eth­yl}morpholine)­copper(II) (Jones et al., 2012).

Figure 1.

Figure 1

The mol­ecular structure of the asymmetric unit of the title coordination polymer, with atom labelling. Displacement ellipsoids are drawn at the 50% probability level. The H atoms have been omitted for clarity. [Symmetry codes: (i) x − 1, y − 1, z + 1; (ii) x + 1, y + 1, z − 1.]

Table 1. Selected geometric parameters (Å, °).

Cu1—O31i 2.508 (2) Cu1—Cl1 2.2344 (7)
Cu1—N19 2.004 (2) Cu1—Cl2 2.2380 (7)
Cu1—N27 2.054 (2)    
       
Cl1—Cu1—N19 168.01 (7) Cl2—Cu1—N27 172.70 (6)

Symmetry code: (i) Inline graphic.

Supra­molecular features  

In the crystal, the polymer chains propagate in the [11Inline graphic] direction (Fig. 2). They are linked by C—H⋯Cl hydrogen bonds, forming sheets parallel to (011); see Fig. 3 and Table 2. The aceto­nitrile solvent mol­ecules are linked to the polymer chains within the network by C—H⋯N hydrogen bonds (Figs. 2 and 3; Table 2). The crystal packing is further consolidated by C—H⋯π inter­actions (Table 2) and offset π–π stacking inter­actions, forming a three-dimensional supra­molecular structure (Fig. 4). The offset π–π inter­actions involve inversion-related triazole and pyridine rings with inter­planar distances of 3.3848 (11) and 3.300 (1) Å [Cg3⋯Cg4i = 3.6805 (15) Å, α = 4.07 (14)°, slippages are 1.63 and 1.45 Å; Cg3 and Cg4 are the centroids of rings N17–N19/C20/C21 and N27/C22–C26, respectively; symmetry code: (i) −x, −y − 1, −z + 2].

Figure 2.

Figure 2

A view along the a axis of the aceto­nitrile solvent mol­ecules (ball and stick) linked to the polymer chains, that propagate along direction [11Inline graphic], via a C—H⋯N hydrogen bond (see Table 2 for details). Other H atoms have been omitted for clarity.

Figure 3.

Figure 3

A view along the c axis of the crystal packing of the title compound, showing the hydrogen bonds (dashed lines; see Table 2 for details) forming sheets parallel to (011). H atoms not involved in these inter­actions have been omitted.

Table 2. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the C4–C9 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C16—H162⋯N39ii 0.97 2.52 3.451 (6) 161
C16—H161⋯Cl2iii 0.97 2.72 3.606 (3) 152
C21—H211⋯Cl1iii 0.94 2.81 3.633 (3) 147
C23—H231⋯Cl1iii 0.94 2.62 3.494 (3) 155
C26—H261⋯Cl1 0.94 2.55 3.154 (3) 122
C29—H291⋯Cl2iv 0.95 2.80 3.741 (3) 172
C25—H251⋯Cg v 0.94 2.85 3.583 (3) 135

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 4.

Figure 4

A view along the a axis of the crystal packing of the title compound, showing the hydrogen bonds as dashed lines (see Table 2 for details). H atoms not involved in these inter­actions have been omitted.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.38, update May 2017; Groom et al., 2016) for pyridine-triazole copper(II) dichloride complexes gave seven hits. Two of these compounds have a similar geometry involving the copper(II) atom, viz. di­chloro-(4-{2-[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]eth­yl}morpholine)­copper(II) (CSD refcode MEHHEO; Jones et al., 2012) and bis­(μ-chloro)­dichloro-bis­(2-{[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]meth­yl}benzo­nitrile)di-copper (UMIYEW; Bai et al., 2016). As in the title compound (see Table 1), the CuII ions have fivefold coordin­ation spheres with a square-pyramidal geometry. In addition, the Cu—Npyridine bond lengths [2.063 (3) and 2.075 (2) Å, respectively] are slightly longer than the Cu—Ntriazole bond lengths [2.024 (3) and 2.005 (3) Å, respectively], while the Cu—Cl bonds lengths are very similar in both complexes [2.265 (1) and 2.242 (1) Å in MEHHEO, and 2.246 (1) and 2.264 (1) Å in UMIYEW]. However, both of these compounds are binuclear complexes, possessing inversion symmetry, with bis­(μ-chloro) Cl anions bridging the metal ions.

Synthesis and crystallization  

The synthesis of the ligand, tert-butyl meth­yl[4-(6-{[4-(pyridin-2-yl)-1H-1,2,3-triazol-1-yl]meth­yl}benzo[d]thia­zol-2-yl)phen­yl]carbamate (L), was performed according to literature precedents (Noel et al., 2013; Jones et al., 2012). A mixture of 15 mg of L dissolved in 1 ml of aceto­nitrile, and 1.1 equiv. of CuCl2 dissolved in 10 ml of a mixture aceto­nitrile/H2O (6/3) was heated to 353 K. The mixture was cooled at room temperature, allowing a precipitate to form. The supernatant was removed and the precipitate was dissolved with a minimum volume of hot aceto­nitrile, filtered and left at room temperature in a closed vessel producing overnight pale-green plate-like crystals.graphic file with name e-74-00158-scheme2.jpg

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The H atoms were all located in difference-Fourier maps, but those attached to carbon atoms were repositioned geometrically. The H atoms were initially refined with soft restraints on the bond lengths and angles to regularize their geometry [C—H = 0.93–0.98 Å with U iso(H) = 1.5U eq(C-meth­yl) and 1.2U eq(C) for other H atoms], after which the positions were refined with riding constraints (Cooper et al., 2010).

Table 3. Experimental details.

Crystal data
Chemical formula [CuCl2(C27H26N6O2S)]·CH3CN
M r 674.11
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 8.6374 (7), 13.1553 (10), 14.2243 (11)
α, β, γ (°) 73.755 (3), 73.863 (3), 84.226 (3)
V3) 1490.1 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 1.02
Crystal size (mm) 0.12 × 0.09 × 0.02
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2006)
T min, T max 0.91, 0.98
No. of measured, independent and observed [I > 2.0σ(I)] reflections 26982, 5475, 4358
R int 0.053
(sin θ/λ)max−1) 0.603
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.037, 0.036, 1.05
No. of reflections 4062
No. of parameters 379
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.45, −0.36

Computer programs: APEX2 and SAINT (Bruker, 2006), SUPERFLIP (Palatinus & Chapuis, 2007), Mercury (Macrae et al., 2008), CRYSTALS (Betteridge et al., 2003) and PLATON (Spek, 2009). Weighting scheme: Chebychev polynomial (Watkin, 1994; Prince, 1982)

Supplementary Material

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989018000488/su5417sup1.cif

e-74-00158-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018000488/su5417Isup2.hkl

e-74-00158-Isup2.hkl (343KB, hkl)

CCDC reference: 1815501

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

[CuCl2(C27H26N6O2S)]·CH3CN Z = 2
Mr = 674.11 F(000) = 694
Triclinic, P1 Dx = 1.502 Mg m3
Hall symbol: -P 1 Mo Kα radiation, λ = 0.71073 Å
a = 8.6374 (7) Å Cell parameters from 7700 reflections
b = 13.1553 (10) Å θ = 2–25°
c = 14.2243 (11) Å µ = 1.02 mm1
α = 73.755 (3)° T = 100 K
β = 73.863 (3)° Plate, pale green
γ = 84.226 (3)° 0.12 × 0.09 × 0.02 mm
V = 1490.1 (2) Å3

Data collection

Bruker Kappa APEXII diffractometer 4358 reflections with I > 2.0σ(I)
Graphite monochromator Rint = 0.053
φ & ω scans θmax = 25.4°, θmin = 1.6°
Absorption correction: multi-scan (SADABS; Bruker, 2006) h = −10→8
Tmin = 0.91, Tmax = 0.98 k = −15→15
26982 measured reflections l = −17→17
5475 independent reflections

Refinement

Refinement on F Primary atom site location: other
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.037 Hydrogen site location: difference Fourier map
wR(F2) = 0.036 H-atom parameters constrained
S = 1.05 Method, part 1, Chebychev polynomial, (Watkin, 1994; Prince, 1982) [weight] = 1.0/[A0*T0(x) + A1*T1(x) ··· + An-1]*Tn-1(x)] where Ai are the Chebychev coefficients listed below and x = F /Fmax Method = Robust Weighting (Prince, 1982) W = [weight] * [1-(deltaF/6*sigmaF)2]2 Ai are: 0.270 0.160 0.128
4062 reflections (Δ/σ)max = 0.001
379 parameters Δρmax = 0.45 e Å3
0 restraints Δρmin = −0.36 e Å3

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems open-flow nitrogen cryostat (Cosier & Glazer, 1986) with a nominal stability of 0.1 K. Cosier, J. & Glazer, A.M., 1986. J. Appl. Cryst. 105-107.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
S1 0.49721 (8) −0.10533 (5) 0.91493 (5) 0.0178
Cu1 −0.26343 (4) −0.55390 (3) 1.17008 (3) 0.0153
Cl1 −0.43826 (8) −0.62080 (6) 1.11470 (6) 0.0283
C2 0.4057 (3) 0.0195 (2) 0.8788 (2) 0.0166
Cl2 −0.45219 (8) −0.45258 (6) 1.24664 (5) 0.0241
N3 0.2719 (3) 0.03835 (18) 0.94172 (17) 0.0182
C4 0.0978 (3) −0.0538 (2) 1.1089 (2) 0.0198
C5 0.0743 (3) −0.1456 (2) 1.1862 (2) 0.0184
C6 0.1821 (3) −0.2326 (2) 1.18434 (19) 0.0154
C7 0.3190 (3) −0.2270 (2) 1.1035 (2) 0.0168
C8 0.3417 (3) −0.1348 (2) 1.0253 (2) 0.0157
C9 0.2337 (3) −0.0477 (2) 1.0261 (2) 0.0164
C10 0.4785 (3) 0.0928 (2) 0.7807 (2) 0.0167
C11 0.6322 (3) 0.0724 (2) 0.7241 (2) 0.0196
C12 0.6982 (3) 0.1394 (2) 0.6295 (2) 0.0218
C13 0.6083 (3) 0.2264 (2) 0.5891 (2) 0.0205
C14 0.4567 (4) 0.2492 (2) 0.6463 (2) 0.0226
C15 0.3921 (3) 0.1834 (2) 0.7420 (2) 0.0197
C16 0.1480 (3) −0.3355 (2) 1.2670 (2) 0.0176
N17 0.0898 (3) −0.41369 (17) 1.22896 (16) 0.0142
N18 −0.0676 (3) −0.41805 (17) 1.23796 (16) 0.0156
N19 −0.0798 (2) −0.48723 (16) 1.18938 (17) 0.0149
C20 0.0688 (3) −0.5257 (2) 1.14907 (19) 0.0143
C21 0.1801 (3) −0.4783 (2) 1.17465 (19) 0.0165
C22 0.0753 (3) −0.6034 (2) 1.09231 (19) 0.0153
C23 0.2169 (3) −0.6451 (2) 1.0407 (2) 0.0177
C24 0.2065 (3) −0.7194 (2) 0.9903 (2) 0.0206
C25 0.0551 (3) −0.7488 (2) 0.9927 (2) 0.0191
C26 −0.0798 (3) −0.7017 (2) 1.0431 (2) 0.0171
N27 −0.0723 (3) −0.63013 (17) 1.09261 (16) 0.0145
N28 0.6716 (3) 0.29292 (18) 0.48943 (17) 0.0230
C29 0.6889 (4) 0.4067 (2) 0.4767 (2) 0.0320
C30 0.7287 (4) 0.2548 (2) 0.4066 (2) 0.0228
O31 0.7877 (3) 0.30981 (16) 0.32214 (15) 0.0289
O32 0.7071 (3) 0.15044 (16) 0.43036 (15) 0.0304
C33 0.7874 (4) 0.0873 (2) 0.3586 (2) 0.0286
C34 0.7093 (4) 0.1108 (3) 0.2724 (2) 0.0303
C35 0.9671 (4) 0.1073 (3) 0.3221 (3) 0.0478
C36 0.7533 (6) −0.0256 (3) 0.4247 (3) 0.0546
C37 0.3253 (6) 0.2890 (4) 0.3651 (4) 0.0763
C38 0.1812 (5) 0.2908 (3) 0.4432 (3) 0.0502
N39 0.0648 (6) 0.2875 (4) 0.5048 (4) 0.0862
H41 0.0246 0.0045 1.1119 0.0245*
H51 −0.0172 −0.1504 1.2437 0.0226*
H71 0.3946 −0.2857 1.1026 0.0214*
H111 0.6940 0.0122 0.7511 0.0246*
H121 0.8046 0.1270 0.5925 0.0270*
H141 0.3970 0.3095 0.6193 0.0274*
H151 0.2892 0.2001 0.7807 0.0247*
H161 0.2462 −0.3640 1.2865 0.0221*
H162 0.0655 −0.3234 1.3253 0.0219*
H211 0.2925 −0.4869 1.1601 0.0196*
H231 0.3174 −0.6224 1.0400 0.0224*
H241 0.2997 −0.7503 0.9546 0.0264*
H251 0.0439 −0.7998 0.9599 0.0235*
H261 −0.1829 −0.7191 1.0427 0.0217*
H291 0.6493 0.4483 0.4217 0.0499*
H292 0.6300 0.4275 0.5370 0.0497*
H293 0.8010 0.4230 0.4655 0.0508*
H341 0.7619 0.0674 0.2266 0.0456*
H342 0.5970 0.0936 0.2989 0.0468*
H343 0.7196 0.1844 0.2362 0.0455*
H351 1.0195 0.0571 0.2860 0.0706*
H352 1.0120 0.0978 0.3794 0.0711*
H353 0.9903 0.1784 0.2784 0.0709*
H361 0.7925 −0.0372 0.4838 0.0841*
H362 0.8064 −0.0739 0.3855 0.0839*
H363 0.6376 −0.0356 0.4445 0.0840*
H371 0.3941 0.2312 0.3908 0.1152*
H372 0.3774 0.3554 0.3457 0.1152*
H373 0.2956 0.2769 0.3077 0.1154*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
S1 0.0155 (3) 0.0172 (3) 0.0189 (3) 0.0004 (2) −0.0021 (3) −0.0046 (3)
Cu1 0.01124 (16) 0.01627 (17) 0.02098 (18) −0.00100 (12) −0.00448 (12) −0.00854 (13)
Cl1 0.0169 (3) 0.0348 (4) 0.0440 (4) 0.0014 (3) −0.0124 (3) −0.0236 (3)
C2 0.0181 (13) 0.0180 (13) 0.0193 (13) −0.0008 (10) −0.0095 (11) −0.0091 (11)
Cl2 0.0161 (3) 0.0283 (4) 0.0327 (4) 0.0033 (3) −0.0062 (3) −0.0174 (3)
N3 0.0194 (11) 0.0178 (11) 0.0196 (12) 0.0015 (9) −0.0055 (9) −0.0086 (10)
C4 0.0200 (13) 0.0200 (14) 0.0228 (14) 0.0015 (11) −0.0054 (11) −0.0121 (12)
C5 0.0191 (13) 0.0198 (14) 0.0191 (13) −0.0021 (10) −0.0042 (11) −0.0098 (11)
C6 0.0170 (12) 0.0169 (13) 0.0166 (13) −0.0047 (10) −0.0069 (10) −0.0073 (11)
C7 0.0160 (12) 0.0177 (13) 0.0206 (14) −0.0011 (10) −0.0064 (11) −0.0094 (11)
C8 0.0130 (12) 0.0187 (13) 0.0191 (13) −0.0032 (10) −0.0049 (10) −0.0090 (11)
C9 0.0169 (12) 0.0175 (13) 0.0187 (13) −0.0023 (10) −0.0063 (10) −0.0087 (11)
C10 0.0201 (13) 0.0158 (13) 0.0184 (13) −0.0029 (10) −0.0073 (11) −0.0077 (11)
C11 0.0207 (13) 0.0217 (14) 0.0188 (14) 0.0003 (11) −0.0075 (11) −0.0071 (11)
C12 0.0218 (14) 0.0259 (15) 0.0192 (14) −0.0016 (11) −0.0054 (11) −0.0082 (12)
C13 0.0286 (15) 0.0157 (13) 0.0188 (14) −0.0040 (11) −0.0058 (11) −0.0064 (11)
C14 0.0311 (15) 0.0185 (14) 0.0210 (14) 0.0044 (12) −0.0105 (12) −0.0081 (12)
C15 0.0224 (14) 0.0198 (14) 0.0192 (14) 0.0009 (11) −0.0042 (11) −0.0106 (11)
C16 0.0187 (13) 0.0189 (13) 0.0182 (13) −0.0012 (10) −0.0053 (11) −0.0088 (11)
N17 0.0147 (10) 0.0149 (11) 0.0140 (11) −0.0031 (8) −0.0031 (8) −0.0050 (9)
N18 0.0148 (10) 0.0149 (11) 0.0172 (11) −0.0030 (8) −0.0029 (9) −0.0046 (9)
N19 0.0137 (10) 0.0113 (10) 0.0194 (11) −0.0010 (8) −0.0043 (9) −0.0031 (9)
C20 0.0131 (12) 0.0139 (12) 0.0147 (12) −0.0010 (10) −0.0024 (10) −0.0029 (10)
C21 0.0166 (12) 0.0180 (13) 0.0161 (13) −0.0004 (10) −0.0037 (10) −0.0072 (11)
C22 0.0163 (12) 0.0146 (13) 0.0159 (13) −0.0012 (10) −0.0074 (10) −0.0019 (10)
C23 0.0154 (12) 0.0202 (13) 0.0205 (14) 0.0019 (10) −0.0069 (11) −0.0087 (11)
C24 0.0219 (14) 0.0192 (14) 0.0215 (14) 0.0025 (11) −0.0064 (11) −0.0068 (11)
C25 0.0266 (14) 0.0140 (13) 0.0187 (14) 0.0005 (11) −0.0074 (11) −0.0062 (11)
C26 0.0202 (13) 0.0152 (12) 0.0176 (13) −0.0030 (10) −0.0069 (11) −0.0044 (11)
N27 0.0169 (11) 0.0148 (11) 0.0125 (11) −0.0016 (9) −0.0057 (9) −0.0025 (9)
N28 0.0349 (14) 0.0170 (12) 0.0162 (12) −0.0019 (10) −0.0036 (10) −0.0052 (10)
C29 0.053 (2) 0.0167 (14) 0.0221 (15) −0.0005 (14) −0.0055 (14) −0.0035 (12)
C30 0.0293 (15) 0.0183 (14) 0.0213 (15) −0.0010 (12) −0.0069 (12) −0.0057 (12)
O31 0.0433 (13) 0.0218 (11) 0.0165 (10) −0.0017 (9) −0.0011 (9) −0.0033 (9)
O32 0.0522 (14) 0.0183 (10) 0.0181 (10) −0.0036 (9) −0.0013 (9) −0.0078 (8)
C33 0.0434 (18) 0.0222 (15) 0.0241 (16) 0.0037 (13) −0.0105 (14) −0.0125 (13)
C34 0.0380 (17) 0.0315 (17) 0.0265 (16) −0.0045 (14) −0.0108 (14) −0.0125 (13)
C35 0.040 (2) 0.054 (2) 0.068 (3) 0.0172 (17) −0.0253 (19) −0.042 (2)
C36 0.110 (4) 0.0202 (17) 0.037 (2) 0.0028 (19) −0.023 (2) −0.0102 (15)
C37 0.051 (3) 0.056 (3) 0.084 (4) −0.005 (2) 0.021 (2) 0.004 (3)
C38 0.038 (2) 0.058 (3) 0.049 (2) 0.0078 (18) −0.0059 (19) −0.015 (2)
N39 0.073 (3) 0.099 (4) 0.072 (3) 0.013 (3) 0.005 (2) −0.029 (3)

Geometric parameters (Å, º)

S1—C2 1.754 (3) C20—C21 1.373 (4)
S1—C8 1.736 (3) C20—C22 1.458 (4)
Cu1—O31i 2.508 (2) C21—H211 0.937
Cu1—N19 2.004 (2) C22—C23 1.388 (4)
Cu1—N27 2.054 (2) C22—N27 1.355 (3)
Cu1—Cl1 2.2344 (7) C23—C24 1.386 (4)
Cu1—Cl2 2.2380 (7) C23—H231 0.943
C2—N3 1.300 (3) C24—C25 1.390 (4)
C2—C10 1.468 (4) C24—H241 0.946
N3—C9 1.387 (4) C25—C26 1.377 (4)
C4—C5 1.375 (4) C25—H251 0.943
C4—C9 1.403 (4) C26—N27 1.339 (3)
C4—H41 0.947 C26—H261 0.944
C5—C6 1.402 (4) N28—C29 1.474 (4)
C5—H51 0.959 N28—C30 1.356 (4)
C6—C7 1.393 (4) C29—H291 0.949
C6—C16 1.516 (4) C29—H292 0.964
C7—C8 1.385 (4) C29—H293 0.973
C7—H71 0.961 C30—O31 1.214 (3)
C8—C9 1.403 (4) C30—O32 1.338 (3)
C10—C11 1.392 (4) O32—C33 1.476 (3)
C10—C15 1.401 (4) C33—C34 1.503 (4)
C11—C12 1.386 (4) C33—C35 1.518 (5)
C11—H111 0.959 C33—C36 1.526 (5)
C12—C13 1.395 (4) C34—H341 0.974
C12—H121 0.948 C34—H342 0.963
C13—C14 1.390 (4) C34—H343 0.962
C13—N28 1.431 (4) C35—H351 0.952
C14—C15 1.389 (4) C35—H352 0.969
C14—H141 0.948 C35—H353 0.972
C15—H151 0.948 C36—H361 0.960
C16—N17 1.473 (3) C36—H362 0.961
C16—H161 0.973 C36—H363 0.972
C16—H162 0.971 C37—C38 1.422 (6)
N17—N18 1.336 (3) C37—H371 0.970
N17—C21 1.352 (3) C37—H372 0.957
N18—N19 1.315 (3) C37—H373 0.977
N19—C20 1.362 (3) C38—N39 1.131 (6)
C2—S1—C8 89.01 (13) C20—C21—N17 103.8 (2)
O31i—Cu1—Cl1 107.68 (6) C20—C21—H211 130.3
O31i—Cu1—Cl2 100.13 (5) N17—C21—H211 125.8
Cl1—Cu1—Cl2 93.31 (3) C20—C22—C23 124.4 (2)
O31i—Cu1—N19 80.21 (8) C20—C22—N27 113.2 (2)
Cl1—Cu1—N19 168.01 (7) C23—C22—N27 122.4 (2)
Cl2—Cu1—N19 94.14 (6) C22—C23—C24 118.6 (2)
O31i—Cu1—N27 83.26 (8) C22—C23—H231 119.9
Cl1—Cu1—N27 91.79 (6) C24—C23—H231 121.5
Cl2—Cu1—N27 172.70 (6) C23—C24—C25 119.0 (2)
N19—Cu1—N27 80.00 (8) C23—C24—H241 121.6
S1—C2—N3 115.9 (2) C25—C24—H241 119.5
S1—C2—C10 119.49 (19) C24—C25—C26 118.9 (2)
N3—C2—C10 124.6 (2) C24—C25—H251 121.0
C2—N3—C9 110.5 (2) C26—C25—H251 120.0
C5—C4—C9 118.8 (3) C25—C26—N27 123.0 (2)
C5—C4—H41 120.6 C25—C26—H261 119.4
C9—C4—H41 120.6 N27—C26—H261 117.6
C4—C5—C6 121.8 (3) C22—N27—C26 118.0 (2)
C4—C5—H51 119.6 C22—N27—Cu1 115.25 (17)
C6—C5—H51 118.6 C26—N27—Cu1 126.77 (18)
C5—C6—C7 120.1 (2) C13—N28—C29 118.9 (2)
C5—C6—C16 120.9 (2) C13—N28—C30 122.9 (2)
C7—C6—C16 119.0 (2) C29—N28—C30 118.0 (2)
C6—C7—C8 118.0 (2) N28—C29—H291 110.7
C6—C7—H71 120.5 N28—C29—H292 111.1
C8—C7—H71 121.5 H291—C29—H292 108.1
S1—C8—C7 128.5 (2) N28—C29—H293 110.9
S1—C8—C9 109.2 (2) H291—C29—H293 109.6
C7—C8—C9 122.3 (2) H292—C29—H293 106.3
C8—C9—C4 119.0 (2) N28—C30—O31 123.7 (3)
C8—C9—N3 115.5 (2) N28—C30—O32 111.1 (2)
C4—C9—N3 125.5 (2) O31—C30—O32 125.3 (3)
C2—C10—C11 120.7 (2) Cu1ii—O31—C30 146.2 (2)
C2—C10—C15 120.1 (2) C30—O32—C33 121.0 (2)
C11—C10—C15 119.2 (2) O32—C33—C34 109.9 (3)
C10—C11—C12 120.6 (3) O32—C33—C35 110.4 (2)
C10—C11—H111 119.8 C34—C33—C35 112.3 (3)
C12—C11—H111 119.5 O32—C33—C36 101.8 (2)
C11—C12—C13 119.9 (3) C34—C33—C36 110.6 (3)
C11—C12—H121 120.5 C35—C33—C36 111.4 (3)
C13—C12—H121 119.7 C33—C34—H341 109.0
C12—C13—C14 119.8 (3) C33—C34—H342 109.2
C12—C13—N28 120.4 (2) H341—C34—H342 109.1
C14—C13—N28 119.7 (3) C33—C34—H343 110.2
C13—C14—C15 120.2 (3) H341—C34—H343 109.5
C13—C14—H141 119.7 H342—C34—H343 109.8
C15—C14—H141 120.1 C33—C35—H351 109.2
C10—C15—C14 120.1 (3) C33—C35—H352 110.3
C10—C15—H151 120.3 H351—C35—H352 107.5
C14—C15—H151 119.6 C33—C35—H353 112.0
C6—C16—N17 109.6 (2) H351—C35—H353 109.2
C6—C16—H161 110.1 H352—C35—H353 108.5
N17—C16—H161 108.3 C33—C36—H361 110.0
C6—C16—H162 109.9 C33—C36—H362 108.5
N17—C16—H162 108.7 H361—C36—H362 110.0
H161—C16—H162 110.3 C33—C36—H363 108.6
C16—N17—N18 119.7 (2) H361—C36—H363 110.1
C16—N17—C21 127.2 (2) H362—C36—H363 109.6
N18—N17—C21 112.7 (2) C38—C37—H371 108.2
N17—N18—N19 105.46 (19) C38—C37—H372 109.3
N18—N19—Cu1 134.95 (17) H371—C37—H372 110.9
N18—N19—C20 110.4 (2) C38—C37—H373 107.7
Cu1—N19—C20 114.51 (16) H371—C37—H373 109.9
N19—C20—C21 107.6 (2) H372—C37—H373 110.6
N19—C20—C22 116.9 (2) C37—C38—N39 176.6 (5)
C21—C20—C22 135.4 (2)

Symmetry codes: (i) x−1, y−1, z+1; (ii) x+1, y+1, z−1.

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the C4–C9 ring.

D—H···A D—H H···A D···A D—H···A
C16—H162···N39iii 0.97 2.52 3.451 (6) 161
C16—H161···Cl2iv 0.97 2.72 3.606 (3) 152
C21—H211···Cl1iv 0.94 2.81 3.633 (3) 147
C23—H231···Cl1iv 0.94 2.62 3.494 (3) 155
C26—H261···Cl1 0.94 2.55 3.154 (3) 122
C29—H291···Cl2ii 0.95 2.80 3.741 (3) 172
C25—H251···Cgv 0.94 2.85 3.583 (3) 135

Symmetry codes: (ii) x+1, y+1, z−1; (iii) −x, −y, −z+2; (iv) x+1, y, z; (v) −x, −y−1, −z+2.

Funding Statement

This work was funded by Alzheimer Association of France grant .

References

  1. Addison, A. W., Rao, T. N., Reedijk, J., van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349–1356.
  2. Bai, S.-Q., Jiang, L., Young, D. J. & Hor, T. S. A. (2016). Aust. J. Chem. 69, 372–378.
  3. Betteridge, P. W., Carruthers, J. R., Cooper, R. I., Prout, K. & Watkin, D. J. (2003). J. Appl. Cryst. 36, 1487.
  4. Bruker (2006). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Cheignon, C., Tomas, M., Bonnefont-Rousselot, D., Faller, P., Hureau, C. & Collin, F. (2018). Redox Biology. 14, 450–464. [DOI] [PMC free article] [PubMed]
  6. Conte-Daban, A., Boff, B., Candido Matias, A., Aparicio, C. N. M., Gateau, C., Lebrun, C., Cerchiaro, G., Kieffer, I., Sayen, S., Guillon, E., Delangle, P. & Hureau, C. (2017). Chem. Eur. J. 23, 17078–17088. [DOI] [PMC free article] [PubMed]
  7. Cooper, R. I., Thompson, A. L. & Watkin, D. J. (2010). J. Appl. Cryst. 43, 1100–1107.
  8. Eury, H., Bijani, C., Faller, P. & Hureau, C. (2011). Angew. Chem. Int. Ed. 50, 901–905. [DOI] [PubMed]
  9. Faller, P., Hureau, C. & Berthoumieu, O. (2013). Inorg. Chem. 52, 12193–12206. [DOI] [PubMed]
  10. Faller, P., Hureau, C. & La Penna, G. (2014). Acc. Chem. Res. 47, 2252–2259. [DOI] [PubMed]
  11. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  12. Jones, M. R., Mathieu, E., Dyrager, C., Faissner, S., Vaillancourt, Z., Korshavn, K. J., Lim, M. H., Ramamoorthy, A., Wee Yong, V., Tsutsui, S., Stys, P. K. & Storr, T. (2017). Chem. Sci. 8, 5636–5643. [DOI] [PMC free article] [PubMed]
  13. Jones, M. R., Service, E. L., Thompson, J. R., Wang, M. C., Kimsey, I. J., DeToma, A. S., Ramamoorthy, A., Lim, M. H. & Storr, T. (2012). Metallomics, 4, 910–920. [DOI] [PubMed]
  14. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  15. Noël, S., Cadet, S., Gras, E. & Hureau, C. (2013). Chem. Soc. Rev. 42, 7747–7762. [DOI] [PubMed]
  16. Palatinus, L. & Chapuis, G. (2007). J. Appl. Cryst. 40, 786–790.
  17. Prince, E. (1982). Mathematical Techniques in Crystallography and Materials Science, pp. 96–106. New York: Springer-Verlag.
  18. Santos, M. A., Chand, K. & Chaves, S. (2016). Coord. Chem. Rev. 327–328, 287–303.
  19. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  20. Viles, J. H. (2012). Coord. Chem. Rev. 256, 2271–2284.
  21. Watkin, D. (1994). Acta Cryst. A50, 411–437.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, Global. DOI: 10.1107/S2056989018000488/su5417sup1.cif

e-74-00158-sup1.cif (26.4KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018000488/su5417Isup2.hkl

e-74-00158-Isup2.hkl (343KB, hkl)

CCDC reference: 1815501

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES