Skip to main content
Springer logoLink to Springer
. 2018 May 18;2018(1):119. doi: 10.1186/s13660-018-1701-3

Hadamard and Fejér–Hadamard inequalities for extended generalized fractional integrals involving special functions

Shin Min Kang 1,2, Ghulam Farid 3, Waqas Nazeer 4, Bushra Tariq 5,
PMCID: PMC5960012  PMID: 29805239

Abstract

In this paper we prove the Hadamard and the Fejér–Hadamard inequalities for the extended generalized fractional integral operator involving the extended generalized Mittag-Leffler function. The extended generalized Mittag-Leffler function includes many known special functions. We have several such inequalities corresponding to special cases of the extended generalized Mittag-Leffler function. Also there we note the known results that can be obtained.

Keywords: Convex function, m-convex functions, Hadamard inequality, Fejér–Hadamard inequality, Fractional integrals, Extended generalized Mittag-Leffler function

Introduction

A real-valued function f:IR, where I is an interval in R is called convex if

f(αx+(1α)y)αf(x)+(1α)f(y),

where α[0,1], x,yI.

Convex functions play a vital role in mathematical analysis. They have been considered for defining and finding new dimensions of analysis. In [1] Toader define the concept of m-convexity: an intermediate between usual convexity and star shape function.

Definition 1.1

A function f:[0,b]R, b>0, is said to be m-convex, where m[0,1], if we have

f(tx+m(1t)y)tf(x)+m(1t)f(y)

for all x,y[0,b] and t[0,1].

If we take m=1, then we recapture the concept of convex functions defined on [0,b], and if we take m=0, then we get the concept of starshaped functions defined on [0,b]. We recall that f:[0,b]R is called starshaped if

f(tx)tf(x)for all t[0,1] and x[0,b].

If we denote by Km(b) the set of m-convex functions on [0,b] for which f(0)<0, then we have

K1(b)Km(b)K0(b),

whenever m(0,1). Note that in the class K1(b) there are only convex functions f:[0,b]R for which f(0)0 (see [2]). An m-convex function need not be a convex function, as the following example shows.

Example 1.1

[3] The function f:[0,)R, given by

f(x)=112(x45x3+9x25x)

is a 1617-convex function but it is not an m-convex function for m(1617,1].

For more results and inequalities related to m-convex functions one can consult for example [2, 46]. In the literature the integral inequality

f(a+b2)1baabf(x)dxf(a)+f(b)2, 1.1

where f:IR is a convex function on the interval I of real numbers and a,bI with a<b, is known as the Hadamard inequality. If f is concave, then the above inequality holds in the reverse direction. The Hadamard inequality has always retained the attention of mathematicians and a lot of results have been produced about it, for example see [612] and the references cited therein.

In [13] Fejér gave a generalization of the Hadamard inequality as follows.

Theorem 1.1

Let f:[a,b]R be a convex function and g:[a,b]R be a non-negative, integrable and symmetric to a+b2. Then the following inequality holds:

f(a+b2)abg(x)dxabf(x)g(x)dxf(a)+f(b)2abg(x)dx. 1.2

In the literature inequality (1.2) is known as the Fejér–Hadamard inequality.

Nowadays the Hadamard and the Fejér–Hadamard inequalities via fractional calculus are in focus of researchers. Recently a lot of papers have been dedicated to this field (see [4, 1416] and the references therein). Fractional calculus refers to integration or differentiation of fractional order, the origin of fractional calculus is as old as calculus. For a historical survey of this field the reader is referred to [1721].

Fractional integral inequalities are useful in establishing the uniqueness of solutions for certain fractional partial differential equations. They also provide upper and lower bounds for the solutions of fractional boundary value problems. Many researchers have explored certain extensions and generalizations of integral inequalities by involving fractional calculus (see [14, 16, 22, 23]).

We are going to give the Hadamard and the Fejér–Hadamard inequalities for the extended generalized fractional integral operator containing the extended generalized Mittag-Leffler function [24]. We give a two sided definition of the extended generalized fractional integral operator containing the extended generalized Mittag-Leffler function as follows:

Definition 1.2

Let δ,α,β,τ,cC and R(δ),R(α),R(β),R(τ),R(c)>0, p0 and q,r>0. Then the extended generalized fractional integral operator ϵ,α,β,τω,δ,q,r,c containing the extended generalized Mittag-Leffler function Eα,β,τδ,r,q,c for a real-valued continuous function f is defined by

(ϵa+,α,β,τω,δ,q,r,cf)(x;p)=ax(xt)β1Eα,β,τδ,r,q,c(ω(xt)α;p)f(t)dt, 1.3

and

(ϵb,α,β,τω,δ,q,r,cf)(x;p)=xb(tx)β1Eα,β,τδ,r,q,c(ω(tx)α;p)f(t)dt, 1.4

where the function Eα,β,τδ,r,q,c(t;p) is the extended generalized Mittag-Leffler function defined as

Eα,β,τδ,r,q,c(t;p)=n=0βp(δ+nq,cδ)β(δ,cδ)(c)nqΓ(αn+β)zn(τ)nr, 1.5

where the generalized beta function βp(x,y) is defined by

βp(x,y)=01t(x1)(1t)y1ept(1t)dt. 1.6

For ω=0 along with p=0, the integral operator ϵ,α,β,τω,δ,q,r,c would correspond essentially to the two sided Riemann–Liouville fractional integral operator

Ja+βf(x)=1Γ(β)ax(xt)β1f(t)dt,β>0,Jbβf(x)=1Γ(β)xb(tx)β1f(t)dt,β>0.

In [2429] fractional boundary value problems and fractional differential equations are studied along with properties of Mittag-Leffler function. In the following results we see some properties of the Mittag-Leffler function [24].

Theorem 1.2

The series in (1.5) is absolutely convergent for all values of t provided that q<r+R(α). Moreover, if q=r+R(α), then Eα,β,τδ,r,q,c(t;p) converges for |t|<rrR(α)R(α)qq.

Theorem 1.3

If α,β,τ,δ,cC, (α),(β),(τ)>0, (c)>(δ)>0 with p0, r>0 and q<r+(α), then

Eα,β,τδ,r,q,c(t;p)Eα,β,τ1δ,r,q,c(t;p)=tr1tddtEα,β,τ1δ,r,q,c(t;p),(τ)>1; 1.7
Eα,β,τδ,r,q,c(t;p)=βEα,β+1,τδ,r,q,c(t;p)+αtddtEα,β+1,τδ,r,q,c(t;p). 1.8

We organize the paper so that in Sect. 2 we give the Hadamard and the Fejér–Hadamard inequalities via the extended generalized fractional integral operator ϵ,α,β,τω,δ,q,r,c. Also we mention the known results in particular. In Sect. 3 we extend the results of Sect. 2 via m-convex functions and in particular we obtain the results of Sect. 2 on a reduced domain.

Hadamard and Fejér–Hadamard inequality for the extended generalized Mittag-Leffler function

In the following we give the Hadamard and the Fejér–Hadamard inequalities for a convex function via the extended generalized fractional integral operator containing the extended generalized Mittag-Leffler function defined in (1.3) and (1.4). We also show that these inequalities are generalizations of the Hadamard and the Fejér–Hadamard inequalities for the fractional integrals given in [15, 16, 30].

Theorem 2.1

Let f:[a,b]R be a positive function with 0a<b and fL1[a,b]. If f is a convex function on [a,b], then the following inequality for the extended generalized fractional integral holds:

f(a+b2)(ϵa+,α,β,τω,δ,q,r,c1)(b;p)(ϵa+,α,β,τω,δ,q,r,cf)(b;p)+(ϵb,α,β,τω,δ,q,r,cf)(a;p)2(f(a)+f(b)2)(ϵb,α,β,τω,δ,q,r,c1)(a;p), 2.1

where ω=w(ba)α.

Proof

Since f is a convex function on [a,b], for t[0,1] we have

f((ta+(1t)b)+((1t)a+tb)2)f(ta+(1t)b)+f((1t)a+tb)2. 2.2

Multiplying both sides of the above inequality with tβ1Eα,β,τδ,r,q,c(ωtα;p) we get

2tβ1Eα,β,τδ,r,q,c(ωtα;p)f(a+b2)tβ1Eα,β,τδ,r,q,c(ωtα;p)(f(ta+(1t)b)+f((1t)a+tb)).

Integrating with respect to t over [0,1] we have

2f(a+b2)01tβ1Eα,β,τδ,r,q,c(ωtα;p)dt01tβ1Eα,β,τδ,r,q,c(ωtα;p)f(ta+(1t)b)dt+01tβ1Eα,β,τδ,r,q,c(ωtα;p)f((1t)a+tb)dt.

If we put u=at+(1t)b, then t=buba, and if v=(1t)a+tb, then t=vaba. So using Definition 1.2 one has

f(a+b2)(ϵa+,α,β,τω,δ,q,r,c1)(b;p)(ϵa+,α,β,τω,δ,q,r,cf)(b;p)+(ϵb,α,β,τω,δ,q,r,cf)(a;p)2. 2.3

Again by using the fact that f is a convex function on [a,b] and for t[0,1] we have

f(ta+(1t)b)+f((1t)a+tb)tf(a)+(1t)f(b)+(1t)f(a)+tf(b). 2.4

Now multiplying with tβ1Eα,β,τδ,r,q,c(ωtα;p) and integrating over [0,1] we get

01tβ1Eα,β,τδ,r,q,c(ωtα;p)f(ta+(1t)b)dt+01tβ1Eα,β,τδ,r,q,c(ωtα;p)f((1t)a+tb)dt[f(a)+f(b)]01tβ1Eα,β,τδ,r,q,c(ωtα;p)dt,

from which by using a change of variables as for (2.3) and Definition 1.2 we get

(ϵa+,α,β,τω,δ,q,r,cf)(b;p)+(ϵb,α,β,τω,δ,q,r,cf)(a;p)(f(a)+f(b))(ϵb,α,β,τω,δ,q,r,c1)(a;p). 2.5

From the inequalities (2.3) and (2.5) we get the inequality in (2.1). □

In the following remark we mention some published results.

Remark 2.1

In Theorem 2.1:

  • (i)

    if we take p=0, then we get [30, Theorem 2.1];

  • (ii)

    if we take ω=p=0, then we get [16, Theorem 2];

  • (iii)

    if along ω=p=0 we take α=1, then we get (1.1).

In the following we give the Fejér–Hadamard inequality for the extended generalized fractional integral operator containing the extended generalized Mittag-Leffler function defined in (1.3) and (1.4).

Theorem 2.2

Let f:[a,b]R be a convex function with 0a<b and fL1[a,b]. Also, let g:[a,b]R be a function which is non-negative, integrable and symmetric about a+b2. Then the following inequality for the extended generalized fractional integral holds:

f(a+b2)(ϵa+,α,β,τω,δ,q,r,cg)(b;p)(ϵa+,α,β,τω,δ,q,r,cfg)(b;p)+(ϵb,α,β,τω,δ,q,r,cfg)(a;p)2f(a)+f(b)2(ϵb,α,β,τω,δ,q,r,cg)(a;p), 2.6

where ω=w(ba)α.

Proof

Multiplying (2.2) with tβ1Eα,β,τδ,r,q,c(ωtα;p)g(tb+(1t)a) we get

2tβ1Eα,β,τδ,r,q,c(ωtα;p)f(a+b2)g(tb+(1t)a)tβ1Eα,β,τδ,r,q,c(ωtα;p)(f(ta+(1t)b)+f((1t)a+tb))g(tb+(1t)a).

Integrating with respect to t over [0,1] we have

2f(a+b2)01tβ1Eα,β,τδ,r,q,c(ωtα;p)g(tb+(1t)a)dt01tβ1Eα,β,τδ,r,q,c(ωtα;p)f(ta+(1t)b)g(tb+(1t)a)dt+01tβ1Eα,β,τδ,r,q,c(ωtα;p)f((1t)a+tb)g(tb+(1t)a)dt.

If we put u=at+(1t)b, then t=buba and if v=(1t)a+tb, then t=vaba. So one has

2f(a+b2)ab(bu)β1Eα,β,τδ,r,q,c(ω(buba)α:p)g(a+bu)duab(bu)β1Eα,β,τδ,r,q,c(ω(buba)α;p)f(u)g(a+bu)du+ba(va)β1Eα,β,τδ,r,q,c(ω(vaba)α;p)f(v)g(a+bv)dv.

By the symmetry of the function g about a+b2 one can see g(a+bx)=g(x), x[a,b], therefore, using this fact and Definition 1.2, we have

f(a+b2)(ϵa+,α,β,τω,δ,q,r,cg)(b;p)(ϵa+,α,β,τω,δ,q,r,cfg)(b;p)+(ϵb,α,β,τω,δ,q,r,cfg)(a;p)2. 2.7

Now multiplying (2.4) with tβ1Eα,β,τδ,r,q,c(ωtα;p)g(ta+(1t)b) and integrating with respect to t over [0,1] we get

01tβ1Eα,β,τδ,r,q,c(ωtα;p)f(ta+(1t)b)g(ta+(1t)b)dt+01tβ1Eα,β,τδ,r,q,c(ωtα;p)f((1t)a+tb)g(ta+(1t)b)dt(f(a)+f(b))01tβ1Eα,β,τδ,r,q,c(ωtα;p)g(ta+(1t)b)dt.

From this by a change of variables as for (2.7) Definition 1.2 we get

(ϵa+,α,β,τω,δ,q,r,cfg)(b;p)+(ϵb,α,β,τω,δ,q,r,cfg)(a;p)(f(a)+f(b))(ϵb,α,β,τω,δ,q,r,cg)(a;p). 2.8

From inequalities (2.8) and (2.7) we get the inequality in (2.6). □

In the following we mention some published results.

Remark 2.2

In Theorem 2.2:

  • (i)

    if we take g=1, then we get Theorem 2.1;

  • (ii)

    if we take p=0, then we get [30, Theorem 2.2];

  • (iii)

    if we take ω=p=0, then we get [15, Theorem 2.2].

Hadamard and Fejér–Hadamard inequality for m-convex function via the extended generalized Mittag-Leffler function

In the following we give the Hadamard and the Fejér–Hadamard inequalities for an m-convex function via the extended generalized fractional integral operator containing the extended generalized Mittag-Leffler function defined in (1.3) and (1.4). We also show that these inequalities are generalizations of the Hadamard and the Fejér–Hadamard inequalities for the fractional integrals given in [4, 15, 16, 31].

Theorem 3.1

Let f:[0,)R be a positive function. Let a,b[0,) with 0a<mb and fL1[a,mb]. If f is m-convex function on [a,mb], then the following inequality for the extended generalized fractional integral holds:

f(a+mb2)(ϵa+,α,β,τω,δ,q,r,c1)(mb;p)(ϵa+,α,β,τω,δ,q,r,cf)(mb;p)+mβ+1(ϵb,α,β,τmαω,δ,q,r,cf)(am;p)2mβ+12[f(a)m2f(am2)mba(ϵb,α,β+1,τmαω,δ,q,r,c1)(am;p)+(f(b)+mf(am2))(ϵb,α,β,τmαω,δ,q,r,c1)(am;p)], 3.1

where ω=w(mba)α.

Proof

Since f is an m-convex function on [a,mb], for t[0,1] we have

f((ta+m(1t)b)+m((1t)am+tb)2)f(ta+m(1t)b)+mf((1t)am+tb)2. 3.2

Multiplying with tβ1Eα,β,τδ,r,q,c(ωtα;p) both sides of the above inequality we get

2tβ1Eα,β,τδ,r,q,c(ωtα;p)f(a+mb2)tβ1Eα,β,τδ,r,q,c(ωtα;p)(f(ta+m(1t)b)+mf((1t)am+tb)).

Integrating with respect to t over [0,1] we have

2f(a+mb2)01tβ1Eα,β,τδ,r,q,c(ωtα;p)dt01tβ1Eα,β,τδ,r,q,c(ωtα;p)f(ta+m(1t)b)dt+m01tβ1Eα,β,τδ,r,q,c(ωtα;p)f((1t)am+tb)dt.

If we put u=at+m(1t)b, then t=mbumba and if v=(1t)am+tb, then t=vambam. So by Definition 1.2 one has

f(a+mb2)(ϵa+,α,β,τω,δ,q,r,c1)(mb;p)(ϵa+,α,β,τω,δ,q,r,cf)(mb;p)+mβ+1(ϵb,α,β,τmαω,δ,q,r,cf)(am;p)2. 3.3

Again by using that f is an m-convex function we have

f(ta+m(1t)b)+mf((1t)am+tb)tf(a)+m(1t)f(b)+m2(1t)f(am2)+mtf(b). 3.4

Now multiplying with tβ1Eα,β,τδ,r,q,c(ωtα;p) and integrating with respect to t over [0,1] we get

01tβ1Eα,β,τδ,r,q,c(ωtα;p)f(ta+m(1t)b)dt+m01tβ1Eα,β,τδ,r,q,c(ωtα;p)f((1t)am+tb)dt[f(a)m2f(am2)]01tβEα,β,τδ,r,q,c(ωtα;p)dt+m[f(b)+mf(am2)]01tβ1Eα,β,τδ,r,q,c(ωtα;p)dt.

From this by using a change of variables as for (3.3) and Definition 1.2 we get

(ϵa+,α,β,τω,δ,q,r,cf)(mb;p)+mβ+1(ϵb,α,β,τmαω,δ,q,r,cf)(am;p)2mβ+12[f(a)m2f(am2)mba(ϵb,α,β+1,τmαω,δ,q,r,c1)(am;p)+(f(b)+mf(am2))(ϵb,α,β,τmαω,δ,q,r,c1)(am;p)]. 3.5

From inequalities (3.3) and (3.5) we get the inequality in (3.1). □

In the following remark we mention some published results.

Remark 3.1

In Theorem 3.1:

  • (i)

    if we take p=0, then we get [31, Theorem 3];

  • (ii)

    if we take ω=p=0, then we get [4, Theorem 2.1];

  • (iii)

    if along with ω=p=0, m=1, then we get [16, Theorem 2];

  • (iv)

    if we take ω=p=0 along with α=m=1, then we get (1.1);

  • (v)

    if we take m=1, then the inequality (3.1) gives the inequality (2.1) of Theorem 2.1 on the domain of f as [0,b].

In the following we give the Fejér–Hadamard inequality for an m-convex function via the extended generalized fractional integral operator defined in (1.3) and (1.4).

Theorem 3.2

Let f:[0,)R be a m-convex function, a,b[0,) with 0a<mb and fL1[a,mb]. Also, let g:[a,mb]R be a function which is non-negative and integrable on [a,mb]. If f(a+mbmx)=f(x), then the following inequality for an extended generalized fractional integral holds:

f(a+mb2)(ϵb,α,β,τω,δ,q,r,cg)(am;p)(1+m)2(ϵb,α,β+1,τω,δ,q,r,cfg)(am;p)12[f(a)m2f(am2)mba(ϵb,α,β+1,τω,δ,q,r,cg)(am;p)+m(f(b)+mf(am2))(ϵb,α,β,τω,δ,q,r,cg)(am;p)], 3.6

where ω=w(bam)α.

Proof

Multiplying (3.2) with tβ1Eα,β,τδ,r,q,c(ωtα;p)g((1t)am+tb) we get

2tβ1Eα,β,τδ,r,q,c(ωtα;p)f(a+mb2)g((1t)am+tb)tβ1Eα,β,τδ,r,q,c(ωtα;p)(f(ta+m(1t)b)+mf((1t)am+tb))g((1t)am+tb).

Integrating with respect to t over [0,1] we have

2f(a+mb2)01tβ1Eα,β,τδ,r,q,c(ωtα;p)g((1t)am+tb)dt01tβ1Eα,β,τδ,r,q,c(ωtα;p)f(ta+m(1t)b)g((1t)am+tb)dt+m01tβ1Eα,β,τδ,r,q,c(ωtα;p)f((1t)am+tb)g((1t)am+tb)dt. 3.7

Setting x=(1t)am+tb and using f(a+mbmx)=f(x) along with Definition 1.2 we get

f(a+mb2)(ϵb,α,β,τω,δ,q,r,cg)(am;p)(1+m)(ϵb,α,β,τω,δ,q,r,cfg)(am;p). 3.8

Now multiplying (3.4) with tβ1Eα,β,τδ,r,q,c(ωtα;p)g((1t)am+tb) and integrating with respect to t over [0,1] we get

01tβ1Eα,β,τδ,r,q,c(ωtα;p)f(ta+m(1t)b)g((1t)am+tb)dt+m01tβ1Eα,β,τδ,r,q,c(ωtα;p)f((1t)am+tb)g((1t)am+tb)dt[f(a)m2f(am2)]01tβEα,β,τδ,r,q,c(ωtα;p)g((1t)am+tb)dt+m[f(b)+mf(am2)]01tβ1Eα,β,τδ,r,q,c(ωtα;p)g((1t)am+tb)dt.

From this by setting x=(1t)am+tb and using f(a+mbmx)=f(x) it can be seen

(1+m)2(ϵb,α,β+1,τω,δ,q,r,cfg)(am)12[f(a)m2f(am2)mba(ϵb,α,β+1,τω,δ,q,r,cg)(am)+m(f(b)+mf(am2))(ϵb,α,β,τω,δ,q,r,cg)(am)]. 3.9

From inequalities (3.8) and (3.9) we get the inequality in (3.6). □

Remark 3.2

In Theorem 3.2:

  • (i)

    if we take g=1, then we get Theorem 3.1;

  • (ii)

    if we take g=1, m=1, then we get Theorem 2.1 on the domain of f as [0,b];

  • (iii)

    if we take ω=p=0 along with m=1, then we get [15, Theorem 2.1].

Acknowledgements

We thank the editor and referees for their careful reading and valuable suggestions to make the article friendly readable. The research work of Ghulam Farid is supported by Higher Education Commission of Pakistan under NRPU 2016, Project No. 5421.

Authors’ contributions

All authors have made equal contributions in this article. All authors read and approved the final manuscript.

Competing interests

It is declared that the authors have no competing interests.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Shin Min Kang, Email: smkang@gnu.ac.kr.

Ghulam Farid, Email: faridphdsms@hotmail.com, Email: ghlmfarid@ciit-attock.edu.pk.

Waqas Nazeer, Email: nazeer.waqas@ue.edu.pk.

Bushra Tariq, Email: bushratariq38@yahoo.com.

References

  • 1.Toader G.H. Some generalizations of convexity; Proceedings of the Colloquium on Approximation and Optimization; 1984. pp. 329–338. [Google Scholar]
  • 2.Dragomir S.S. On some new inequalities of Hermite–Hadamard type for m-convex functions. Tamkang J. Math. 2002;33(1):45–56. [Google Scholar]
  • 3.Mocanu P.T., Serb I., Toader G. Real star-convex functions. Stud. Univ. Babeş–Bolyai, Math. 1997;42(3):65–80. [Google Scholar]
  • 4.Farid G., Ur Rehman A., Tariq B., Waheed A. On Hadamard type inequalities for m-convex function via fractional integrals. J. Inequal. Spec. Funct. 2016;7(4):150–167. [Google Scholar]
  • 5.Farid G., Tariq B. Some integral inequalities for m-convex functions via fractional integrals. J. Inequal. Spec. Funct. 2017;8:2217–4303. [Google Scholar]
  • 6.Ozdemir M.E., Avci M., Set E. On some inequalities of Hermite–Hadamard type via m-convexity. Appl. Math. Lett. 2010;23(9):1065–1070. doi: 10.1016/j.aml.2010.04.037. [DOI] [Google Scholar]
  • 7.Azpeitia A.G. Convex functions and the Hadamard inequality. Rev. Colomb. Mat. 1994;28:7–12. [Google Scholar]
  • 8.Bakula M.K., Pecaric J. Note on some Hadamard type inequalities. J. Inequal. Pure Appl. Math. 2004;5(3):74. [Google Scholar]
  • 9.Dragomir S.S., Agarwal R.P. Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula. Appl. Math. Lett. 1998;11(5):91–95. doi: 10.1016/S0893-9659(98)00086-X. [DOI] [Google Scholar]
  • 10.Dragomir S.S., Pearce C.E.M. Selected Topics on Hermite–Hadamard Inequalities and Applications. Melbourne: Victoria University; 2000. [Google Scholar]
  • 11.Set E., Ozdemir M.E., Dragomir S.S. On the Hermite–Hadamard inequality and other integral inequalities involving two functions. J. Inequal. Appl. 2010;2010:148102. doi: 10.1155/2010/148102. [DOI] [Google Scholar]
  • 12.Set E., Ozdemir M.E., Dragomir S.S. On Hadamard-type inequalities involving several kinds of convexity. J. Inequal. Appl. 2010;2010:286845. doi: 10.1155/2010/286845. [DOI] [Google Scholar]
  • 13.Fejér L. Uberdie Fourierreihen, II. Math. Naturwise. Anz Ungar. Akad., Wiss. 1906;24:369–390. [Google Scholar]
  • 14.Farid G., Pečarić J., Tomovski Ž. Opial-type inequalities for fractional integral operator involving Mittag-Leffler function. Fract. Differ. Calc. 2015;5(1):93–106. doi: 10.7153/fdc-05-09. [DOI] [Google Scholar]
  • 15.Şcan I. Hermite–Hadamard–Fejér type inequalities for convex functions via fractional integrals. Stud. Univ. Babeş–Bolyai, Math. 2015;60(3):355–366. [Google Scholar]
  • 16.Sarikaya M.Z., Set E., Yaldiz H., Basak N. Hermite–Hadamard’s inequalities for fractional integrals and related fractional inequalities. Math. Comput. Model. 2013;57:2403–2407. doi: 10.1016/j.mcm.2011.12.048. [DOI] [Google Scholar]
  • 17.Curiel L., Galué L. A generalization of the integral operators involving the Gauss hypergeometric function. Rev. Téc. Fac. Ing., Univ. Zulia. 1996;19(1):17–22. [Google Scholar]
  • 18.Kilbas A.A., Saigo M., Saxena R.K. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transforms Spec. Funct. 2004;15:31–49. doi: 10.1080/10652460310001600717. [DOI] [Google Scholar]
  • 19.Kilbas A.A., Srivastava H.M., Trujillo J.J. Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier; 2006. [Google Scholar]
  • 20.Miller K., Ross B. An Introduction to the Fractional Calculus and Fractional Differential Equations. New York: Wiley; 1993. [Google Scholar]
  • 21.Oldham K., Spanier J. The Fractional Calculus. New York: Academic Press; 1974. [Google Scholar]
  • 22.Agarwal R.P., Pang P.Y.H. Opial Inequalities with Applications in Differential and Difference Equations. Dordrecht: Kluwer Academic; 1995. [Google Scholar]
  • 23.Anastassiou G.A. Advanced Inequalities. Singapore: World Scientific; 2011. [Google Scholar]
  • 24. Andrić, M., Farid, G., Pečarić, J.: A generalization of Mittag-Leffler function associated with Opial type inequalities due to Mitrinović and Pečarić (submitted)
  • 25.Akram G., Anjum F. Study of fractional boundary value problem using Mittag-Leffler function with two point periodic boundary conditions. Int. J. Appl. Comput. Math. 2018;4(1):1–27. doi: 10.1007/s40819-017-0464-8. [DOI] [Google Scholar]
  • 26.Ahmad B., Nieto J.J. Existence results for nonlinear boundary value problems of fractional integrodifferential equations with integral boundary conditions. Bound. Value Probl. 2009;2009:708576. [Google Scholar]
  • 27.Haubold H.J., Mathai A.M., Saxena R.K. Mittag-Leffler functions and their applications. J. Appl. Math. 2011;2011:298628. doi: 10.1155/2011/298628. [DOI] [Google Scholar]
  • 28.Nieto J.J. Maximum principles for fractional differential equations derived from Mittag-Leffler functions. Appl. Math. Lett. 2010;23(10):1248–1251. doi: 10.1016/j.aml.2010.06.007. [DOI] [Google Scholar]
  • 29.Gejji V.D., Bhalekar S. Boundary value problems for multi-term fractional differential equations. J. Math. Anal. Appl. 2008;345(2):754–765. doi: 10.1016/j.jmaa.2008.04.065. [DOI] [Google Scholar]
  • 30.Farid G. Hadamard and Fejér–Hadamard inequalities involving for generalized fractional integrals involving special functions. Konuralp J. Math. 2016;4(1):108–113. doi: 10.1186/s13660-018-1701-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31.Farid G. A treatment of the Hadamard inequality due to m-convexity via generalized fractional integrals. J. Fract. Calc. Appl. 2018;9(1):8–14. [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES