Skip to main content
Oncoimmunology logoLink to Oncoimmunology
. 2018 Feb 15;7(6):e1433982. doi: 10.1080/2162402X.2018.1433982

Trial Watch: Immunostimulation with recombinant cytokines for cancer therapy

Elena García-Martínez a, Melody Smith b, Aitziber Buqué c, Fernando Aranda d, Francisco Ayala de la Peña a, Alejandra Ivars a, Manuel Sanchez Cánovas a, Ma Angeles Vicente Conesa a, Jitka Fucikova e,f, Radek Spisek e,f, Laurence Zitvogel g,h,i,j, Guido Kroemer k,l,m,n,o,p,q, Lorenzo Galluzzi c,k,r,
PMCID: PMC5980390  PMID: 29872569

ABSTRACT

Cytokines regulate virtually aspects of innate and adaptive immunity, including the initiation, execution and extinction of tumor-targeting immune responses. Over the past three decades, the possibility of using recombinant cytokines as a means to elicit or boost clinically relevant anticancer immune responses has attracted considerable attention. However, only three cytokines have been approved so far by the US Food and Drug Administration and the European Medicines Agency for use in cancer patients, namely, recombinant interleukin (IL)-2 and two variants of recombinant interferon alpha 2 (IFN-α2a and IFN-α2b). Moreover, the use of these cytokines in the clinics is steadily decreasing, mostly as a consequence of: (1) the elevated pleiotropism of IL-2, IFN-α2a and IFN-α2b, resulting in multiple unwarranted effects; and (2) the development of highly effective immunostimulatory therapeutics, such as immune checkpoint blockers. Despite this and other obstacles, research in the field continues as alternative cytokines with restricted effects on specific cell populations are being evaluated. Here, we summarize research preclinical and clinical developments on the use of recombinant cytokines for immunostimulation in cancer patients.

KEYWORDS: CAR T cells, CTLA4, GM-CSF, IL-15, PD-1, pembrolizumab

Introduction

Cytokines are a large group of relatively small and generally (but not always) soluble glycoproteins that regulate virtually all biological functions as they elicit autocrine, paracrine or endocrine signaling pathways.1-6 In particular, cytokines play a key role in (1) the development, maturation and localization of all cellular components of the immune system;7-12 and (2) the initiation, execution and extinction of innate and adaptive immunity against invading pathogens as well as against malignant cells.13-21 A detailed description of cytokines, their receptors and their biological activities goes largely beyond the scope of this Trial Watch, and can be found elsewhere.3-6 For the purpose of the present discussion, however, it should be noted that the cytokine system is characterized by an extreme pleiotropism, and this has major implications for the development of cytokine-based therapeutics.22-24

Over the past three decades considerable attention has indeed been attracted by the possibility of using recombinant cytokines as standalone interventions or in combination with other immunotherapeutics to trigger or boost, respectively, clinically relevant anticancer immune responses.16,19,25,26 However, only three different agents have been approved by the US Food and Drug Administration (FDA) and European Medicines Agency (EMA) so far for the treatment of malignant disorders in humans: recombinant interleukin (IL)-2 (aldesleukin, Proleukin®), and two variants of recombinant interferon alpha 2 (IFN-α2), namely, IFN-α2a (Roferon®-A) and IFN-α2b (Intron®-A). In particular: (1) recombinant IL-2 (generally given at high doses) is licensed for the treatment of some forms of metastatic melanoma and renal cell carcinoma (RCC); (2) recombinant IFN-α2a is approved for use in patients with hairy cell lymphoma and chronic phase, Philadelphia chromosome-positive chronic myelogenous leukemia (CML) upon minimal pretreatment (within 1 y from diagnosis); and (3) recombinant IFN-α2b is licensed for the treatment of AIDS-related Kaposi's sarcoma, melanoma, follicular lymphoma, multiple myeloma, hairy cell leukemia, genital warts (Condyloma acuminata) and cervical intraepithelial neoplasms (sources www.fda.gov and http://www.ema.europa.eu/ema/). Moreover, the use of these agents in the clinics is steadily declining, for at least two reasons. First, the elevated pleiotropism of the system implies that the systemic administration of one cytokine mediates a large number of biological activities, multiple of which may be unwarranted (including moderate-to-severe side effects) or even detrimental to clinical activity.27-36 As a standalone example, it is now well know that high-dose IL-2 acts as a mitogen for CD8+ cytotoxic T lymphocytes (CTLs), which at least in part underlies its therapeutic activity in subjects with melanoma and RCC, but even more so for CD4+CD25+FOXP3+ regulatory T (TREG) cells, which de facto antagonize anticancer immune responses.37-42 Second, multiple immunotherapeutics with comparatively more specific mechanisms of action and robust clinical activity have been developed, including (but not limited to) immune checkpoint blockers (ICBs).43-48

Nonetheless, research on the use of recombinant cytokines as immunostimulants against cancer continues as attention has shifted (1) to molecules with restricted selectivity for one or a few cell types, such as IL12, IL-15 and IL-2149-52; and (2) on regimens involving the concomitant or sequential administration of one or more recombinant cytokines with other agents that trigger or boost anticancer immunity,53 including (but not limited to): ICBs,54-56 immunostimulatory monoclonal antibodies (mAbs),57-60 DNA-, dendritic cell (DC)- or peptide-based vaccines,61-67 chemotherapy with immunogenic cell death inducers,68-73 radiation therapy delivered according to specific fractionation protocols,74-76 small molecules targeting the tumor microenvironment,77-81 adoptively transferred T cells,82-85 and oncolytic virotherapy.86-88

Importantly, at least three other cytokines beyond IL-2, IFN-α2a and IFN-α2b are currently licensed by the US FDA and EMA for use in humans, namely, recombinant tumor necrosis factor (TNF), recombinant granulocyte monocyte colony-stimulating factor (GM-CSF, also known as Molgramostim, Sargramostim, Leukomax®, Mielogen® or Leukine®), and recombinant granulocyte colony-stimulating factor (G-CSF, also known as Filgrastim, Lenograstim or Neupogen®). However, in the current clinical practice these molecules are employed as oncolytic agents (TNF)89-100 or immunoreconstituting drugs (GM-CSF, G-CSF).101-108

Here, we discuss recent preclinical and clinical advances in the development of recombinant cytokines for use as immunostimulants (rather than oncotoxic and immunoreconstituting agents) in cancer patients.

Preclinical and translational advances

Since the publication of the latest Trial Watch dealing with this topic (December 2015),24 a large amount of preclinical and translational work on the role of immunostimulatory cytokines in anticancer immune responses has been released (source https://www.ncbi.nlm.nih.gov/pubmed).

Of this abundant scientific literature, we retained the contribution of: (1) Benci and colleagues (from the University of Pennsylvania, Philadelphia, PA, USA), who demonstrated that chronic, low-intensity type I IFN signaling within the tumor microenvironment contributes to the establishment of a multigenic program of resistance to immune checkpoint blockade109,110; (2) Vanpouille-Box and collaborators (from Weill Cornell Medical College, New York, NY, USA), MacKenzie and colleagues (from The University of Edinburgh, Edinburgh, UK) and Harding et al. (from the Abramson Family Cancer Research Institute, Philadelphia, PA, USA), who independently demonstrated that acute, high-intensity type I IFN signaling driven by cyclic GMP-AMP synthase (CGAS)111-115 and transmembrane protein 173 (TMEM173; best known as STING)116-119 activation following DNA damage (generally in the context of cellular senescence)120-123 is paramount for the establishment of anticancer immune responses with systemic activity124-129; (3) Gao and colleagues (from The University of Texas MD Anderson Cancer Center, Houston, TX, USA), Ayers and co-workers (from Merck & Co. Inc., Kenilworth, NJ, USA) and Overacre-Delgoffe et al. (from St. Jude Children's Research Hospital, Memphis, TN, USA), who provided robust data in support of the notion that an intact IFN-γ signaling pathway is required for malignant lesions to respond to ICB-based immunotherapy130-133; (4) Ghasemi and collaborators (from Washington University, St. Louis, MO, USA), who demonstrated that selectively targeting IL-2 to natural killer cells expressing killer cell lectin like receptor K1 (KLRK1; best known as NKG2D)134-137 results in superior tumor control upon as it does not engage TREG cells138,139; (5) Zhang and colleagues (from Dana-Farber/Harvard Cancer Center, Boston, MA, USA), who showed that the biological activity of IL-1β140-143 is positively modulated by physiological reactive oxygen species (ROS) levels upon cysteine-S-glutathionylation144; and (6) Waghray and co-authors (from University of Michigan, Ann Arbor, MI. USA), who characterized a population of mesenchymal stem cells145-147 that supports pancreatic tumor progression by releasing GM-CSF.148

Moreover, (1) Wagner et al. (from Washington University School of Medicine, St. Louis, MO, USA) demonstrated that the potent IL-15 receptor agonist ALT-80350,149-154 can be used in vivo to prime superior antitumor responses by NK cells155; (2) Mishra and collaborators (from The Ohio State University, Columbus, OH, USA) proved a critical role for dysregulated IL-15 signaling in the pathogenesis of cutaneous T-cell lymphoma156; (3) Hu and coauthors (from the University of Pennsylvania, Philadelphia, PA, USA) showed that CAR T cells engineered to secrete IL-18 mediate superior therapeutic responses in mice with B16F10 melanomas157-159 as compared to CAR T cells with a wild-type secretory capacity160; (4) Seo and co-workers (from Seoul National University, Seoul, Republic of Korea) demonstrated that IL-21161can be used to reverse NK cell exhaustion, at least mice, resulting in improved immunity against MHC Class I-deficient neoplasms162; (5) Chapuis et al. (from the Fred Hutchinson Cancer Research Center, Seattle, WA, USA) tested IL-21 primed CTLs transferred in combination with a CTLA4-targeting mAb to a single patient with metastatic melanoma refractory to either intervention alone, demonstrating robust tumor control,163 mimicking preclinical results from independent investigators;164 (6) Yin and collaborators (from Academia Sinica, Taipei, Taiwan) showed that the secretion of IL-25165-167from cancer-associated fibroblasts168-172 has direct oncosuppressive effects in preclinical models of breast carcinoma173; and (7) Molgora et al. (from the Humanitas Clinical and Research Center, Rozzano, Italy) reported that interleukin 1 receptor accessory protein like 1 (IL1RAPL1; best known as IL-1R8), a member of the IL-1β receptor protein family,174-178 operates as an inhibitory checkpoint in the maturation of and acquisition of effector functions by NK cells.179

These and other emerging aspects of the cytokine biology have considerable implications for the immunotherapeutic management of cancer and a plethora of other conditions, including infectious and autoimmune disorders.

Completed clinical studies

Since December 2015, when the latest Trial Watch dealing with the use of recombinant cytokines as immunostimulants for cancer therapy was published,24 the results of just a few clinical studies (directly or indirectly) testing this immunotherapeutic paradigms in cancer patients have been released (source http://www.ncbi.nlm.nih.gov/pubmed).

NCT01989572 was a Phase III clinical study evaluating yeast-derived GM-CSF versus peptide vaccination versus GM-CSF plus peptide vaccination180-183 versus placebo in 815 patients with locally advanced or Stage IV melanoma and no evidence of disease after complete surgical resection.184 In this setting, HLA-A*02+ patients were randomly allocated to each of the study arm, while HLA-A*02 individuals were randomized to receive GM-CSF as a standalone intervention or placebo. No statistically significant differences in overall survival (OS) or relapse-free survival (RFS) were observed across the groups.184 These findings are at odds with previous results from prospective Phase II and non-prospective Phase III studies suggesting that recombinant GM-CSF (alone or combined with other immunotherapeutics) provides a clinical benefit to patients with melanoma at high risk for recurrence.185-191 Of note, it has recently been demonstrated that >90% of melanoma patients receiving adjuvant therapy with GM-CSF develop GM-CSF-targeting antibodies,192-194 which in >40% of the cases are neutralizing.195 This may explain, at least in part, the limited therapeutic efficacy of GM-CSF in some clinical settings.

Schijns and colleagues (from the University of Wageningen, The Netherlands) assessed the safety and therapeutic activity of a personalized cell-based cancer vaccine (Gliovac™) administered intradermally in the presence of recombinant GM-CSF to patients with recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM).196-198 In this context, 9 GBM patients refractory to standard-of-care temozolomide-based chemotherapy,199 radiation therapy, surgery or targeted therapy with bevacizumab200,201 received Gliovac plus recombinant GM-CSF following a TREG-depleting course of cyclophosphamide,202 resulting in superior survival rates as compared to historical controls.203-205 As the treatment was associated with limited toxicity, a Phase II study has been initiated to evaluate this immunotherapeutic approach in a larger cohort of GBM patients including bevacizumab-naïve individuals (NCT01903330). Along similar lines, Rampling and colleagues (from the Beatson West of Scotland Cancer Centre, Glasgow, UK) evaluated a peptide-based vaccine (IMA950)206,207 plus recombinant GM-CSF along with standard chemoradiotherapy and adjuvant temozolomide for the treatment of patients with newly-diagnosed GBM.208 In the context of this Phase I clinical study, 45 HLA-A*02+ patients who had undergone tumor resection received 11 intradermal injection of IMA950 plus GM-CSF over 24 weeks, beginning either 7-14 day prior to the initiation of chemotherapy or 7 days after. Of 40 evaluable patients, 90% were immunological responders to at least one of the vaccine components, irrespective of therapeutic schedule, and progression-free survival (PFS) rates at 6 mo. and 9 mo. were 74% and 31%, respectively.208 These findings are in line with previous results demonstrating that GM-CSF can be safely used as an immunostimulant in patients with GBM and other tumors who receive additional (immuno)therapeutic agents.209-214

The safety and efficacy of IFN-α2a in combination with pembrolizumab, an FDA-approved, potent ICB targeting programmed cell death 1 (PDCD1; best known as PD-1),215-218 was investigated in the context of the KEYNOTE-029 study (NCT02089685).219 Data from the dose-finding cohort of the study indicate that the maximum tolerated dose is 2 mg/kg pembrolizumab every 3 week plus 1 μg/kg pegylated-IFN weekly, a regimen that demonstrated limited antitumor activity.220 That said, previous findings demonstrated that recombinant IFN-α2a can be safely administrered in combination with: (1) bevacizumab and optionally tyrosine kinase inhibitors, for the treatment of metastatic RCC221-228; (2) the FDA approved CD20-targeting agent rituximab,229-231 for the treatment of lymphoma232-235; as well as chemotherapy plus a mAb blocking the IL-6 receptor,236-239 for the therapy of epithelial ovarian carcinoma.240

Interestingly, biomarkers of response amongst patients with advanced RCC have been retrospectively evaluated on data from 12 distinct clinical trials, including NCT00631371, a Phase III study comparing bevacizumab plus recombinant IFN-α2a with bevacizumab plus the mechanistic target of rapamycin (MTOR) inhibitor temsirolimus,241 which operates as an antiproliferative and autophagy-activating agent.242-247 In this context, an early tumor shrinkage (eTS) above 10% was associated with improved PFS and OS, although the retrospective nature of the analysis constitutes a major limitation of the study.241

At the occasion of the 2017 American Society for Clinical Oncology (ASCO) Annual Meeting, Diab and collaborators (from the University of Texas MD Anderson Cancer Center, Houston, TX, USA) reported preliminary findings from an ongoing Phase I-II study testing the safety and therapeutic profile of NKTR-214 (a CD122-biased agonist of the IL-2 system)248-250 combined with nivolumab (another FDA-approved ICB directed against PD-1)251-254 in patients with melanoma, non-small cell lung carcinoma (NSCLC), RCC, bladder carcinoma or triple-negative breast cancer (NCT02983045).255 Amongst 5 patients treated with this regimen, no dose-limiting toxicities and no drug-related or immune-related Grade 3-5 adverse events (AEs) were documented. Moreover, one patient (with melanoma) experienced a mixed radiographic response associated with markers of immune activation, while another patient (also with melanoma) had an unconfirmed complete response per RECIST v. 1.1.255

At the same occasion, Tarhini and colleagues (from the University of Pittsburgh Cancer Institute, Pittsburgh, PA, USA) reported the results of a randomized Phase II trial testing the FDA-approved CTLA4-targeting mAb ipilimumab256-259 at two different doses, alone or in combination with high-dose recombinant IFN-α2b (NCT01708941).260 At a median follow-up of 26.4 mo., AEs were consistent with the toxicity profiles of ipilimumab and high-dose IFN-α2b, including 3 treatment-related Grade 5 AEs: suicide, lung infection and hemorrhage, and adult respiratory distress syndrome. However, no significant differences in PFS or OS when evaluating ipilimumab-receiving patients versus individuals treated with the same dose of ipilimumab and high-dose IFN-α2b.260

The clinical studies discussed here above focused on recombinant cytokines that are already approved for use in humans for anticancer therapy (IL-2, IFN-α2a) or immune reconstitution (GM-CSF). At least in part, this reflect the well-characterized safety profile of IL-2, IFN-α2a and GM-CSF. It will be interesting to see the final results of hitherto ongoing clinical trials testing the therapeutic profile relatively poorly investigated cytokines such as IL-12, IL-15 and IL-21 (see below).

Recently initiated clinical trials

Since the latest Trial Watch dealing with this topic was published,24 no less than 44 clinical studies have been initiated to assess the therapeutic profile of recombinant cytokines employed as off-label immunostimulants (rather than oncotoxic and immunoreconstituting agents) in cancer patients (source http://www.clinicaltrials.gov). Of these studies, (1) nineteen involve recombinant GM-CSF (NCT02623595; NCT02636582; NCT02641782; NCT02663440; NCT02677155; NCT02703714; NCT02728102; NCT02774421; NCT02873819; NCT02946138; NCT02976740; NCT02978222; NCT03012100; NCT03014076; NCT03033303; NCT03189706; NCT03222089; NCT03282188; NCT03363373); (2) fourteen recombinant IFN-α (NCT02576964; NCT02627144; NCT02634294; NCT02737046; NCT02829775; NCT02838342; NCT02948426; NCT02982720; NCT03056599; NCT03066947; NCT03117816; NCT03121079; NCT03253250; NCT03328026); (3) four recombinant IL-2 (NCT02641782; NCT03040401; NCT03222089; NCT03224871); (4) four recombinant IL-12 (NCT02542124; NCT02544724; NCT02994953; NCT03030378); and (5) six additional cytokines including IL-15 (NCT02689453; NCT03388632), IFN-β (NCT02584829), IFN-γ (NCT02948426; NCT03112590), and fms related tyrosine kinase 3 ligand (FLT3LG)261,262 (NCT02839265) (Table 1).

Table 1.

Recent clinical trials evaluating recombinant cytokines as immunostimulants in cancer patients.*

Agent Indication Phase Status Notes Ref.
FLT3LG Non-small cell lung carcinoma II Recruiting 29 Combined with SBRT NCT02839265
GM-CSF Biliary cancer II Recruiting 27 Combined with pembrolizumab NCT02703714
GM-CSF Breast cancer I Completed 30 As adjuvant to peptide-based vaccination, in the context of trastuzumab-based chemotherapy NCT03014076
GM-CSF Breast cancer II Recruiting 108 Alone or combined with peptide-based vaccination NCT02636582
GM-CSF Breast cancer II Recruiting 280 As adjuvant to peptide-based vaccination NCT03012100
GM-CSF Colorectal carcinoma II Not yet recruiting n.a. Combined with FOLFOXIRI and IL-2 NCT03222089
GM-CSF Ependymoma I Recruiting 33 Combined with trastuzumab NCT02774421
GM-CSF Follicular lymphoma II Recruiting 20 Combined with pembrolizumab NCT02677155
GM-CSF Glioblastoma multiforme II Unknown 41 Combined with HIMRT and temozolomide NCT02663440
GM-CSF Head and neck carcinoma II Recruiting n.a. As adjuvant to peptide-based vaccination NCT02873819
GM-CSF Hepatocellular carcinoma II Recruiting 44 Combined with carbon ion RT NCT02946138
GM-CSF Lung cancer II Recruiting 48 Combined with SBRT and thymosin alpha 1 NCT02976740
GM-CSF Melanoma I/II Not yet recruiting 16 Combined with oncolytic virotherapy NCT03282188
GM-CSF Multiple myeloma II Recruiting 188 Combined with cell-based immunotherapy NCT02728102
GM-CSF Neuroblastoma I Recruiting 10 Combined with GD2-targeting mAb and multimodal chemotherapy NCT03189706
GM-CSF Neuroblastoma II Recruiting 59 Combined with GD2-targeting mAb NCT03033303
GM-CSF Neuroblastoma II Terminated 3 Combined with GD2-targeting mAb and IL-2 NCT02641782
GM-CSF Neuroblastoma III Recruiting 37 Combined with GD2-targeting mAb NCT03363373
GM-CSF Non-small cell lung carcinoma II Recruiting 60 Combined with SBRT NCT02623595
GM-CSF Ovarian cancer II Recruiting 120 Alone or combined with peptide-based vaccination NCT02978222
IFN-α2a Neuroendocrine tumors II Recruiting 29 Combined with metronomic cyclophosphamide NCT02838342
IFN-α2a Advanced tumors II/III Completed 9 As standalone immunotherapeutic agent, potentially pegylated NCT02829775
IFN-α2a Hepatocellular carcinoma IV Recruiting 432 Following resection NCT03253250
IFN-α2a Renal cell carcinoma n.a Completed 365 Combined with bevacizumab NCT02627144
IFN-α2b Acute myeloid leukemia n.a. Recruiting 29 As standalone intervention to prevent relapse upon ASCT NCT03121079
IFN-α2b Adult T-cell leukemia/lymphoma II Recruiting 20 Combined with belinostat and zivudine NCT02737046
IFN-α2b Breast cancer I/II Recruiting 40 Combined with targeted immunotherapy and cyclophosphamide NCT03066947
IFN-α2b Breast cancer I/II Recruiting 40 Combined with targeted immunotherapy and ICBs NCT03328026
IFN-α2b Cholangiocarcinoma II Recruiting 44 Combined with pembrolizumab NCT02982720
IFN-α2b Chronic myelogenous leukemia II Recruiting 214 As standalone immunotherapeutic agent, in pegylated form NCT03117816
IFN-α2b Gynecological tumors I Recruiting 40 Combined with IFN-γ and adoptively transferred autologous monocytes NCT02948426
IFN-α2b Hematological malignancies IV Recruiting 50 As standalone intervention to prevent relapse upon ASCT NCT02634294
IFN-α2b Hepatocellular carcinoma II Recruiting 16 Combined with capecitabine-based chemotherapy NCT02576964
IFN-α2b Soft tissue sarcoma I Recruiting 12 As standalone therapeutic intervention, in microdoses NCT03056599
IFN-β Merkel cell carcinoma I/II Recruiting 20 Combined with RT, avelumab and optionally ACT NCT02584829
IFN-γ Breast cancer I/II Recruiting 43 Combined with multimodal chemotherapy NCT03112590
IFN-γ Gynecological tumors I Recruiting 40 Combined with IFN-α2b and adoptively transferred autologous monocytes NCT02948426
IL-2 Chronic myelogenous leukemia I/II Recruiting 15 Combined with histamine dihydrochloride NCT03040401
IL-2 Colorectal carcinoma II Not yet recruiting n.a. Combined with FOLFOXIRI and GM-CSF NCT03222089
IL-2 Non-small cell lung carcinoma I Recruiting 30 Combined with RT and ICB-based immunotherapy NCT03224871
IL-2 Neuroblastoma II Recruiting 2 Combined with GD2-targeting antibody and GM-CSF NCT02641782
IL-12 Advanced solid tumors I Recruiting 36 Combined with pembrolizumab NCT03030378
IL-12 Advanced solid tumors I Recruiting 170 Combined with avelumab NCT02994953
IL-12 Lymphoma II Not yet recruiting n.a. In the context of salvage chemotherapy NCT02544724
IL-12 Lymphoma II Recruiting n.a. In the context of TSEBT NCT02542124
IL-15 Adult T-cell leukemia/lymphoma I Recruiting 30 Combined with alemtuzumab NCT02689453
IL-15 Advanced solid tumors I Recruiting 50 Combined with ipilimumab and/or nivolumab NCT03388632

Abbreviations: ACT: adoptive cell transfer; ASCT: allogeneic stem cell transplantation; CAR: chimeric antigen receptor; ICB: immune checkpoint blocker; FOLFOXIRI: folinic acid plus 5-fluorouracil plus oxaliplatin plus irinotecan; HIMRT: hypofractionated intensity modulated radiation therapy; n.a.: not available; RT: radiation therapy; SBRT: stereotactic body radiation therapy; TSEBT: total skin electron beam therapy.

*

Initiated between 2015, Dec 1st and 2018, Jan 1st.

In particular, the safety and immunostimulatory activity of recombinant GM-CSF is being investigated: (1) in subjects with neuroblastoma receiving a ganglioside GD2-targeting mAb,263-267 optionally in the context of multimodal chemotherapy (NCT02641782; NCT03033303; NCT03189706; NCT03363373); (2) in patients with breast cancer, who receive recombinant GM-CSF as an adjuvant to peptide-based vaccination (NCT02636582; NCT03012100; NCT03014076); and (3) in individuals with a panel of other tumors, including biliary cancer (NCT02703714), colorectal carcinoma (NCT03222089), ependymoma (NCT02774421), follicular lymphoma (NCT02677155), GBM (NCT02663440), head and neck cancer (NCT02873819), hepatocellular carcinoma (NCT02946138), lung cancer (NCT02976740; NCT02623595) melanoma (NCT03282188), multiple myeloma (NCT02728102) and ovarian carcinoma (NCT02978222) often in combination with standard-of-care therapy, radiation therapy, or experimental immunotherapy (Table 1).

The therapeutic profile of IFN-α2a is being assessed: (1) in patients with hepatitis B virus (HBV)-related hepatocellular carcinoma following tumor resection (NCT03253250); (2) in subjected with RCC concomitantly receiving bevacizumab-based therapy (NCT02627144); (3) in individuals with neuroendocrine tumors in the context of chemotherapy with metronomic cyclophosphamide203,268-271 (NCT02838342); and (4) in patients with advanced tumors previously responding to IFN-α2a, in the context of maintenance therapy (NCT02829775). The safety and preliminary efficacy of IFN-α2b are being assessed: (1) in patients with human T-cell lymphotropic virus type I (HTLV-I)-derived adult T-cell leukemia/lymphoma concomitantly receiving belinostat (an FDA-approved histone deacetylase inhibitor)272,273 and zidovudine (an antiretroviral agent)274 (NCT02737046); (2) in women with breast cancer in the context of targeted immunotherapy plus metronomic cyclophosphamide (NCT03066947; NCT03328026); (3) in patients with hematological malignancies including CML, as a standalone immunotherapeutic intervention for maintenance purposes (NCT03117816; NCT02634294); (4) in individuals with cholangiocarcinoma receiving pembrolizumab (NCT02982720); (5) in subjects with hepatocellular carcinoma receiving capecitabine-based chemotherapy275,276 (NCT02576964); (6) in patients with soft tissue sarcoma receiving microdosed IFN-α2b together with multiple other therapeutic agents via a specific delivery device (NCT03056599); and (6) in women with gynecological tumors, as an intraperitoneal infusion combined with recombinant IFN-γ277,278 and autologous monocytes (NCT02948426). Recombinant IFN-γ is also being tested in combination with multimodal chemotherapy in women with breast carcinoma (NCT03112590), while recombinant IFN-β is being investigated in combination with radiotherapy, the CD274-targeting mAb avelumab279-283 and optionally adoptive cell transfer in patients with Merkel cell carcinoma (NCT02584829) (Table 1).

Recombinant IL-2 is being investigated: (1) in subjects with CML, as part of a maintenance protocol involving the co-administration of histamine dihydrochloride284 (NCT03040401); (2) in colorectal carcinoma patients receiving FOLFOXIRI-based chemotherapy (folinic acid plus 5-fluorouracil plus oxaliplatin plus irinotecan)285,286 and recombinant GM-CSF (NCT03222089); (3) in individuals with neuroblastoma receiving a ganglioside GD2-targeting mAb plus recombinant GM-CSF (NCT02641782); and (4) in subjects with NSCLC receiving radiation therapy plus ICB-based immunoth-erapy287-289 (NCT03224871). The safety and therapeutic profile of recombinant IL-12 are being assessed: (1) in lymphoma patients, either in the context of salvage chemotherapy290 (NCT02544724), or in combination with total skin electron beam therapy291,292 (NCT02542124); and (2) in subjects with advanced solid tumors, receiving ICB-based immunotherapy (NCT02994953; NCT03030378). Along similar lines, recombinant IL-15 is being investigated: (1) in combination with the CD52-targeting mAb alemtuzumab293,294 in adults with T-cell leukemia/lymphoma (NCT02689453); and (2) in combination with ipilimumab and/or nivolumab in patients with advanced solid neoplasms (NCT03388632). Finally, the therapeutic profile of recombinant FLT3LG combined with stereotactic body radiation therapy is being assessed in subjects with advanced or metastatic NSCLC (NCT02839265) (Table 1).

Of note, a large a majority of these studies are ongoing, with three notable exceptions: NCT02627144, NCT02829775 and NCT03014076 (Table 1). NCT02627144 was a non-interventional, multicenter trial to evaluate efficacy and safety of intravenous bevacizumab plus recombinant IFN-α2a for the first-line treatment of patients with advanced and/or metastatic RCC. The study enrolled a total of 365 individuals, of which 359 were allocated to treatment and 338 could be analyzed for clinical responses. Amongst these 338 subjects, 5.3% experienced a complete response, 21.9% a partial response, and 39.1% disease stabilization; median PFS and OS were 10.2 and 28.7 mo., respectively (source https://clinicaltrials.gov/ct2/show/results/NCT02627144). NCT02829775 was a Phase II/III study aimed at enabling patients with CML, melanoma or RCC who previously responded to recombinant IFN-α2a or pegylated IFN-α2a in the context of other clinical trials to continue therapy. Of nine patients enrolled in the study, only 5 completed the entire administration schedule (daily or weekly subcutaneous administration until disease progression, withdrawal, or death – up to approximately 3 y.), but all participants achieved a complete response, with a single case of severe AEs (lung infection in one patient) (source https://clinicaltrials.gov/ct2/show/results/NCT02829775). NCT03014076 was a Phase I study testing a peptide-based vaccine (GP2) adjuvanted with recombinant GM-CSF plus trastuzumab-based chemotherapy in clinically disease-free patients with breast cancer. Seventeen women were vaccinated, none of whom experienced dose-limiting or severe (Grade 3–5) toxicities.295 As immunological reactivity was documented in a majority of subjects enrolled in the study, a Phase II trial was launched to evaluate efficacy.296

Concluding remarks

The possibility to employ recombinant cytokines alone or in combination with other immunotherapeutics to elicit or boost, respectively, tumor-specific immune responses in cancer patients has been – and still is being – intensively investigated.16,19,25 As discussed above, one of the major limitations encountered so far relates to the extraordinary pleiotropism of the system.22-24 To circumvent (at least in part) this issue, increasing attention is being devoted to cytokines that naturally exhibit a relatively restricted cell specificity, such as IL-12, IL-15 or IL-21.49,50,52,297 Moreover, efforts are being dedicated at the development of highly targeted cytokine variants aimed at focusing the biological effects of cytokine signaling onto a rather specific cell population.138,298 Alongside, the panel of immunotherapeutic agents available for inclusion in combinatorial regimens has tremendously expanded over the past few years,299-301 opening multiple new avenues of clinical investigation.

An interesting cytokine-related approach that is currently being developed in both preclinical and clinical settings involve the use of recombinant IL-4 as a vector to specifically deliver a modified version of exotoxin A from Pseudomonas aeruginosa to glioblastoma cells (which express the IL-4 receptor)302-307 (NCT02858895). Considerable efforts are also being dedicated to the development of cytokine receptor agonists, such as ALT-803 (which operates as a superagonist of the IL-15 pathway).50,149-154 No less than twelve different clinical trials have been launched since December 2015 to investigate the safety and therapeutic profile of ALT-803 in multiple oncological indications (source http://www.clinicaltrials.gov).

Moreover, increasing attention is being received by the delivery of cytokine-coding genes, especially in the context of CAR T cell-based immunotherapy308-312 as well as DC-based and cancer cell-based vaccination.160,313-316 As a matter of fact, the only immunotherapeutic based on myeloid cells currently approved for use in cancer patients, namely, sipuleucel-T (Provenge®), relies on the expression of a chimeric protein that encompasses acid phosphatase, prostate (ACPP; best known as PAP) and GM-CSF.317,318 However, the actual impact of Provenge® in the management of prostate cancer patients does not meet the expectations.319 As it stands, it is difficult to predict which of the aforementioned approaches (if any) will open a clear path to the use of recombinant cytokines as immunostimulants in cancer patients. Additional work on specificity and safety issues is urgently awaited in this sense.

Acknowledgments

FA is supported by the Sara Borrell fellowship program (CD15/00016) from Instituto de Salud Carlos III. GK is supported by the Ligue contre le Cancer Comité de Charente-Maritime (équipe labelisée); Agence National de la Recherche (ANR) – Projets blancs; ANR under the frame of E-Rare-2, the ERA-Net for Research on Rare Diseases; Association pour la recherche sur le cancer (ARC); Cancéropôle Ile-de-France; Chancelerie des universités de Paris (Legs Poix), Fondation pour la Recherche Médicale (FRM); a donation by Elior; the European Commission (ArtForce); the European Research Council (ERC); Fondation Carrefour; Institut National du Cancer (INCa); Inserm (HTE); Institut Universitaire de France; LeDucq Foundation; the LabEx Immuno-Oncology; the RHU Torino Lumière; the Seerave Foundation; the SIRIC Stratified Oncology Cell DNA Repair and Tumor Immune Elimination (SOCRATE); the SIRIC Cancer Research and Personalized Medicine (CARPEM); and the Paris Alliance of Cancer Research Institutes (PACRI). LG is supported by an intramural startup from the Department of Radiation Oncology of Weill Cornell Medical College (New York, US), and by Sotio a.s. (Prague, Czech Republic).

References

  • 1.Vacchelli E, Eggermont A, Fridman WH, Galon J, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Immunostimulatory cytokines. Oncoimmunology. 2013;2:e24850. doi: 10.4161/onci.24850. PMID:24073369. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Vacchelli E, Galluzzi L, Eggermont A, Galon J, Tartour E, Zitvogel L, Kroemer G. Trial watch: immunostimulatory cytokines. Oncoimmunology. 2012;1:493–506. doi: 10.4161/onci.20459. PMID:22754768. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Tato CM, Cua DJ. SnapShot: cytokines I. Cell. 2008;132:324, e1. doi: 10.1016/j.cell.2008.01.001. [DOI] [PubMed] [Google Scholar]
  • 4.Tato CM, Cua DJ. SnapShot: cytokines II. Cell. 2008;132:500. PMID:18267079. [DOI] [PubMed] [Google Scholar]
  • 5.Tato CM, Cua DJ. SnapShot: cytokines III. Cell. 2008;132:900. PMID:18329374. [DOI] [PubMed] [Google Scholar]
  • 6.Tato CM, Cua DJ. SnapShot: cytokines IV. Cell. 2008;132:1062.e1–2. doi: 10.1016/j.cell.2008.02.024. [DOI] [PubMed] [Google Scholar]
  • 7.Lavin Y, Mortha A, Rahman A, Merad M. Regulation of macrophage development and function in peripheral tissues. Nat Rev Immunol. 2015;15:731–44. doi: 10.1038/nri3920.PMID:26603899. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Reagan MR, Rosen CJ. Navigating the bone marrow niche: translational insights and cancer-driven dysfunction. Nat Rev Rheumatol. 2016;12:154–68. doi: 10.1038/nrrheum.2015.160. PMID:26607387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Manz MG, Boettcher S. Emergency granulopoiesis. Nat Rev Immunol. 2014;14:302–14. doi: 10.1038/nri3660. PMID:24751955. [DOI] [PubMed] [Google Scholar]
  • 10.Clements WK, Traver D. Signalling pathways that control vertebrate haematopoietic stem cell specification. Nat Rev Immunol. 2013;13:336–48. doi: 10.1038/nri3443. PMID:23618830. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Ceredig R, Rolink AG, Brown G. Models of haematopoiesis: seeing the wood for the trees. Nat Rev Immunol. 2009;9:293–300. doi: 10.1038/nri2525. PMID:19282853. [DOI] [PubMed] [Google Scholar]
  • 12.Weiss CN, Ito K. A macro view of microRNAs: the discovery of microRNAs and their role in hematopoiesis and hematologic disease. Int Rev Cell Mol Biol. 2017;334:99–175. doi: 10.1016/bs.ircmb.2017.03.007. PMID:28838543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Zitvogel L, Galluzzi L, Kepp O, Smyth MJ, Kroemer G. Type I interferons in anticancer immunity. Nat Rev Immunol. 2015;15:405–14. doi: 10.1038/nri3845. PMID:26027717. [DOI] [PubMed] [Google Scholar]
  • 14.Crouse J, Kalinke U, Oxenius A. Regulation of antiviral T cell responses by type I interferons. Nat Rev Immunol. 2015;15:231–42. doi: 10.1038/nri3806. PMID:25790790. [DOI] [PubMed] [Google Scholar]
  • 15.McNab F, Mayer-Barber K, Sher A, Wack A, O'Garra A. Type I interferons in infectious disease. Nat Rev Immunol. 2015;15:87–103. doi: 10.1038/nri3787. PMID:25614319. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Nagarsheth N, Wicha MS, Zou W. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat Rev Immunol. 2017;17:559–72. doi: 10.1038/nri.2017.49. PMID:28555670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Chen W, Ten Dijke P. Immunoregulation by members of the TGFbeta superfamily. Nat Rev Immunol. 2016;16:723–40. doi: 10.1038/nri.2016.112. PMID:27885276. [DOI] [PubMed] [Google Scholar]
  • 18.De Palma M, Biziato D, Petrova TV. Microenvironmental regulation of tumour angiogenesis. Nat Rev Cancer. 2017;17:457–74. doi: 10.1038/nrc.2017.51. PMID:28706266. [DOI] [PubMed] [Google Scholar]
  • 19.Parker BS, Rautela J, Hertzog PJ. Antitumour actions of interferons: implications for cancer therapy. Nat Rev Cancer. 2016;16:131–44. doi: 10.1038/nrc.2016.14. PMID:26911188. [DOI] [PubMed] [Google Scholar]
  • 20.West NR, McCuaig S, Franchini F, Powrie F. Emerging cytokine networks in colorectal cancer. Nat Rev Immunol. 2015;15:615–29. doi: 10.1038/nri3896. PMID:26358393. [DOI] [PubMed] [Google Scholar]
  • 21.Lacalle RA, Blanco R, Carmona-Rodriguez L, Martin-Leal A, Mira E, Manes S. Chemokine receptor signaling and the hallmarks of cancer. Int Rev Cell Mol Biol. 2017;331:181–244. doi: 10.1016/bs.ircmb.2016.09.011. PMID:28325212. [DOI] [PubMed] [Google Scholar]
  • 22.Borish LC, Steinke JW. 2. Cytokines and chemokines. J Allergy Clin Immunol. 2003;111:S460–75. doi: 10.1067/mai.2003.108. PMID:12592293. [DOI] [PubMed] [Google Scholar]
  • 23.Steinke JW, Borish L. 3. Cytokines and chemokines. J Allergy Clin Immunol. 2006;117:S441–5. doi: 10.1016/j.jaci.2005.07.001. PMID:16455343. [DOI] [PubMed] [Google Scholar]
  • 24.Vacchelli E, Aranda F, Bloy N, Buque A, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, et al.. Trial watch-immunostimulation with cytokines in cancer therapy. Oncoimmunology. 2016;5:e1115942. doi: 10.1080/2162402X.2015.1115942. PMID:27057468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Smyth MJ, Ngiow SF, Ribas A, Teng MW. Combination cancer immunotherapies tailored to the tumour microenvironment. Nat Rev Clin Oncol. 2016;13:143–58. doi: 10.1038/nrclinonc.2015.209. PMID:26598942. [DOI] [PubMed] [Google Scholar]
  • 26.Kroemer G, Senovilla L, Galluzzi L, Andre F, Zitvogel L. Natural and therapy-induced immunosurveillance in breast cancer. Nat Med. 2015;21:1128–38. doi: 10.1038/nm.3944. PMID:26444637. [DOI] [PubMed] [Google Scholar]
  • 27.Marabondo S, Kaufman HL. High-dose interleukin-2 (IL-2) for the treatment of melanoma: safety considerations and future directions. Expert Opin Drug Saf. 2017;16:1347–57. doi: 10.1080/14740338.2017.1382472. PMID:28929820. [DOI] [PubMed] [Google Scholar]
  • 28.Wolkenstein P, Chosidow O, Wechsler J, Guillaume JC, Lescs MC, Brandely M, Avril MF, Revuz J. Cutaneous side effects associated with interleukin 2 administration for metastatic melanoma. J Am Acad Dermatol. 1993;28:66–70. doi: 10.1016/0190-9622(93)70011-H. PMID:8425972. [DOI] [PubMed] [Google Scholar]
  • 29.Fraker DL, Alexander HR. The use of tumour necrosis factor (TNF) in isolated perfusion: results and side effects. the NCI results. Melanoma Res. 1994;4 Suppl 1:27–9. [PubMed] [Google Scholar]
  • 30.Kirkwood JM, Resnick GD, Cole BF. Efficacy, safety, and risk-benefit analysis of adjuvant interferon alfa-2b in melanoma. Semin Oncol. 1997;24:S16–23. PMID:9122729. [PubMed] [Google Scholar]
  • 31.Valentine AD, Meyers CA, Kling MA, Richelson E, Hauser P. Mood and cognitive side effects of interferon-alpha therapy. Semin Oncol. 1998;25:39–47. PMID:9482539. [PubMed] [Google Scholar]
  • 32.Guirguis LM, Yang JC, White DE, Steinberg SM, Liewehr DJ, Rosenberg SA, Schwartzentruber DJ. Safety and efficacy of high-dose interleukin-2 therapy in patients with brain metastases. J Immunother. 2002;25:82–7. doi: 10.1097/00002371-200201000-00009. PMID:11924913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 33.Anderson P, Hoglund M, Rodjer S. Pulmonary side effects of interferon-alpha therapy in patients with hematological malignancies. Am J Hematol. 2003;73:54–8. doi: 10.1002/ajh.10319. PMID:12701122. [DOI] [PubMed] [Google Scholar]
  • 34.Geertsen PF, Gore ME, Negrier S, Tourani JM, Maase H von der. Safety and efficacy of subcutaneous and continuous intravenous infusion rIL-2 in patients with metastatic renal cell carcinoma. Br J Cancer. 2004;90:1156–62. doi: 10.1038/sj.bjc.6601709. PMID:15026795. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 35.Tarhini AA, Cherian J, Moschos SJ, Tawbi HA, Shuai Y, Gooding WE, Sander C, Kirkwood JM. Safety and efficacy of combination immunotherapy with interferon alfa-2b and tremelimumab in patients with stage IV melanoma. J Clin Oncol. 2012;30:322–8. doi: 10.1200/JCO.2011.37.5394. PMID:22184371. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 36.Clark JM, Kelley B, Titze J, Fung H, Maciejewski J, Nathan S, Rich E, Basu S, Kaufman HL. Clinical and safety profile of high-dose interleukin-2 treatment in elderly patients with metastatic melanoma and renal cell carcinoma. Oncology. 2013;84:123–6. doi: 10.1159/000342764. PMID:23235386. [DOI] [PubMed] [Google Scholar]
  • 37.Sadlack B, Lohler J, Schorle H, Klebb G, Haber H, Sickel E, Noelle RJ, Horak I. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol. 1995;25:3053–9. doi: 10.1002/eji.1830251111. PMID:7489743. [DOI] [PubMed] [Google Scholar]
  • 38.Papiernik M, de Moraes ML, Pontoux C, Vasseur F, Penit C. Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int Immunol. 1998;10:371–8. doi: 10.1093/intimm/10.4.371. PMID:9620592. [DOI] [PubMed] [Google Scholar]
  • 39.Lu L, Barbi J, Pan F. The regulation of immune tolerance by FOXP3. Nat Rev Immunol. 2017;17:703–17. doi: 10.1038/nri.2017.75. PMID:28757603. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 40.Speiser DE, Ho PC, Verdeil G. Regulatory circuits of T cell function in cancer. Nat Rev Immunol. 2016;16:599–611. doi: 10.1038/nri.2016.80. PMID:27526640. [DOI] [PubMed] [Google Scholar]
  • 41.Rosenblum MD, Way SS, Abbas AK. Regulatory T cell memory. Nat Rev Immunol. 2016;16:90–101. doi: 10.1038/nri.2015.1. PMID:26688349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 42.Tanchot C, Terme M, Pere H, Tran T, Benhamouda N, Strioga M, Banissi C, Galluzzi L, Kroemer G, Tartour E. Tumor-infiltrating regulatory T cells: phenotype, role, mechanism of expansion in situ and clinical significance. Cancer Microenviron. 2013;6:147–57. doi: 10.1007/s12307-012-0122-y. PMID:23104434. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43.Hu Z, Ott PA, Wu CJ. Towards personalized, tumour-specific, therapeutic vaccines for cancer. Nat Rev Immunol. 2017. doi: 10.1038/nri.2017.131. PMID:29226910. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 44.Vijayan D, Young A, Teng MWL, Smyth MJ. Targeting immunosuppressive adenosine in cancer. Nat Rev Cancer. 2017;17:709–24. doi: 10.1038/nrc.2017.86. PMID:29059149. [DOI] [PubMed] [Google Scholar]
  • 45.Weiden J, Tel J, Figdor CG. Synthetic immune niches for cancer immunotherapy. Nat Rev Immunol. 2017. doi: 10.1038/nri.2017.89. PMID:28853444. [DOI] [PubMed] [Google Scholar]
  • 46.Daniyan AF, Brentjens RJ. Immunotherapy: Hiding in plain sight: immune escape in the era of targeted T-cell-based immunotherapies. Nat Rev Clin Oncol. 2017;14:333–4. doi: 10.1038/nrclinonc.2017.49. PMID:28397826. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 47.Gotwals P, Cameron S, Cipolletta D, Cremasco V, Crystal A, Hewes B, Mueller B, Quaratino S, Sabatos-Peyton C, Petruzzelli L, et al.. Prospects for combining targeted and conventional cancer therapy with immunotherapy. Nat Rev Cancer. 2017;17:286–301. doi: 10.1038/nrc.2017.17. PMID:28338065. [DOI] [PubMed] [Google Scholar]
  • 48.Jiang W, Yuan H, Chan CK, Roemeling CA von, Yan Z, Weissman IL, Kim BYS. Lessons from immuno-oncology: a new era for cancer nanomedicine? Nat Rev Drug Discov. 2017;16:369–70. doi: 10.1038/nrd.2017.34. PMID:28303024. [DOI] [PubMed] [Google Scholar]
  • 49.Lu X. Impact of IL-12 in cancer. Curr Cancer Drug Targets. 2017;17:682–97. doi: 10.2174/1568009617666170427102729. PMID:28460617. [DOI] [PubMed] [Google Scholar]
  • 50.Robinson TO, Schluns KS. The potential and promise of IL-15 in immuno-oncogenic therapies. Immunol Lett. 2017;190:159–68. doi: 10.1016/j.imlet.2017.08.010. PMID:28823521. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 51.Rautela J, Huntington ND. IL-15 signaling in NK cell cancer immunotherapy. Curr Opin Immunol. 2017;44:1–6. doi: 10.1016/j.coi.2016.10.004. PMID:27835762. [DOI] [PubMed] [Google Scholar]
  • 52.Davis MR, Zhu Z, Hansen DM, Bai Q, Fang Y. The role of IL-21 in immunity and cancer. Cancer Lett. 2015;358:107–14. doi: 10.1016/j.canlet.2014.12.047. PMID:25575696. [DOI] [PubMed] [Google Scholar]
  • 53.Galluzzi L, Vacchelli E, Bravo-San Pedro JM, Buque A, Senovilla L, Baracco EE, Bloy N, Castoldi F, Abastado JP, Agostinis P, et al.. Classification of current anticancer immunotherapies. Oncotarget. 2014;5:12472–508. doi: 10.18632/oncotarget.2998. PMID:25537519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 54.Vanpouille-Box C, Lhuillier C, Bezu L, Aranda F, Yamazaki T, Kepp O, Fucikova J, Spisek R, Demaria S, Formenti SC, et al.. Trial watch: Immune checkpoint blockers for cancer therapy. Oncoimmunology. 2017;6:e1373237. doi: 10.1080/2162402X.2017.1373237. PMID:29147629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 55.Sharma P, Allison JP. Immune checkpoint targeting in cancer therapy: toward combination strategies with curative potential. Cell. 2015;161:205–14. doi: 10.1016/j.cell.2015.03.030. PMID:25860605. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 56.Sharma P, Allison JP. The future of immune checkpoint therapy. Science. 2015;348:56–61. doi: 10.1126/science.aaa8172. PMID:25838373. [DOI] [PubMed] [Google Scholar]
  • 57.Cabo M, Offringa R, Zitvogel L, Kroemer G, Muntasell A, Galluzzi L. Trial watch: immunostimulatory monoclonal antibodies for oncological indications. Oncoimmunology. 2017;6:e1371896. doi: 10.1080/2162402X.2017.1371896. PMID:29209572. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 58.Di Nicola M, Apetoh L, Bellone M, Colombo MP, Dotti G, Ferrone S, Muscolini M, Hiscott J, Anichini A, Pupa SM, et al.. Innovative therapy, monoclonal antibodies and beyond. Cytokine Growth Factor Rev. 2017;38:1–9. doi: 10.1016/j.cytogfr.2017.10.002. PMID:29029813. [DOI] [PubMed] [Google Scholar]
  • 59.Hendriks D, Choi G, Bruyn M de, Wiersma VR, Bremer E. Antibody-based cancer therapy: successful agents and novel approaches. Int Rev Cell Mol Biol. 2017;331:289–383. doi: 10.1016/bs.ircmb.2016.10.002. PMID:28325214. [DOI] [PubMed] [Google Scholar]
  • 60.Aranda F, Vacchelli E, Eggermont A, Galon J, Fridman WH, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunostimulatory monoclonal antibodies in cancer therapy. Oncoimmunology. 2014;3:e27297. doi: 10.4161/onci.27297. PMID:24701370. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 61.Garg AD, Vara Perez M, Schaaf M, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: Dendritic cell-based anticancer immunotherapy. Oncoimmunology. 2017;6:e1328341. doi: 10.1080/2162402X.2017.1328341. PMID:28811970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 62.Pierini S, Perales-Linares R, Uribe-Herranz M, Pol JG, Zitvogel L, Kroemer G, Facciabene A, Galluzzi L. Trial watch: DNA-based vaccines for oncological indications. Oncoimmunology. 2017;6:e1398878. doi: 10.1080/2162402X.2017.1398878. PMID:29209575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 63.Palucka K, Banchereau J. SnapShot: cancer vaccines. Cell. 2014;157:516–e1. doi: 10.1016/j.cell.2014.03.044. PMID:24725415. [DOI] [PubMed] [Google Scholar]
  • 64.Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12:265–77. doi: 10.1038/nrc3258. PMID:22437871. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65.Melief CJ, Burg SH van der. Immunotherapy of established (pre)malignant disease by synthetic long peptide vaccines. Nat Rev Cancer. 2008;8:351–60. doi: 10.1038/nrc2373. PMID:18418403. [DOI] [PubMed] [Google Scholar]
  • 66.Truxova I, Hensler M, Skapa P, Halaska MJ, Laco J, Ryska A, Spisek R, Fucikova J. Rationale for the combination of dendritic cell-based vaccination approaches with chemotherapy agents. Int Rev Cell Mol Biol. 2017;330:115–56. doi: 10.1016/bs.ircmb.2016.09.003. PMID. [DOI] [PubMed] [Google Scholar]
  • 67.Vacchelli E, Vitale I, Eggermont A, Fridman WH, Fucikova J, Cremer I, Galon J, Tartour E, Zitvogel L, Kroemer G, et al.. Trial watch: dendritic cell-based interventions for cancer therapy. Oncoimmunology. 2013;2:e25771. doi: 10.4161/onci.25771. PMID:24286020. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 68.Garg AD, More S, Rufo N, Mece O, Sassano ML, Agostinis P, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: immunogenic cell death induction by anticancer chemotherapeutics. Oncoimmunology. 2017;6:e1386829. doi: 10.1080/2162402X.2017.1386829. PMID:29209573. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 69.Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 2015;28:690–714. doi: 10.1016/j.ccell.2015.10.012. PMID:26678337. [DOI] [PubMed] [Google Scholar]
  • 70.Wilson AL, Plebanski M, Stephens AN. New trends in anti-cancer therapy: combining conventional chemotherapeutics with novel immunomodulators. Curr Med Chem. 2017. doi: 10.2174/0929867324666170830094922. PMID:28875845. [DOI] [PubMed] [Google Scholar]
  • 71.Weiss T, Weller M, Roth P. Immunological effects of chemotherapy and radiotherapy against brain tumors. Expert Rev Anticancer Ther. 2016;16:1087–94. doi: 10.1080/14737140.2016.1229600. PMID:27598516. [DOI] [PubMed] [Google Scholar]
  • 72.Garg AD, Galluzzi L, Apetoh L, Baert T, Birge RB, Bravo-San Pedro JM, Breckpot K, Brough D, Chaurio R, Cirone M, et al.. Molecular and translational classifications of DAMPs in immunogenic cell death. Front Immunol. 2015;6:588. doi: 10.3389/fimmu.2015.00588. PMID:26635802. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 73.Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D, Agostinis P, Alnemri ES, Altucci L, Amelio I, Andrews DW, et al.. Molecular mechanisms of cell death: Recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 2018, 2018. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 74.Wennerberg E, Vanpouille-Box C, Bornstein S, Yamazaki T, Demaria S, Galluzzi L. Immune recognition of irradiated cancer cells. Immunol Rev. 2017;280:220–30. doi: 10.1111/imr.12568. PMID:29027232. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 75.Vacchelli E, Bloy N, Aranda F, Buque A, Cremer I, Demaria S, Eggermont A, Formenti SC, Fridman WH, Fucikova J, et al.. Trial watch: immunotherapy plus radiation therapy for oncological indications. Oncoimmunology. 2016;5:e1214790. doi: 10.1080/2162402X.2016.1214790. PMID:27757313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 76.Vanpouille-Box C, Formenti SC, Demaria S. Toward precision radiotherapy for use with immune checkpoint blockers. Clin Cancer Res. 2018;24:259–265. doi: 10.1158/1078-0432. PMID. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 77.Hennessy EJ, Parker AE, O'Neill LA. Targeting toll-like receptors: emerging therapeutics? Nat Rev Drug Discov. 2010;9:293–307. doi: 10.1038/nrd3203. PMID:20380038. [DOI] [PubMed] [Google Scholar]
  • 78.Lob S, Konigsrainer A, Rammensee HG, Opelz G, Terness P. Inhibitors of indoleamine-2,3-dioxygenase for cancer therapy: can we see the wood for the trees? Nat Rev Cancer. 2009;9:445–52. doi: 10.1038/nrc2639. PMID:19461669. [DOI] [PubMed] [Google Scholar]
  • 79.Vacchelli E, Aranda F, Eggermont A, Sautes-Fridman C, Tartour E, Kennedy EP, Platten M, Zitvogel L, Kroemer G, Galluzzi L. Trial watch: IDO inhibitors in cancer therapy. Oncoimmunology. 2014;3:e957994. doi: 10.4161/21624011.2014.957994. PMID:25941578. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 80.Buque A, Bloy N, Aranda F, Cremer I, Eggermont A, Fridman WH, Fucikova J, Galon J, Spisek R, Tartour E, et al.. Trial Watch-Small molecules targeting the immunological tumor microenvironment for cancer therapy. Oncoimmunology. 2016;5:e1149674. doi: 10.1080/2162402X.2016.1149674. PMID:27471617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 81.Adams JL, Smothers J, Srinivasan R, Hoos A. Big opportunities for small molecules in immuno-oncology. Nat Rev Drug Discov. 2015;14:603–22. doi: 10.1038/nrd4596. PMID:26228631. [DOI] [PubMed] [Google Scholar]
  • 82.Fesnak AD, June CH, Levine BL. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat Rev Cancer. 2016;16:566–81. doi: 10.1038/nrc.2016.97. PMID:27550819. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 83.Khalil DN, Smith EL, Brentjens RJ, Wolchok JD. The future of cancer treatment: immunomodulation, CARs and combination immunotherapy. Nat Rev Clin Oncol. 2016;13:273–90. doi: 10.1038/nrclinonc.2016.25. PMID:26977780. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 84.Fournier C, Martin F, Zitvogel L, Kroemer G, Galluzzi L, Apetoh L. Trial watch: adoptively transferred cells for anticancer immunotherapy. Oncoimmunology. 2017;6:e1363139. doi: 10.1080/2162402X.2017.1363139. PMID:29147628. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 85.Restifo NP, Dudley ME, Rosenberg SA. Adoptive immunotherapy for cancer: harnessing the T cell response. Nat Rev Immunol. 2012;12:269–81. doi: 10.1038/nri3191. PMID:22437939. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 86.Lichty BD, Breitbach CJ, Stojdl DF, Bell JC. Going viral with cancer immunotherapy. Nat Rev Cancer. 2014;14:559–67. doi: 10.1038/nrc3770. PMID:24990523. [DOI] [PubMed] [Google Scholar]
  • 87.Veinalde R, Grossardt C, Hartmann L, Bourgeois-Daigneault MC, Bell JC, Jager D, von Kalle C, Ungerechts G, Engeland CE. Oncolytic measles virus encoding interleukin-12 mediates potent antitumor effects through T cell activation. Oncoimmunology. 2017;6:e1285992. doi: 10.1080/2162402X.2017.1285992. PMID:28507792. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 88.Pol J, Kroemer G, Galluzzi L. First oncolytic virus approved for melanoma immunotherapy. Oncoimmunology. 2016;5:e1115641. doi: 10.1080/2162402X.2015.1115641. PMID:26942095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 89.Deroose JP, Eggermont AM, Geel AN van, Burger JW, Bakker MA den, Wilt JH de, Verhoef C. Long-term results of tumor necrosis factor alpha- and melphalan-based isolated limb perfusion in locally advanced extremity soft tissue sarcomas. J Clin Oncol. 2011;29:4036–44. doi: 10.1200/JCO.2011.35.6618. PMID:21931039. [DOI] [PubMed] [Google Scholar]
  • 90.Deroose JP, Eggermont AM, Geel AN van, Wilt JH de, Burger JW, Verhoef C. 20 years experience of TNF-based isolated limb perfusion for in-transit melanoma metastases: TNF dose matters. Ann Surg Oncol. 2012;19:627–35. doi: 10.1245/s10434-011-2030-7. PMID:21879272. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 91.Deroose JP, Grunhagen DJ, Geel AN van, Wilt JH de, Eggermont AM, Verhoef C. Long-term outcome of isolated limb perfusion with tumour necrosis factor-alpha for patients with melanoma in-transit metastases. Br J Surg. 2011;98:1573–80. doi: 10.1002/bjs.7621. PMID:21739427. [DOI] [PubMed] [Google Scholar]
  • 92.Eggermont AM. The success of TNF alpha in isolated limb perfusion for irresectable extremity soft tissue sarcomas, melanoma and carcinomas: observations in patients and preclinical perfusion models. Gan To Kagaku Ryoho. 1996;23:1357–70. PMID:8854755. [PubMed] [Google Scholar]
  • 93.Eggermont AM, Schraffordt Koops H, Klausner JM, Kroon BB, Schlag PM, Lienard D, Geel AN van, Hoekstra HJ, Meller I, Nieweg OE, et al.. Isolated limb perfusion with tumor necrosis factor and melphalan for limb salvage in 186 patients with locally advanced soft tissue extremity sarcomas. the cumulative multicenter European experience. Ann Surg. 1996;224:756–64; discussion 64–5. doi: 10.1097/00000658-199612000-00011. PMID:8968230. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 94.Eggermont AM, Schraffordt Koops H, Klausner JM, Schlag PM, Kroon BB, Ben-Ari G, Lejeune FJ. Isolated limb perfusion with high-dose tumor necrosis factor-alpha for locally advanced extremity soft tissue sarcomas. Cancer Treat Res. 1997;91:189–203. doi: 10.1007/978-1-4615-6121-7_13. PMID:9286497. [DOI] [PubMed] [Google Scholar]
  • 95.Eggermont AM, Schraffordt Koops H, Lienard D, Kroon BB, Geel AN van, Hoekstra HJ, Lejeune FJ. Isolated limb perfusion with high-dose tumor necrosis factor-alpha in combination with interferon-gamma and melphalan for nonresectable extremity soft tissue sarcomas: a multicenter trial. J Clin Oncol. 1996;14:2653–65. doi: 10.1200/JCO.1996.14.10.2653. PMID:8874324. [DOI] [PubMed] [Google Scholar]
  • 96.Eggermont AM, Suciu S, Testori A, Santinami M, Kruit WH, Marsden J, Punt CJ, Sales F, Dummer R, Robert C, et al.. Long-term results of the randomized phase III trial EORTC 18991 of adjuvant therapy with pegylated interferon alfa-2b versus observation in resected stage III melanoma. J Clin Oncol. 2012;30:3810–8. doi: 10.1200/JCO.2011.41.3799. PMID:23008300. [DOI] [PubMed] [Google Scholar]
  • 97.Grunhagen DJ, Brunstein F, ten Hagen TL, Geel AN van, Wilt JH de, Eggermont AM. TNF-based isolated limb perfusion: a decade of experience with antivascular therapy in the management of locally advanced extremity soft tissue sarcomas. Cancer Treat Res. 2004;120:65–79. doi: 10.1007/1-4020-7856-0_4. PMID:15217218. [DOI] [PubMed] [Google Scholar]
  • 98.Trabulsi NH, Patakfalvi L, Nassif MO, Turcotte RE, Nichols A, Meguerditchian AN. Hyperthermic isolated limb perfusion for extremity soft tissue sarcomas: systematic review of clinical efficacy and quality assessment of reported trials. J Surg Oncol. 2012;106:921–8. doi: 10.1002/jso.23200. PMID:22806575. [DOI] [PubMed] [Google Scholar]
  • 99.Grunhagen DJ, Wilt JH de, ten Hagen TL, Eggermont AM. Technology insight: utility of TNF-alpha-based isolated limb perfusion to avoid amputation of irresectable tumors of the extremities. Nat Clin Pract Oncol. 2006;3:94–103. doi: 10.1038/ncponc0426. PMID:16462850. [DOI] [PubMed] [Google Scholar]
  • 100.Seinen JM, Hoekstra HJ. Isolated limb perfusion of soft tissue sarcomas: a comprehensive review of literature. Cancer Treat Rev. 2013;39:569–77. doi: 10.1016/j.ctrv.2012.10.005. PMID:23232098. [DOI] [PubMed] [Google Scholar]
  • 101.Arellano M, Lonial S. Clinical uses of GM-CSF, a critical appraisal and update. Biologics. 2008;2:13–27. PMID:19707424. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 102.Khoury HJ, Loberiza FR, Ringden O, Barrett AJ, Bolwell BJ, Cahn JY, Champlin RE, Gale RP, Hale GA, Urbano-Ispizua A, et al.. Impact of posttransplantation G-CSF on outcomes of allogeneic hematopoietic stem cell transplantation. Blood. 2006;107:1712–6. doi: 10.1182/blood-2005-07-2661. PMID:16239431. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 103.Sebban C, Lefranc A, Perrier L, Moreau P, Espinouse D, Schmidt A, Kammoun L, Ghesquieres H, Ferlay C, Bay JO, et al.. A randomised phase II study of the efficacy, safety and cost-effectiveness of pegfilgrastim and filgrastim after autologous stem cell transplant for lymphoma and myeloma (PALM study). Eur J Cancer. 2012;48:713–20. doi: 10.1016/j.ejca.2011.12.016. PMID:22248711. [DOI] [PubMed] [Google Scholar]
  • 104.Hosing C. Hematopoietic stem cell mobilization with G-CSF. Methods Mol Biol. 2012;904:37–47. PMID:22890920. [DOI] [PubMed] [Google Scholar]
  • 105.Demirer T, Ayli M, Ozcan M, Gunel N, Haznedar R, Dagli M, Fen T, Genc Y, Dincer S, Arslan O, et al.. Mobilization of peripheral blood stem cells with chemotherapy and recombinant human granulocyte colony-stimulating factor (rhG-CSF): a randomized evaluation of different doses of rhG-CSF. Br J Haematol. 2002;116:468–74. doi: 10.1046/j.1365-2141.2002.03264.x. PMID:11841454. [DOI] [PubMed] [Google Scholar]
  • 106.Naeim A, Henk HJ, Becker L, Chia V, Badre S, Li X, Deeter R. Pegfilgrastim prophylaxis is associated with a lower risk of hospitalization of cancer patients than filgrastim prophylaxis: a retrospective United States claims analysis of granulocyte colony-stimulating factors (G-CSF). BMC Cancer. 2013;13:11. doi: 10.1186/1471-2407-13-11. PMID:23298389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 107.Chan KK, Siu E, Krahn MD, Imrie K, Alibhai SM. Cost-utility analysis of primary prophylaxis versus secondary prophylaxis with granulocyte colony-stimulating factor in elderly patients with diffuse aggressive lymphoma receiving curative-intent chemotherapy. J Clin Oncol. 2012;30:1064–71. doi: 10.1200/JCO.2011.36.8647. PMID:22393098. [DOI] [PubMed] [Google Scholar]
  • 108.Pabst T, Vellenga E, Putten W van, Schouten HC, Graux C, Vekemans MC, Biemond B, Sonneveld P, Passweg J, Verdonck L, et al.. Favorable effect of priming with granulocyte colony-stimulating factor in remission induction of acute myeloid leukemia restricted to dose escalation of cytarabine. Blood. 2012;119:5367–73. doi: 10.1182/blood-2011-11-389841. PMID:22422824. [DOI] [PubMed] [Google Scholar]
  • 109.Benci JL, Xu B, Qiu Y, Wu TJ, Dada H, Twyman-Saint\sVictor C, Cucolo L, Lee DSM, Pauken KE, Huang AC, et al.. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell. 2016;167:1540–54.e12. doi: 10.1016/j.cell.2016.11.022. PMID:27912061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 110.Haji Abdolvahab M, Mofrad MR, Schellekens H. Interferon beta: from molecular level to therapeutic effects. Int Rev Cell Mol Biol. 2016;326:343–72. doi: 10.1016/bs.ircmb.2016.06.001. PMID:27572132. [DOI] [PubMed] [Google Scholar]
  • 111.Bose D. cGAS/STING pathway in cancer: jekyll and hyde story of cancer immune response. Int J Mol Sci. 2017;18:E2456. doi: 10.3390/ijms18112456. PMID:29156566. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 112.Motwani M, Fitzgerald KA. cGAS micro-manages genotoxic stress. Immunity. 2017;47:616–7. doi: 10.1016/j.immuni.2017.09.020. PMID:29045895. [DOI] [PubMed] [Google Scholar]
  • 113.Oliveira Mann CC de, Kranzusch PJ. cGAS conducts micronuclei DNA surveillance. Trends Cell Biol. 2017;27:697–8. doi: 10.1016/j.tcb.2017.08.007. PMID:28882413. [DOI] [PubMed] [Google Scholar]
  • 114.Li XD, Wu J, Gao D, Wang H, Sun L, Chen ZJ. Pivotal roles of cGAS-cGAMP signaling in antiviral defense and immune adjuvant effects. Science. 2013;341:1390–4. doi: 10.1126/science.1244040. PMID:23989956. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 115.Civril F, Deimling T, Oliveira Mann CC de, Ablasser A, Moldt M, Witte G, Hornung V, Hopfner KP. Structural mechanism of cytosolic DNA sensing by cGAS. Nature. 2013;498:332–7. doi: 10.1038/nature12305. PMID:23722159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 116.Pepin G, Gantier MP. cGAS-STING activation in the tumor microenvironment and its role in cancer immunity. Adv Exp Med Biol. 2017;1024:175–94. doi: 10.1007/978-981-10-5987-2_8. PMID:28921470. [DOI] [PubMed] [Google Scholar]
  • 117.Chen Q, Sun L, Chen ZJ. Regulation and function of the cGAS-STING pathway of cytosolic DNA sensing. Nat Immunol. 2016;17:1142–9. doi: 10.1038/ni.3558. PMID:27648547. [DOI] [PubMed] [Google Scholar]
  • 118.Corrales L, McWhirter SM, Dubensky TW, Gajewski TF. The host STING pathway at the interface of cancer and immunity. J Clin Invest. 2016;126:2404–11. doi: 10.1172/JCI86892. PMID:27367184. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 119.Thorne SH. Adding STING to the tale of oncolytic virotherapy. Trends Cancer. 2016;2:67–8. doi: 10.1016/j.trecan.2016.01.002. PMID:27004260. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 120.Neault M, Couteau F, Bonneau E, Guire V De, Mallette FA. Molecular regulation of cellular senescence by microRNAs: implications in cancer and age-related diseases. Int Rev Cell Mol Biol. 2017;334:27–98. doi: 10.1016/bs.ircmb.2017.04.001. PMID:28838541. [DOI] [PubMed] [Google Scholar]
  • 121.Medkour Y, Svistkova V, Titorenko VI. Cell-nonautonomous mechanisms underlying cellular and organismal aging. Int Rev Cell Mol Biol. 2016;321:259–97. doi: 10.1016/bs.ircmb.2015.09.003. PMID:26811290. [DOI] [PubMed] [Google Scholar]
  • 122.Lopez-Otin C, Galluzzi L, Freije JM, Madeo F, Kroemer G. Metabolic control of longevity. Cell. 2016;166:802–21. doi: 10.1016/j.cell.2016.07.031. PMID:27518560. [DOI] [PubMed] [Google Scholar]
  • 123.Munk R, Panda AC, Grammatikakis I, Gorospe M, Abdelmohsen K. Senescence-associated microRNAs. Int Rev Cell Mol Biol. 2017;334:177–205. doi: 10.1016/bs.ircmb.2017.03.008. PMID:28838538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 124.Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548:466–70. doi: 10.1038/nature23470. PMID:28759889. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 125.Vanpouille-Box C, Alard A, Aryankalayil MJ, Sarfraz Y, Diamond JM, Schneider RJ, Inghirami G, Coleman CN, Formenti SC, Demaria S. DNA exonuclease Trex1 regulates radiotherapy-induced tumour immunogenicity. Nat Commun. 2017;8:15618. doi: 10.1038/ncomms15618. PMID:28598415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 126.Mackenzie KJ, Carroll P, Martin CA, Murina O, Fluteau A, Simpson DJ, Olova N, Sutcliffe H, Rainger JK, Leitch A, et al.. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548:461–5. doi: 10.1038/nature23449. PMID:28738408. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 127.Yamazaki T, Galluzzi L. TREX1 cuts down on cancer immunogenicity. Trends Cell Biol. 2017;27:543–5. doi: 10.1016/j.tcb.2017.06.001. PMID:28625463. [DOI] [PubMed] [Google Scholar]
  • 128.Vitale I, Manic G, Maria R De, Kroemer G, Galluzzi L. DNA damage in stem cells. Mol Cell. 2017;66:306–19. doi: 10.1016/j.molcel.2017.04.006. PMID:28475867. [DOI] [PubMed] [Google Scholar]
  • 129.Dou Z, Ghosh K, Vizioli MG, Zhu J, Sen P, Wangensteen KJ, Simithy J, Lan Y, Lin Y, Zhou Z, et al.. Cytoplasmic chromatin triggers inflammation in senescence and cancer. Nature. 2017;550:402–6. doi: 10.1038/nature24050. PMID:28976970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 130.Galluzzi L, Lopez-Soto A, Kumar S, Kroemer G. Caspases connect cell-death signaling to organismal homeostasis. Immunity. 2016;44:221–31. doi: 10.1016/j.immuni.2016.01.020. PMID:26885855. [DOI] [PubMed] [Google Scholar]
  • 131.Gao J, Shi LZ, Zhao H, Chen J, Xiong L, He Q, Chen T, Roszik J, Bernatchez C, Woodman SE, et al.. Loss of IFN-gamma pathway genes in tumor cells as a mechanism of resistance to anti-CTLA-4 therapy. Cell. 2016;167:397–404.e9. doi: 10.1016/j.cell.2016.08.069. PMID:27667683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 132.Ayers M, Lunceford J, Nebozhyn M, Murphy E, Loboda A, Kaufman DR, Albright A, Cheng JD, Kang SP, Shankaran V, et al.. IFN-gamma-related mRNA profile predicts clinical response to PD-1 blockade. J Clin Invest. 2017;127:2930–40. doi: 10.1172/JCI91190. PMID:28650338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 133.Overacre-Delgoffe AE, Chikina M, Dadey RE, Yano H, Brunazzi EA, Shayan G, Horne W, Moskovitz JM, Kolls JK, Sander C, et al.. Interferon-gamma drives treg fragility to promote anti-tumor immunity. Cell. 2017;169:1130–41.e11. doi: 10.1016/j.cell.2017.05.005. PMID:28552348. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 134.Wu J, Song Y, Bakker AB, Bauer S, Spies T, Lanier LL, Phillips JH. An activating immunoreceptor complex formed by NKG2D and DAP10. Science. 1999;285:730–2. doi: 10.1126/science.285.5428.730. PMID:10426994. [DOI] [PubMed] [Google Scholar]
  • 135.Bauer S, Groh V, Wu J, Steinle A, Phillips JH, Lanier LL, Spies T. Activation of NK cells and T cells by NKG2D, a receptor for stress-inducible MICA. Science. 1999;285:727–9. doi: 10.1126/science.285.5428.727. PMID:10426993. [DOI] [PubMed] [Google Scholar]
  • 136.Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol. 2000;1:119–26. doi: 10.1038/77793. PMID:11248803. [DOI] [PubMed] [Google Scholar]
  • 137.Diefenbach A, Jensen ER, Jamieson AM, Raulet DH. Rae1 and H60 ligands of the NKG2D receptor stimulate tumour immunity. Nature. 2001;413:165–71. doi: 10.1038/35093109. PMID:11557981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 138.Ghasemi R, Lazear E, Wang X, Arefanian S, Zheleznyak A, Carreno BM, Higashikubo R, Gelman AE, Kreisel D, Fremont DH, et al.. Selective targeting of IL-2 to NKG2D bearing cells for improved immunotherapy. Nat Commun. 2016;7:12878. doi: 10.1038/ncomms12878. PMID:27650575. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 139.Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. Control of metastasis by NK cells. Cancer Cell. 2017;32:135–54. doi: 10.1016/j.ccell.2017.06.009. PMID:28810142. [DOI] [PubMed] [Google Scholar]
  • 140.Chen G, Shaw MH, Kim YG, Nunez G. NOD-like receptors: role in innate immunity and inflammatory disease. Annu Rev Pathol. 2009;4:365–98. doi: 10.1146/annurev.pathol.4.110807.092239. PMID:18928408. [DOI] [PubMed] [Google Scholar]
  • 141.Galluzzi L, Buque A, Kepp O, Zitvogel L, Kroemer G. Immunogenic cell death in cancer and infectious disease. Nat Rev Immunol. 2017;17:97–111. doi: 10.1038/nri.2016.107. PMID:27748397. [DOI] [PubMed] [Google Scholar]
  • 142.Zitvogel L, Kepp O, Galluzzi L, Kroemer G. Inflammasomes in carcinogenesis and anticancer immune responses. Nat Immunol. 2012;13:343–51. doi: 10.1038/ni.2224. PMID:22430787. [DOI] [PubMed] [Google Scholar]
  • 143.He Y, Hara H, Nunez G. Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 2016;41:1012–21. doi: 10.1016/j.tibs.2016.09.002. PMID:27669650. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 144.Zhang X, Liu P, Zhang C, Chiewchengchol D, Zhao F, Yu H, Li J, Kambara H, Luo KY, Venkataraman A, et al.. Positive regulation of interleukin-1beta bioactivity by physiological ROS-mediated cysteine S-glutathionylation. Cell Rep. 2017;20:224–35. doi: 10.1016/j.celrep.2017.05.070. PMID:28683316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 145.Shibue T, Weinberg RA. EMT, CSCs, and drug resistance: the mechanistic link and clinical implications. Nat Rev Clin Oncol. 2017;14:611–29. doi: 10.1038/nrclinonc.2017.44. PMID:28397828. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 146.Shi Y, Du L, Lin L, Wang Y. Tumour-associated mesenchymal stem/stromal cells: emerging therapeutic targets. Nat Rev Drug Discov. 2017;16:35–52. doi: 10.1038/nrd.2016.193. PMID:27811929. [DOI] [PubMed] [Google Scholar]
  • 147.Turley SJ, Cremasco V, Astarita JL. Immunological hallmarks of stromal cells in the tumour microenvironment. Nat Rev Immunol. 2015;15:669–82. doi: 10.1038/nri3902. PMID:26471778. [DOI] [PubMed] [Google Scholar]
  • 148.Waghray M, Yalamanchili M, Dziubinski M, Zeinali M, Erkkinen M, Yang H, Schradle KA, Urs S, Pasca Di Magliano M, Welling TH, et al.. GM-CSF mediates mesenchymal-epithelial cross-talk in pancreatic cancer. Cancer Discov. 2016;6:886–99. doi: 10.1158/2159-8290.CD-15-0947. PMID:27184426. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 149.Allegrezza MJ, Rutkowski MR, Stephen TL, Svoronos N, Tesone AJ, Perales-Puchalt A, Nguyen JM, Sarmin F, Sheen MR, Jeng EK, et al.. IL15 agonists overcome the immunosuppressive effects of MEK inhibitors. Cancer Res. 2016;76:2561–72. doi: 10.1158/0008-5472.CAN-15-2808. PMID:26980764. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 150.Bailey CP, Budak-Alpdogan T, Sauter CT, Panis MM, Buyukgoz C, Jeng EK, Wong HC, Flomenberg N, Alpdogan O. New interleukin-15 superagonist (IL-15 SA) significantly enhances graft-versus-tumor activity. Oncotarget. 2017;8:44366–78. doi: 10.18632/oncotarget.17875. PMID:28574833. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 151.Liu B, Kong L, Han K, Hong H, Marcus WD, Chen X, Jeng EK, Alter S, Zhu X, Rubinstein MP, et al.. A novel fusion of ALT-803 (interleukin (IL)-15 superagonist) with an antibody demonstrates antigen-specific antitumor responses. J Biol Chem. 2016;291:23869–81. doi: 10.1074/jbc.M116.733600. PMID:27650494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 152.Kim PS, Kwilas AR, Xu W, Alter S, Jeng EK, Wong HC, Schlom J, Hodge JW. IL-15 superagonist/IL-15RalphaSushi-Fc fusion complex (IL-15 SA/IL-15RalphaSu-Fc; ALT-803) markedly enhances specific subpopulations of NK and memory CD8+ T cells, and mediates potent anti-tumor activity against murine breast and colon carcinomas. Oncotarget. 2016;7:16130–45. PMID:26910920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 153.Basher F, Jeng EK, Wong H, Wu J. Cooperative therapeutic anti-tumor effect of IL-15 agonist ALT-803 and co-targeting soluble NKG2D ligand sMIC. Oncotarget. 2016;7:814–30. doi: 10.18632/oncotarget.6416. PMID:26625316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 154.Xu W, Jones M, Liu B, Zhu X, Johnson CB, Edwards AC, Kong L, Jeng EK, Han K, Marcus WD, et al.. Efficacy and mechanism-of-action of a novel superagonist interleukin-15: interleukin-15 receptor alphaSu/Fc fusion complex in syngeneic murine models of multiple myeloma. Cancer Res. 2013;73:3075–86. doi: 10.1158/0008-5472.CAN-12-2357. PMID:23644531. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 155.Wagner JA, Rosario M, Romee R, Berrien-Elliott MM, Schneider SE, Leong JW, Sullivan RP, Jewell BA, Becker-Hapak M, Schappe T, et al.. CD56bright NK cells exhibit potent antitumor responses following IL-15 priming. J Clin Invest. 2017;127:4042–58. doi: 10.1172/JCI90387. PMID:28972539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 156.Mishra A, La Perle K, Kwiatkowski S, Sullivan LA, Sams GH, Johns J, Curphey DP, Wen J, McConnell K, Qi J, et al.. Mechanism, consequences, and therapeutic targeting of abnormal IL15 signaling in cutaneous T-cell lymphoma. Cancer Discov. 2016;6:986–1005. doi: 10.1158/2159-8290.CD-15-1297. PMID:27422033. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 157.Maniglia CA, Sartorelli AC. Retinoic acid-induced alterations of glycosaminoglycan synthesis and deposition in B16F10 melanoma cells. Ann N Y Acad Sci. 1981;359:322–30. doi: 10.1111/j.1749-6632.1981.tb12757.x. PMID:6942678. [DOI] [PubMed] [Google Scholar]
  • 158.Maniglia CA, Tudor G, Gomez J, Sartorelli AC. The effect of 2,6-bis(diethanolamino)-4-piperidinopyrimido [5,4-d]-pyrimidine (RA233) on growth, metastases and lung colony formation of B16 melanoma. Cancer Lett. 1982;16:253–60. doi: 10.1016/0304-3835(82)90004-0. PMID:7151045. [DOI] [PubMed] [Google Scholar]
  • 159.Sloane BF, Honn KV, Sadler JG, Turner WA, Kimpson JJ, Taylor JD. Cathepsin B activity in B16 melanoma cells: a possible marker for metastatic potential. Cancer Res. 1982;42:980–6. PMID:7059993. [PubMed] [Google Scholar]
  • 160.Hu B, Ren J, Luo Y, Keith B, Young RM, Scholler J, Zhao Y, June CH. Augmentation of antitumor immunity by human and mouse CAR T cells secreting IL-18. Cell Rep. 2017;20:3025–33. doi: 10.1016/j.celrep.2017.09.002. PMID:28954221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 161.Barjon C, Michaud HA, Fages A, Dejou C, Zampieri A, They L, Gennetier A, Sanchez F, Gros L, Eliaou JF, et al.. IL-21 promotes the development of a CD73-positive Vgamma9Vdelta2 T cell regulatory population. Oncoimmunology. 2017;7:e1379642. doi: 10.1080/2162402X.2017.1379642. PMID:29296543. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 162.Seo H, Jeon I, Kim BS, Park M, Bae EA, Song B, Koh CH, Shin KS, Kim IK, Choi K, et al.. IL-21-mediated reversal of NK cell exhaustion facilitates anti-tumour immunity in MHC class I-deficient tumours. Nat Commun. 2017;8:15776. doi: 10.1038/ncomms15776. PMID:28585539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 163.Chapuis AG, Lee SM, Thompson JA, Roberts IM, Margolin KA, Bhatia S, Sloan HL, Lai I, Wagener F, Shibuya K, et al.. Combined IL-21-primed polyclonal CTL plus CTLA4 blockade controls refractory metastatic melanoma in a patient. J Exp Med. 2016;213:1133–9. doi: 10.1084/jem.20152021. PMID:27242164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 164.Lewis KE, Selby MJ, Masters G, Valle J, Dito G, Curtis WR, Garcia R, Mink KA, Waggie KS, Holdren MS, et al.. Interleukin-21 combined with PD-1 or CTLA-4 blockade enhances antitumor immunity in mouse tumor models. Oncoimmunology. 2017;7:e1377873. doi: 10.1080/2162402X.2017.1377873. PMID:29296539. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 165.Saenz SA, Siracusa MC, Perrigoue JG, Spencer SP, Urban JF Jr., Tocker JE, Budelsky AL, Kleinschek MA, Kastelein RA, Kambayashi T, et al.. IL25 elicits a multipotent progenitor cell population that promotes T(H)2 cytokine responses. Nature. 2010;464:1362–6. doi: 10.1038/nature08901. PMID:20200520. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 166.Wang YH, Angkasekwinai P, Lu N, Voo KS, Arima K, Hanabuchi S, Hippe A, Corrigan CJ, Dong C, Homey B, et al.. IL-25 augments type 2 immune responses by enhancing the expansion and functions of TSLP-DC-activated Th2 memory cells. J Exp Med. 2007;204:1837–47. doi: 10.1084/jem.20070406. PMID:17635955. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 167.Reynolds JM, Angkasekwinai P, Dong C. IL-17 family member cytokines: regulation and function in innate immunity. Cytokine Growth Factor Rev. 2010;21:413–23. doi: 10.1016/j.cytogfr.2010.10.002. PMID:21074482. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 168.Yamauchi M, Barker TH, Gibbons DL, Kurie JM. The fibrotic tumor stroma. J Clin Invest. 2018;128:16–25. doi: 10.1172/JCI93554. PMID:29293090. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 169.Santi A, Kugeratski FG, Zanivan S. Cancer associated fibroblasts: the architects of stroma remodelling. Proteomics. 2017. doi: 10.1002/pmic.201700167. PMID:29280568. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 170.Kumar V, Donthireddy L, Marvel D, Condamine T, Wang F, Lavilla-Alonso S, Hashimoto A, Vonteddu P, Behera R, Goins MA, et al.. Cancer-associated fibroblasts neutralize the anti-tumor effect of CSF1 receptor blockade by inducing PMN-MDSC infiltration of tumors. Cancer Cell. 2017;32:654–68 e5. doi: 10.1016/j.ccell.2017.10.005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 171.Koeck S, Kern J, Zwierzina M, Gamerith G, Lorenz E, Sopper S, Zwierzina H, Amann A. The influence of stromal cells and tumor-microenvironment-derived cytokines and chemokines on CD3(+)CD8(+) tumor infiltrating lymphocyte subpopulations. Oncoimmunology. 2017;6:e1323617. doi: 10.1080/2162402X.2017.1323617. PMID:28680763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 172.Iovanna JL, Closa D. Factors released by the tumor far microenvironment are decisive for pancreatic adenocarcinoma development and progression. Oncoimmunology. 2017;6:e1358840. doi: 10.1080/2162402X.2017.1358840. PMID:29147622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 173.Yin SY, Jian FY, Chen YH, Chien SC, Hsieh MC, Hsiao PW, Lee WH, Kuo YH, Yang NS. Induction of IL-25 secretion from tumour-associated fibroblasts suppresses mammary tumour metastasis. Nat Commun. 2016;7:11311. doi: 10.1038/ncomms11311. PMID:27089063. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 174.Molgora M, Supino D, Mantovani A, Garlanda C. Tuning inflammation and immunity by the negative regulators IL-1R2 and IL-1R8. Immunol Rev. 2018;281:233–47. doi: 10.1111/imr.12609. PMID:29247989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 175.Mantovani A, Barajon I, Garlanda C. IL-1 and IL-1 regulatory pathways in cancer progression and therapy. Immunol Rev. 2018;281:57–61. doi: 10.1111/imr.12614. PMID:29247996. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 176.Boraschi D, Italiani P, Weil S, Martin MU. The family of the interleukin-1 receptors. Immunol Rev. 2018;281:197–232. doi: 10.1111/imr.12606. PMID:29248002. [DOI] [PubMed] [Google Scholar]
  • 177.Vilia MG, Tocchetti M, Fonte E, Sana I, Muzio M. Characterization of a long isoform of IL-1R8 (TIR8/SIGIRR). Eur Cytokine Netw. 2017;28:63–9. PMID:28840837. [DOI] [PubMed] [Google Scholar]
  • 178.Campesato LF, Silva APM, Cordeiro L, Correa BR, Navarro FCP, Zanin RF, Marcola M, Inoue LT, Duarte ML, Molgora M, et al.. High IL-1R8 expression in breast tumors promotes tumor growth and contributes to impaired antitumor immunity. Oncotarget. 2017;8:49470–83. doi: 10.18632/oncotarget.17713. PMID:28533483. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 179.Molgora M, Bonavita E, Ponzetta A, Riva F, Barbagallo M, Jaillon S, Popovic B, Bernardini G, Magrini E, Gianni F, et al.. IL-1R8 is a checkpoint in NK cells regulating anti-tumour and anti-viral activity. Nature. 2017;551:110–4. doi: 10.1038/nature24293. PMID:29072292. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 180.Butterfield LH, Zhao F, Lee S, Tarhini AA, Margolin KA, White RL, Atkins MB, Cohen GI, Whiteside TL, Kirkwood JM, et al.. Immune correlates of GM-CSF and melanoma peptide vaccination in a randomized trial for the adjuvant therapy of resected high-risk melanoma (E4697). Clin Cancer Res. 2017;23:5034–43. doi: 10.1158/1078-0432.CCR-16-3016. PMID:28536308. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 181.Slingluff CL Jr., Lee S, Zhao F, Chianese-Bullock KA, Olson WC, Butterfield LH, Whiteside TL, Leming PD, Kirkwood JM. A randomized phase II trial of multiepitope vaccination with melanoma peptides for cytotoxic T cells and helper T cells for patients with metastatic melanoma (E1602). Clin Cancer Res. 2013;19:4228–38. doi: 10.1158/1078-0432.CCR-13-0002. PMID:23653149. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 182.Tsuchiya N, Hosono A, Yoshikawa T, Shoda K, Nosaka K, Shimomura M, Hara J, Nitani C, Manabe A, Yoshihara H, et al.. Phase I study of glypican-3-derived peptide vaccine therapy for patients with refractory pediatric solid tumors. Oncoimmunology. 2017;7:e1377872. doi: 10.1080/2162402X.2017.1377872. PMID:29296538. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 183.Tsuchiya N, Yoshikawa T, Fujinami N, Saito K, Mizuno S, Sawada Y, Endo I, Nakatsura T. Immunological efficacy of glypican-3 peptide vaccine in patients with advanced hepatocellular carcinoma. Oncoimmunology. 2017;6:e1346764. doi: 10.1080/2162402X.2017.1346764. PMID:29123959. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 184.Lawson DH, Lee S, Zhao F, Tarhini AA, Margolin KA, Ernstoff MS, Atkins MB, Cohen GI, Whiteside TL, Butterfield LH, et al.. Randomized, placebo-controlled, phase III trial of yeast-derived granulocyte-macrophage colony-stimulating factor (GM-CSF) versus peptide vaccination versus GM-CSF plus peptide vaccination versus placebo in patients with no evidence of disease after complete surgical resection of locally advanced and/or stage iv melanoma: a trial of the eastern cooperative oncology group-american college of radiology imaging network cancer research group (E4697). J Clin Oncol. 2015;33:4066–76. doi: 10.1200/JCO.2015.62.0500. PMID:26351350. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 185.Spitler LE, Grossbard ML, Ernstoff MS, Silver G, Jacobs M, Hayes FA, Soong SJ. Adjuvant therapy of stage III and IV malignant melanoma using granulocyte-macrophage colony-stimulating factor. J Clin Oncol. 2000;18:1614–21. doi: 10.1200/JCO.2000.18.8.1614. PMID:10764421. [DOI] [PubMed] [Google Scholar]
  • 186.Spitler LE, Weber RW, Allen RE, Meyer J, Cruickshank S, Garbe E, Lin HY, Soong SJ. Recombinant human granulocyte-macrophage colony-stimulating factor (GM-CSF, sargramostim) administered for 3 years as adjuvant therapy of stages II(T4), III, and IV melanoma. J Immunother. 2009;32:632–7. doi: 10.1097/CJI.0b013e3181a7d60d. PMID:19483646. [DOI] [PubMed] [Google Scholar]
  • 187.Slingluff CL, Petroni GR, Yamshchikov GV, Barnd DL, Eastham S, Galavotti H, Patterson JW, Deacon DH, Hibbitts S, Teates D, et al.. Clinical and immunologic results of a randomized phase II trial of vaccination using four melanoma peptides either administered in granulocyte-macrophage colony-stimulating factor in adjuvant or pulsed on dendritic cells. J Clin Oncol. 2003;21:4016–26. doi: 10.1200/JCO.2003.10.005. PMID:14581425. [DOI] [PubMed] [Google Scholar]
  • 188.Hoeller C, Michielin O, Ascierto PA, Szabo Z, Blank CU. Systematic review of the use of granulocyte-macrophage colony-stimulating factor in patients with advanced melanoma. Cancer Immunol Immunother. 2016;65:1015–34. doi: 10.1007/s00262-016-1860-3. PMID:27372293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 189.Weber J, Sondak VK, Scotland R, Phillip R, Wang F, Rubio V, Stuge TB, Groshen SG, Gee C, Jeffery GG, et al.. Granulocyte-macrophage-colony-stimulating factor added to a multipeptide vaccine for resected Stage II melanoma. Cancer. 2003;97:186–200. doi: 10.1002/cncr.11045. PMID:12491520. [DOI] [PubMed] [Google Scholar]
  • 190.Hodi FS, Lee S, McDermott DF, Rao UN, Butterfield LH, Tarhini AA, Leming P, Puzanov I, Shin D, Kirkwood JM. Ipilimumab plus sargramostim vs ipilimumab alone for treatment of metastatic melanoma: a randomized clinical trial. Jama. 2014;312:1744–53. doi: 10.1001/jama.2014.13943. PMID:25369488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 191.Kaufman HL, Ruby CE, Hughes T, Slingluff CL. Current status of granulocyte-macrophage colony-stimulating factor in the immunotherapy of melanoma. J Immunother Cancer. 2014;2:11. doi: 10.1186/2051-1426-2-11. PMID:24971166. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 192.Nicola NA, Wycherley K, Boyd AW, Layton JE, Cary D, Metcalf D. Neutralizing and nonneutralizing monoclonal antibodies to the human granulocyte-macrophage colony-stimulating factor receptor alpha-chain. Blood. 1993;82:1724–31. PMID:8400229. [PubMed] [Google Scholar]
  • 193.Wadhwa M, Bird C, Fagerberg J, Gaines-Das R, Ragnhammar P, Mellstedt H, Thorpe R. Production of neutralizing granulocyte-macrophage colony-stimulating factor (GM-CSF) antibodies in carcinoma patients following GM-CSF combination therapy. Clin Exp Immunol. 1996;104:351–8. doi: 10.1046/j.1365-2249.1996.11704.x. PMID:8625532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 194.Meager A, Cludts I, Thorpe R, Wadhwa M. Are neutralizing anti-GM-CSF autoantibodies present in all healthy persons? Blood. 2010;115:433–4. doi: 10.1182/blood-2009-08-241018. PMID:20075174. [DOI] [PubMed] [Google Scholar]
  • 195.Spitler LE, Cao H, Piironen T, Whiteside TL, Weber RW, Cruickshank S. Biological effects of anti-granulocyte-macrophage colony-stimulating factor (GM-CSF) antibody formation in patients treated with GM-CSF (sargramostim) as adjuvant therapy of melanoma. Am J Clin Oncol. 2017;40:207–13. doi: 10.1097/COC.0000000000000124. PMID:25286079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 196.Bota DA, Alexandru-Abrams D, Pretto C, Hofman FM, Chen TC, Fu B, Carrillo JA, Schijns VE, Stathopoulos A. Use of ERC-1671 vaccine in a patient with recurrent glioblastoma multiforme after progression during bevacizumab therapy: first published report. Perm J. 2015;19:41–6. PMID:25785641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 197.Schijns VE, Pretto C, Devillers L, Pierre D, Hofman FM, Chen TC, Mespouille P, Hantos P, Glorieux P, Bota DA, et al.. First clinical results of a personalized immunotherapeutic vaccine against recurrent, incompletely resected, treatment-resistant glioblastoma multiforme (GBM) tumors, based on combined allo- and auto-immune tumor reactivity. Vaccine. 2015;33:2690–6. doi: 10.1016/j.vaccine.2015.03.095. PMID:25865468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 198.Mercatelli N, Galardi S, Ciafre SA. MicroRNAs as multifaceted players in glioblastoma multiforme. Int Rev Cell Mol Biol. 2017;333:269–323. doi: 10.1016/bs.ircmb.2017.03.002. PMID:28729027. [DOI] [PubMed] [Google Scholar]
  • 199.Perry JR, Laperriere N, O'Callaghan CJ, Brandes AA, Menten J, Phillips C, Fay M, Nishikawa R, Cairncross JG, Roa W, et al.. Short-course radiation plus temozolomide in elderly patients with glioblastoma. N Engl J Med. 2017;376:1027–37. doi: 10.1056/NEJMoa1611977. PMID:28296618. [DOI] [PubMed] [Google Scholar]
  • 200.Bocca P, Carlo ED, Caruana I, Emionite L, Cilli M, Angelis B De, Quintarelli C, Pezzolo A, Raffaghello L, Morandi F, et al.. Bevacizumab-mediated tumor vasculature remodelling improves tumor infiltration and antitumor efficacy of GD2-CAR T cells in a human neuroblastoma preclinical model. Oncoimmunology. 2017;7:e1378843. doi: 10.1080/2162402X.2017.1378843. PMID:29296542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 201.Lapeyre-Prost A, Terme M, Pernot S, Pointet AL, Voron T, Tartour E, Taieb J. Immunomodulatory activity of VEGF in cancer. Int Rev Cell Mol Biol. 2017;330:295–342. doi: 10.1016/bs.ircmb.2016.09.007. PMID:28215534. [DOI] [PubMed] [Google Scholar]
  • 202.Sarhan D, Leijonhufvud C, Murray S, Witt K, Seitz C, Wallerius M, Xie H, Ullen A, Harmenberg U, Lidbrink E, et al.. Zoledronic acid inhibits NFAT and IL-2 signaling pathways in regulatory T cells and diminishes their suppressive function in patients with metastatic cancer. Oncoimmunology. 2017;6:e1338238. doi: 10.1080/2162402X.2017.1338238. PMID:28920001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 203.Hanoteau A, Henin C, Svec D, Bisilliat Donnet C, Denanglaire S, Colau D, Romero P, Leo O, Eynde B Van den, Moser M. Cyclophosphamide treatment regulates the balance of functional/exhausted tumor-specific CD8(+) T cells. Oncoimmunology. 2017;6:e1318234. doi: 10.1080/2162402X.2017.1318234. PMID:28919989. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 204.Ghiringhelli F, Larmonier N, Schmitt E, Parcellier A, Cathelin D, Garrido C, Chauffert B, Solary E, Bonnotte B, Martin F. CD4+CD25+ regulatory T cells suppress tumor immunity but are sensitive to cyclophosphamide which allows immunotherapy of established tumors to be curative. Eur J Immunol. 2004;34:336–44. doi: 10.1002/eji.200324181. PMID:14768038. [DOI] [PubMed] [Google Scholar]
  • 205.Lutsiak ME, Semnani RT, De Pascalis R, Kashmiri SV, Schlom J, Sabzevari H. Inhibition of CD4(+)25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood. 2005;105:2862–8. doi: 10.1182/blood-2004-06-2410. PMID:15591121. [DOI] [PubMed] [Google Scholar]
  • 206.Dutoit V, Migliorini D, Ranzanici G, Marinari E, Widmer V, Lobrinus JA, Momjian S, Costello J, Walker PR, Okada H, et al.. Antigenic expression and spontaneous immune responses support the use of a selected peptide set from the IMA950 glioblastoma vaccine for immunotherapy of grade II and III glioma. Oncoimmunology. 2018;7:e1391972. doi: 10.1080/2162402X.2017.1391972. PMID:29308320. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 207.Dutoit V, Herold-Mende C, Hilf N, Schoor O, Beckhove P, Bucher J, Dorsch K, Flohr S, Fritsche J, Lewandrowski P, et al.. Exploiting the glioblastoma peptidome to discover novel tumour-associated antigens for immunotherapy. Brain. 2012;135:1042–54. doi: 10.1093/brain/aws042. PMID:22418738. [DOI] [PubMed] [Google Scholar]
  • 208.Rampling R, Peoples S, Mulholland PJ, James A, Al-Salihi O, Twelves CJ, McBain C, Jefferies S, Jackson A, Stewart W, et al.. A cancer research UK first time in human phase I trial of IMA950 (novel multipeptide therapeutic vaccine) in patients with newly diagnosed glioblastoma. Clin Cancer Res. 2016;22:4776–85. doi: 10.1158/1078-0432.CCR-16-0506. PMID:27225692. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 209.Srinivasan VM, Ferguson SD, Lee S, Weathers SP, Kerrigan BCP, Heimberger AB. Tumor vaccines for malignant gliomas. Neurotherapeutics. 2017;14:345–57. doi: 10.1007/s13311-017-0522-2. PMID:28389997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 210.Chandran M, Candolfi M, Shah D, Mineharu Y, Yadav VN, Koschmann C, Asad AS, Lowenstein PR, Castro MG. Single vs. combination immunotherapeutic strategies for glioma. Expert Opin Biol Ther. 2017;17:543–54. doi: 10.1080/14712598.2017.1305353. PMID:28286975. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 211.Dutoit V, Migliorini D, Dietrich PY, Walker PR. Immunotherapy of malignant tumors in the brain: how different from other sites? Front Oncol. 2016;6:256. doi: 10.3389/fonc.2016.00256. PMID:28003994. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 212.Nava S, Dossena M, Pogliani S, Pellegatta S, Antozzi C, Baggi F, Gellera C, Pollo B, Parati EA, Finocchiaro G, et al.. An optimized method for manufacturing a clinical scale dendritic cell-based vaccine for the treatment of glioblastoma. PLoS One. 2012;7:e52301. doi: 10.1371/journal.pone.0052301. PMID:23284979. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 213.Chiang CL, Kandalaft LE, Coukos G. Adjuvants for enhancing the immunogenicity of whole tumor cell vaccines. Int Rev Immunol. 2011;30:150–82. doi: 10.3109/08830185.2011.572210. PMID:21557641. [DOI] [PubMed] [Google Scholar]
  • 214.Khong H, Overwijk WW. Adjuvants for peptide-based cancer vaccines. J Immunother Cancer. 2016;4:56. doi: 10.1186/s40425-016-0160-y. PMID:27660710. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 215.Yuan Y, Kos FJ, He TF, Yin HH, Li M, Hardwick N, Zurcher K, Schmolze D, Lee P, Pillai RK, et al.. Complete regression of cutaneous metastases with systemic immune response in a patient with triple negative breast cancer receiving p53MVA vaccine with pembrolizumab. Oncoimmunology. 2017;6:e1363138. doi: 10.1080/2162402X.2017.1363138. PMID:29209571. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 216.Simeone E, Grimaldi AM, Festino L, Giannarelli D, Vanella V, Palla M, Curvietto M, Esposito A, Palmieri G, Mozzillo N, et al.. Correlation between previous treatment with BRAF inhibitors and clinical response to pembrolizumab in patients with advanced melanoma. Oncoimmunology. 2017;6:e1283462. doi: 10.1080/2162402X.2017.1283462. PMID:28405510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 217.Sullivan RJ, Flaherty KT. Immunotherapy: Anti-PD-1 therapies-a new first-line option in advanced melanoma. Nat Rev Clin Oncol. 2015;12:625–6. doi: 10.1038/nrclinonc.2015.170. PMID:26416151. [DOI] [PubMed] [Google Scholar]
  • 218.Eggermont AM, Robert C. Melanoma: smart therapeutic strategies in immuno-oncology. Nat Rev Clin Oncol. 2014;11:181–2. doi: 10.1038/nrclinonc.2014.36. PMID:24590131. [DOI] [PubMed] [Google Scholar]
  • 219.Long GV, Atkinson V, Cebon JS, Jameson MB, Fitzharris BM, McNeil CM, Hill AG, Ribas A, Atkins MB, Thompson JA, et al.. Standard-dose pembrolizumab in combination with reduced-dose ipilimumab for patients with advanced melanoma (KEYNOTE-029): an open-label, phase 1b trial. Lancet Oncol. 2017;18:1202–10. doi: 10.1016/S1470-2045(17)30428-X. PMID:28729151. [DOI] [PubMed] [Google Scholar]
  • 220.Atkins MB, Hodi FS, Thompson JA, McDermott DF, Hwu W-J, Lawrence DP, Dawson NA, Wong DJL, Bhatia S, James M, et al.. Pembrolizumab (pembro) plus ipilimumab (ipi) or pegylated interferon alfa-2b (PEG-IFN) for advanced melanoma or renal cell carcinoma (RCC). J. Clin. Oncol. 2016;34:3013. [Google Scholar]
  • 221.Summers J, Cohen MH, Keegan P, Pazdur R. FDA drug approval summary: bevacizumab plus interferon for advanced renal cell carcinoma. Oncologist. 2010;15:104–11. doi: 10.1634/theoncologist.2009-0250. PMID:20061402. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 222.Melichar B, Bracarda S, Matveev V, Alekseev B, Ivanov S, Zyryanov A, Janciauskiene R, Fernebro E, Mulders P, Osborne S, et al.. A multinational phase II trial of bevacizumab with low-dose interferon-alpha2 a as first-line treatment of metastatic renal cell carcinoma: BEVLiN. Ann Oncol. 2013;24:2396–402. doi: 10.1093/annonc/mdt228. PMID:23803225. [DOI] [PubMed] [Google Scholar]
  • 223.Bracarda S, Bellmunt J, Melichar B, Negrier S, Bajetta E, Ravaud A, Sneller V, Escudier B. Overall survival in patients with metastatic renal cell carcinoma initially treated with bevacizumab plus interferon-alpha2 a and subsequent therapy with tyrosine kinase inhibitors: a retrospective analysis of the phase III AVOREN trial. BJU Int. 2011;107:214–9. doi: 10.1111/j.1464-410X.2010.09707.x. PMID:20942831. [DOI] [PubMed] [Google Scholar]
  • 224.Escudier B, Pluzanska A, Koralewski P, Ravaud A, Bracarda S, Szczylik C, Chevreau C, Filipek M, Melichar B, Bajetta E, et al.. Bevacizumab plus interferon alfa-2 a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet. 2007;370:2103–11. doi: 10.1016/S0140-6736(07)61904-7. PMID:18156031. [DOI] [PubMed] [Google Scholar]
  • 225.Escudier B, Bellmunt J, Negrier S, Bajetta E, Melichar B, Bracarda S, Ravaud A, Golding S, Jethwa S, Sneller V. Phase III trial of bevacizumab plus interferon alfa-2 a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol. 2010;28:2144–50. doi: 10.1200/JCO.2009.26.7849. PMID:20368553. [DOI] [PubMed] [Google Scholar]
  • 226.Rini BI, Bellmunt J, Clancy J, Wang K, Niethammer AG, Hariharan S, Escudier B. Randomized phase III trial of temsirolimus and bevacizumab versus interferon alfa and bevacizumab in metastatic renal cell carcinoma: INTORACT trial. J Clin Oncol. 2014;32:752–9. doi: 10.1200/JCO.2013.50.5305. PMID:24297945. [DOI] [PubMed] [Google Scholar]
  • 227.Rini BI, Halabi S, Rosenberg JE, Stadler WM, Vaena DA, Ou SS, Archer L, Atkins JN, Picus J, Czaykowski P, et al.. Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol. 2008;26:5422–8. doi: 10.1200/JCO.2008.16.9847. PMID:18936475. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 228.Donskov F, Jensen NV, Smidt-Hansen T, Brondum L, Geertsen PF. A randomized phase II trial of interleukin-2/interferon-α plus bevacizumab versus interleukin-2/interferon-α in metastatic renal cell carcinoma (mRCC): Results from the Danish Renal Cancer Group (DARENCA) study 1. J. Clin. Oncol. 2016;34:4563. [DOI] [PubMed] [Google Scholar]
  • 229.Zhang F, Yang J, Li H, Liu M, Zhang J, Zhao L, Wang L, LingHu R, Feng F, Gao X, et al.. Combating rituximab resistance by inducing ceramide/lysosome-involved cell death through initiation of CD20-TNFR1 co-localization. Oncoimmunology. 2016;5:e1143995. doi: 10.1080/2162402X.2016.1143995. PMID:27467962. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 230.Souza-Fonseca-Guimaraes F, Blake SJ, Makkouk A, Chester C, Kohrt HE, Smyth MJ. Anti-CD137 enhances anti-CD20 therapy of systemic B-cell lymphoma with altered immune homeostasis but negligible toxicity. Oncoimmunology. 2016;5:e1192740. doi: 10.1080/2162402X.2016.1192740. PMID:27622048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 231.Galluzzi L, Vacchelli E, Fridman WH, Galon J, Sautes-Fridman C, Tartour E, Zucman-Rossi J, Zitvogel L, Kroemer G. Trial watch: monoclonal antibodies in cancer therapy. Oncoimmunology. 2012;1:28–37. doi: 10.4161/onci.1.1.17938. PMID:22720209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 232.Kimby E, Ostenstad B, Brown P, Hagberg H, Erlanson M, Holte H, Linden O, Johansson AS, Ahlgren T, Wader K, et al.. Two courses of four weekly infusions of rituximab with or without interferon-alpha2 a: final results from a randomized phase III study in symptomatic indolent B-cell lymphomas. Leuk Lymphoma. 2015;56:2598–607. doi: 10.3109/10428194.2015.1014363. PMID:25686644. [DOI] [PubMed] [Google Scholar]
  • 233.Cai Q, Chen Y, Zou D, Zhang L, Badillo M, Zhou S, Lopez E, Jiang W, Huang H, Lin T, et al.. Clinical outcomes of a novel combination of lenalidomide and rituximab followed by stem cell transplantation for relapsed/refractory aggressive B-cell non-hodgkin lymphoma. Oncotarget. 2014;5:7368–80. doi: 10.18632/oncotarget.2255. PMID:25228589. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 234.Davis TA, Maloney DG, Grillo-Lopez AJ, White CA, Williams ME, Weiner GJ, Dowden S, Levy R. Combination immunotherapy of relapsed or refractory low-grade or follicular non-Hodgkin's lymphoma with rituximab and interferon-alpha-2 a. Clin Cancer Res. 2000;6:2644–52. PMID:10914705. [PubMed] [Google Scholar]
  • 235.Kimby E, Jurlander J, Geisler C, Hagberg H, Holte H, Lehtinen T, Ostenstad B, Hansen M, Osterborg A, Linden O, et al.. Long-term molecular remissions in patients with indolent lymphoma treated with rituximab as a single agent or in combination with interferon alpha-2 a: a randomized phase II study from the Nordic Lymphoma Group. Leuk Lymphoma. 2008;49:102–12. doi: 10.1080/10428190701704647. PMID:18203019. [DOI] [PubMed] [Google Scholar]
  • 236.Kim HS, Chen YC, Nor F, Warner KA, Andrews A, Wagner VP, Zhang Z, Zhang Z, Martins MD, Pearson AT, et al.. Endothelial-derived interleukin-6 induces cancer stem cell motility by generating a chemotactic gradient towards blood vessels. Oncotarget. 2017;8:100339–52. doi: 10.18632/oncotarget.22225. PMID:29245982. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 237.Kampan NC, Xiang SD, McNally OM, Stephens AN, Quinn MA, Plebanski M. Immunotherapeutic Interleukin-6 or Interleukin-6 receptor blockade in cancer: challenges and opportunities. Curr Med Chem. 2017. doi: 10.2174/0929867324666170712160621. PMID:28707587. [DOI] [PubMed] [Google Scholar]
  • 238.Tsukamoto H, Fujieda K, Hirayama M, Ikeda T, Yuno A, Matsumura K, Fukuma D, Araki K, Mizuta H, Nakayama H, et al.. Soluble IL6R expressed by myeloid cells reduces tumor-specific th1 differentiation and drives tumor progression. Cancer Res. 2017;77:2279–91. doi: 10.1158/0008-5472.CAN-16-2446. PMID:28235765. [DOI] [PubMed] [Google Scholar]
  • 239.Isobe A, Sawada K, Kinose Y, Ohyagi-Hara C, Nakatsuka E, Makino H, Ogura T, Mizuno T, Suzuki N, Morii E, et al.. Interleukin 6 receptor is an independent prognostic factor and a potential therapeutic target of ovarian cancer. PLoS One. 2015;10:e0118080. doi: 10.1371/journal.pone.0118080. PMID:25658637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 240.Dijkgraaf EM, Santegoets SJ, Reyners AK, Goedemans R, Wouters MC, Kenter GG, Erkel AR van, Poelgeest MI van, Nijman HW, Hoeven JJ van der, et al.. A phase I trial combining carboplatin/doxorubicin with tocilizumab, an anti-IL-6R monoclonal antibody, and interferon-alpha2b in patients with recurrent epithelial ovarian cancer. Ann Oncol. 2015;26:2141–9. doi: 10.1093/annonc/mdv309. PMID:26216383. [DOI] [PubMed] [Google Scholar]
  • 241.Grunwald V, Lin X, Kalanovic D, Simantov R. Early tumour shrinkage: a tool for the detection of early clinical activity in metastatic renal cell carcinoma. Eur Urol. 2016;70:1006–15. doi: 10.1016/j.eururo.2016.05.010. PMID:27238653. [DOI] [PubMed] [Google Scholar]
  • 242.Galluzzi L, Baehrecke EH, Ballabio A, Boya P, Bravo-San Pedro JM, Cecconi F, Choi AM, Chu CT, Codogno P, Colombo MI, et al.. Molecular definitions of autophagy and related processes. Embo j. 2017;36:1811–36. doi: 10.15252/embj.201796697. PMID:28596378. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 243.Chen L, Zhou Y, Sun Q, Zhou J, Pan H, Sui X. Regulation of autophagy by MiRNAs and their emerging roles in tumorigenesis and cancer treatment. Int Rev Cell Mol Biol. 2017;334:1–26. doi: 10.1016/bs.ircmb.2017.03.003. PMID:28838537. [DOI] [PubMed] [Google Scholar]
  • 244.Ghidini M, Petrelli F, Ghidini A, Tomasello G, Hahne JC, Passalacqua R, Barni S. Clinical development of mTor inhibitors for renal cancer. Expert Opin Investig Drugs. 2017;26:1229–37. doi: 10.1080/13543784.2017.1384813. PMID:28952411. [DOI] [PubMed] [Google Scholar]
  • 245.Schulze M, Stock C, Zaccagnini M, Teber D, Rassweiler JJ. Temsirolimus. Recent Results Cancer Res. 2014;201:393–403. doi: 10.1007/978-3-642-54490-3_24. PMID:24756806. [DOI] [PubMed] [Google Scholar]
  • 246.Galluzzi L, Bravo-San Pedro JM, Levine B, Green DR, Kroemer G. Pharmacological modulation of autophagy: therapeutic potential and persisting obstacles. Nat Rev Drug Discov. 2017;16:487–511. doi: 10.1038/nrd.2017.22. PMID:28529316. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 247.Galluzzi L, Bravo-San Pedro JM, Demaria S, Formenti SC, Kroemer G. Activating autophagy to potentiate immunogenic chemotherapy and radiation therapy. Nat Rev Clin Oncol. 2017;14:247–58. doi: 10.1038/nrclinonc.2016.183. PMID:27845767. [DOI] [PubMed] [Google Scholar]
  • 248.Charych DH, Hoch U, Langowski JL, Lee SR, Addepalli MK, Kirk PB, Sheng D, Liu X, Sims PW, VanderVeen LA, et al.. NKTR-214, an engineered cytokine with biased IL2 receptor binding, increased tumor exposure, and marked efficacy in mouse tumor models. Clin Cancer Res. 2016;22:680–90. doi: 10.1158/1078-0432.CCR-15-1631. PMID:26832745. [DOI] [PubMed] [Google Scholar]
  • 249.Charych D, Khalili S, Dixit V, Kirk P, Chang T, Langowski J, Rubas W, Doberstein SK, Eldon M, Hoch U, et al.. Modeling the receptor pharmacology, pharmacokinetics, and pharmacodynamics of NKTR-214, a kinetically-controlled interleukin-2 (IL2) receptor agonist for cancer immunotherapy. PLoS One. 2017;12:e0179431. doi: 10.1371/journal.pone.0179431. PMID:28678791. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 250.Villarreal DO, Allegrezza MJ, Smith MA, Chin D, Luistro LL, Snyder LA. Targeting of CD122 enhances antitumor immunity by altering the tumor immune environment. Oncotarget. 2017;8:109151–60. doi: 10.18632/oncotarget.22642. PMID:29312597. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 251.Kaderbhai CG, Richard C, Fumet JD, Aarnink A, Ortiz-Cuaran S, Perol M, Foucher P, Coudert B, Favier L, Lagrange A, et al.. Response to first line chemotherapy regimen is associated with efficacy of nivolumab in non-small-cell lung cancer. Oncoimmunology. 2017;6:e1339856. doi: 10.1080/2162402X.2017.1339856. PMID:28932641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 252.Eissler N, Mao Y, Brodin D, Reutersward P, Andersson Svahn H, Johnsen JI, Kiessling R, Kogner P. Regulation of myeloid cells by activated T cells determines the efficacy of PD-1 blockade. Oncoimmunology. 2016;5:e1232222. doi: 10.1080/2162402X.2016.1232222. PMID:28123870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 253.Borghaei H, Paz-Ares L, Horn L, Spigel DR, Steins M, Ready NE, Chow LQ, Vokes EE, Felip E, Holgado E, et al.. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39. doi: 10.1056/NEJMoa1507643. PMID:26412456. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 254.Motzer RJ, Escudier B, McDermott DF, George S, Hammers HJ, Srinivas S, Tykodi SS, Sosman JA, Procopio G, Plimack ER, et al.. Nivolumab versus everolimus in advanced renal-cell carcinoma. N Engl J Med. 2015;373:1803–13. doi: 10.1056/NEJMoa1510665. PMID:26406148. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 255.Diab A, Tannir NM, Bernatchez C, Haymaker CL, Bentebibel SE, Curti BD, Wong MKK, Gergel I, Tagliaferri MA, Zalevsky J, et al.. A phase 1/2 study of a novel IL-2 cytokine, NKTR-214, and nivolumab in patients with select locally advanced or metastatic solid tumors. J. Clin. Oncol. 2017;35:e14040–e. [Google Scholar]
  • 256.Tarhini AA, Lin Y, Lin HM, Vallabhaneni P, Sander C, LaFramboise W, Hamieh L. Expression profiles of immune-related genes are associated with neoadjuvant ipilimumab clinical benefit. Oncoimmunology. 2017;6:e1231291. doi: 10.1080/2162402X.2016.1231291. PMID:28344862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 257.Hodi FS, O'Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB, Gonzalez R, Robert C, Schadendorf D, Hassel JC, et al.. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363:711–23. doi: 10.1056/NEJMoa1003466. PMID:20525992. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 258.Robert C, Thomas L, Bondarenko I, O'Day S, Weber J, Garbe C, Lebbe C, Baurain JF, Testori A, Grob JJ, et al.. Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. N Engl J Med. 2011;364:2517–26. doi: 10.1056/NEJMoa1104621. PMID:21639810. [DOI] [PubMed] [Google Scholar]
  • 259.Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S, Mu Z, Rasalan T, Adamow M, Ritter E, et al.. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366:925–31. doi: 10.1056/NEJMoa1112824. PMID:22397654. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 260.Tarhini AA, Lee SJ, Rao UNM, Nagarajan A, Albertini MR, Mitchell JW, Wong SJ, Taylor MA, Laudi N, Truong PV, et al.. A randomized phase II study of ipilimumab at 3 (ipi3) or 10 mg/kg (ipi10) alone or in combination with high dose interferon-alfa (HDI) in advanced melanoma (E3611). J. Clin. Oncol. 2017;35:9542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 261.Fong L, Hou Y, Rivas A, Benike C, Yuen A, Fisher GA, Davis MM, Engleman EG. Altered peptide ligand vaccination with Flt3 ligand expanded dendritic cells for tumor immunotherapy. Proc Natl Acad Sci U S A. 2001;98:8809–14. doi: 10.1073/pnas.141226398. PMID:11427731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 262.Chakravarty PK, Alfieri A, Thomas EK, Beri V, Tanaka KE, Vikram B, Guha C. Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res. 1999;59:6028–32. PMID: 1062678429327110 [PubMed] [Google Scholar]
  • 263.Nguyen R, Houston J, Chan WK, Finkelstein D, Dyer MA. The role of interleukin-2, all-trans retinoic acid, and natural killer cells: surveillance mechanisms in anti-GD2 antibody therapy in neuroblastoma. Cancer Immunol Immunother. 2018. doi: 10.1007/s00262-017-2108-6. PMID:29327110. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 264.Hoseini SS, Dobrenkov K, Pankov D, Xu XL, Cheung NK. Bispecific antibody does not induce T-cell death mediated by chimeric antigen receptor against disialoganglioside GD2. Oncoimmunology. 2017;6:e1320625. doi: 10.1080/2162402X.2017.1320625. PMID:28680755. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 265.Fleurence J, Fougeray S, Bahri M, Cochonneau D, Clemenceau B, Paris F, Heczey A, Birkle S. Targeting O-acetyl-GD2 ganglioside for cancer immunotherapy. J Immunol Res. 2017;2017:5604891. doi: 10.1155/2017/5604891. PMID:28154831. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 266.Sait S, Modak S. Anti-GD2 immunotherapy for neuroblastoma. Expert Rev Anticancer Ther. 2017;17:889–904. doi: 10.1080/14737140.2017.1364995. PMID:28780888. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 267.Kroesen M, Bull C, Gielen PR, Brok IC, Armandari I, Wassink M, Looman MW, Boon L, Brok MH den, Hoogerbrugge PM, et al.. Anti-GD2 mAb and vorinostat synergize in the treatment of neuroblastoma. Oncoimmunology. 2016;5:e1164919. doi: 10.1080/2162402X.2016.1164919. PMID:27471639. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 268.Borch TH, Engell-Noerregaard L, Zeeberg Iversen T, Ellebaek E, Met O, Hansen M, Andersen MH, Thor Straten P, Svane IM. mRNA-transfected dendritic cell vaccine in combination with metronomic cyclophosphamide as treatment for patients with advanced malignant melanoma. Oncoimmunology. 2016;5:e1207842. doi: 10.1080/2162402X.2016.1207842. PMID:27757300. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 269.Generali D, Bates G, Berruti A, Brizzi MP, Campo L, Bonardi S, Bersiga A, Allevi G, Milani M, Aguggini S, et al.. Immunomodulation of FOXP3+ regulatory T cells by the aromatase inhibitor letrozole in breast cancer patients. Clin Cancer Res. 2009;15:1046–51. doi: 10.1158/1078-0432.CCR-08-1507. PMID:19188178. [DOI] [PubMed] [Google Scholar]
  • 270.Le DT, Jaffee EM. Regulatory T-cell modulation using cyclophosphamide in vaccine approaches: a current perspective. Cancer Res. 2012;72:3439–44. doi: 10.1158/0008-5472.CAN-11-3912. PMID:22761338. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 271.Tongu M, Harashima N, Monma H, Inao T, Yamada T, Kawauchi H, Harada M. Metronomic chemotherapy with low-dose cyclophosphamide plus gemcitabine can induce anti-tumor T cell immunity in vivo. Cancer Immunol Immunother. 2013;62:383–91. doi: 10.1007/s00262-012-1343-0. PMID:22926062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 272.Dai Y, Chen S, Kramer LB, Funk VL, Dent P, Grant S. Interactions between bortezomib and romidepsin and belinostat in chronic lymphocytic leukemia cells. Clin Cancer Res. 2008;14:549–58. doi: 10.1158/1078-0432.CCR-07-1934. PMID:18223231. [DOI] [PubMed] [Google Scholar]
  • 273.Piekarz RL, Bates SE. Epigenetic modifiers: basic understanding and clinical development. Clin Cancer Res. 2009;15:3918–26. doi: 10.1158/1078-0432.CCR-08-2788. PMID:19509169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 274.Hermine O, Bouscary D, Gessain A, Turlure P, Leblond V, Franck N, Buzyn-Veil A, Rio B, Macintyre E, Dreyfus F, et al.. Brief report: treatment of adult T-cell leukemia-lymphoma with zidovudine and interferon alfa. N Engl J Med. 1995;332:1749–51. doi: 10.1056/NEJM199506293322604. PMID:7760891. [DOI] [PubMed] [Google Scholar]
  • 275.Trevisani F, Brandi G, Garuti F, Barbera MA, Tortora R, Gardini AC, Granito A, Tovoli F, De Lorenzo S, Inghilesi AL, et al.. Metronomic capecitabine as second-line treatment for hepatocellular carcinoma after sorafenib discontinuation. J Cancer Res Clin Oncol. 2018;144:403–414. doi: 10.1007/s00432-017-2556-6. PMID:29249005. [DOI] [PubMed] [Google Scholar]
  • 276.Patt Y, Rojas-Hernandez C, Fekrazad HM, Bansal P, Lee FC. Phase II trial of sorafenib in combination with capecitabine in patients with hepatocellular carcinoma: INST 08–20. Oncologist. 2017;22:1158–e116. doi: 10.1634/theoncologist.2017-0168. PMID:28687627. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 277.Shime H, Maruyama A, Yoshida S, Takeda Y, Matsumoto M, Seya T. Toll-like receptor 2 ligand and interferon-gamma suppress anti-tumor T cell responses by enhancing the immunosuppressive activity of monocytic myeloid-derived suppressor cells. Oncoimmunology. 2017;7:e1373231. doi: 10.1080/2162402X.2017.1373231. PMID:29296526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 278.Nirschl CJ, Suarez-Farinas M, Izar B, Prakadan S, Dannenfelser R, Tirosh I, Liu Y, Zhu Q, Devi KSP, Carroll SL, et al.. IFNgamma-Dependent tissue-immune homeostasis is co-opted in the tumor microenvironment. Cell. 2017;170:127–41 e15. doi: 10.1016/j.cell.2017.06.016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 279.Kaufman HL, Russell J, Hamid O, Bhatia S, Terheyden P, D'Angelo SP, Shih KC, Lebbe C, Linette GP, Milella M, et al.. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial. Lancet Oncol. 2016;17:1374–85. doi: 10.1016/S1470-2045(16)30364-3. PMID:27592805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 280.Gulley JL, Rajan A, Spigel DR, Iannotti N, Chandler J, Wong DJL, Leach J, Edenfield WJ, Wang D, Grote HJ, et al.. Avelumab for patients with previously treated metastatic or recurrent non-small-cell lung cancer (JAVELIN Solid Tumor): dose-expansion cohort of a multicentre, open-label, phase 1b trial. Lancet Oncol. 2017;18:599–610. doi: 10.1016/S1470-2045(17)30240-1. PMID:28373005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 281.Heery CR, O'Sullivan-Coyne G, Madan RA, Cordes L, Rajan A, Rauckhorst M, Lamping E, Oyelakin I, Marte JL, Lepone LM, et al.. Avelumab for metastatic or locally advanced previously treated solid tumours (JAVELIN Solid Tumor): a phase 1 a, multicohort, dose-escalation trial. Lancet Oncol. 2017;18:587–98. doi: 10.1016/S1470-2045(17)30239-5. PMID:28373007. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 282.Vanella V, Festino L, Strudel M, Simeone E, Grimaldi AM, Ascierto PA. PD-L1 inhibitors in the pipeline: promise and progress. Oncoimmunology. 2017;7:e1365209. doi: 10.1080/2162402X.2017.1365209. PMID:29296516. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 283.Schadendorf D, Nghiem P, Bhatia S, Hauschild A, Saiag P, Mahnke L, Hariharan S, Kaufman HL. Immune evasion mechanisms and immune checkpoint inhibition in advanced merkel cell carcinoma. Oncoimmunology. 2017;6:e1338237. doi: 10.1080/2162402X.2017.1338237. PMID:29123950. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 284.Sander FE, Nilsson M, Rydstrom A, Aurelius J, Riise RE, Movitz C, Bernson E, Kiffin R, Stahlberg A, Brune M, et al.. Role of regulatory T cells in acute myeloid leukemia patients undergoing relapse-preventive immunotherapy. Cancer Immunol Immunother. 2017;66:1473–84. doi: 10.1007/s00262-017-2040-9. PMID:28721449. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 285.Loupakis F, Cremolini C, Masi G, Lonardi S, Zagonel V, Salvatore L, Cortesi E, Tomasello G, Ronzoni M, Spadi R, et al.. Initial therapy with FOLFOXIRI and bevacizumab for metastatic colorectal cancer. N Engl J Med. 2014;371:1609–18. doi: 10.1056/NEJMoa1403108. PMID:25337750. [DOI] [PubMed] [Google Scholar]
  • 286.Kepp O, Menger L, Vacchelli E, Locher C, Adjemian S, Yamazaki T, Martins I, Sukkurwala AQ, Michaud M, Senovilla L, et al.. Crosstalk between ER stress and immunogenic cell death. Cytokine Growth Factor Rev. 2013;24:311–8. doi: 10.1016/j.cytogfr.2013.05.001. PMID:23787159. [DOI] [PubMed] [Google Scholar]
  • 287.Iyer SP, Hunt CR, Pandita TK. Cross talk between radiation and immunotherapy: the twain shall meet. Radiat Res. 2017. doi: 10.1667/RR14941.1. PMID:29261410. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 288.Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, Yokoi T, Chiappori A, Lee KH, Wit M de, et al.. Durvalumab after chemoradiotherapy in stage III non-small-cell lung cancer. N Engl J Med. 2017;377:1919–29. doi: 10.1056/NEJMoa1709937. PMID:28885881. [DOI] [PubMed] [Google Scholar]
  • 289.Oweida A, Lennon S, Calame D, Korpela S, Bhatia S, Sharma J, Graham C, Binder D, Serkova N, Raben D, et al.. Ionizing radiation sensitizes tumors to PD-L1 immune checkpoint blockade in orthotopic murine head and neck squamous cell carcinoma. Oncoimmunology. 2017;6:e1356153. doi: 10.1080/2162402X.2017.1356153. PMID:29123967. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 290.Davison K, Chen BE, Kukreti V, Couban S, Benger A, Berinstein NL, Kaizer L, Desjardins P, Mangel J, Zhu L, et al.. Treatment outcomes for older patients with relapsed/refractory aggressive lymphoma receiving salvage chemotherapy and autologous stem cell transplantation are similar to younger patients: a subgroup analysis from the phase III CCTG LY.12 trial. Ann Oncol. 2017;28:622–7. PMID:27993811. [DOI] [PubMed] [Google Scholar]
  • 291.Elsayad K, Susek KH, Eich HT. Total skin electron beam therapy as part of multimodal treatment strategies for primary cutaneous T-cell lymphoma. Oncol Res Treat. 2017;40:244–52. doi: 10.1159/000475634. PMID:28448985. [DOI] [PubMed] [Google Scholar]
  • 292.Elsayad K, Kriz J, Moustakis C, Scobioala S, Reinartz G, Haverkamp U, Willich N, Weishaupt C, Stadler R, Sunderkotter C, et al.. Total skin electron beam for primary cutaneous t-cell lymphoma. Int J Radiat Oncol Biol Phys. 2015;93:1077–86. doi: 10.1016/j.ijrobp.2015.08.041. PMID:26581145. [DOI] [PubMed] [Google Scholar]
  • 293.Stilgenbauer S, Dohner H. Campath-1 H-induced complete remission of chronic lymphocytic leukemia despite p53 gene mutation and resistance to chemotherapy. N Engl J Med. 2002;347:452–3. doi: 10.1056/NEJM200208083470619. PMID:12167696. [DOI] [PubMed] [Google Scholar]
  • 294.Elter T, Gercheva-Kyuchukova L, Pylylpenko H, Robak T, Jaksic B, Rekhtman G, Kyrcz-Krzemien S, Vatutin M, Wu J, Sirard C, et al.. Fludarabine plus alemtuzumab versus fludarabine alone in patients with previously treated chronic lymphocytic leukaemia: a randomised phase 3 trial. Lancet Oncol. 2011;12:1204–13. doi: 10.1016/S1470-2045(11)70242-X. PMID:21992852. [DOI] [PubMed] [Google Scholar]
  • 295.Clifton GT, Litton JK, Arrington K, Ponniah S, Ibrahim NK, Gall V, Alatrash G, Peoples GE, Mittendorf EA. Results of a phase Ib trial of combination immunotherapy with a CD8+ T cell eliciting vaccine and trastuzumab in breast cancer patients. Ann Surg Oncol. 2017;24:2161–7. doi: 10.1245/s10434-017-5844-0. PMID:28315060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 296.Mittendorf EA, Ardavanis A, Litton JK, Shumway NM, Hale DF, Murray JL, Perez SA, Ponniah S, Baxevanis CN, Papamichail M, et al.. Primary analysis of a prospective, randomized, single-blinded phase II trial evaluating the HER2 peptide GP2 vaccine in breast cancer patients to prevent recurrence. Oncotarget. 2016;7:66192–201. doi: 10.18632/oncotarget.11751. PMID:27589688. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 297.Weng J, Moriarty KE, Baio FE, Chu F, Kim SD, He J, Jie Z, Xie X, Ma W, Qian J, et al.. IL-15 enhances the antitumor effect of human antigen-specific CD8(+) T cells by cellular senescence delay. Oncoimmunology. 2016;5:e1237327. doi: 10.1080/2162402X.2016.1237327. PMID:28123872. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 298.Chen S, Huang Q, Liu J, Xing J, Zhang N, Liu Y, Wang Z, Li Q. A targeted IL-15 fusion protein with potent anti-tumor activity. Cancer Biol Ther. 2015;16:1415–21. doi: 10.1080/15384047.2015.1071739. PMID:26176990. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 299.Galluzzi L, Martin P. CARs on a highway with roadblocks. Oncoimmunology. 2017;6:e1388486. doi: 10.1080/2162402X.2017.1388486. PMID:29209574. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 300.Yamazaki T, Galluzzi L. Blinatumomab bridges the gap between leukemia and immunity. Oncoimmunology. 2017;6:e1358335. doi: 10.1080/2162402X.2017.1358335. PMID:29147620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 301.Bezu L, Gomes-de-Silva LC, Dewitte H, Breckpot K, Fucikova J, Spisek R, Galluzzi L, Kepp O, Kroemer G. Combinatorial strategies for the induction of immunogenic cell death. Front Immunol. 2015;6:187. PMID:25964783. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 302.Puri RK, Hoon DS, Leland P, Snoy P, Rand RW, Pastan I, Kreitman RJ. Preclinical development of a recombinant toxin containing circularly permuted interleukin 4 and truncated Pseudomonas exotoxin for therapy of malignant astrocytoma. Cancer Res. 1996;56:5631–7. PMID:8971168. [PubMed] [Google Scholar]
  • 303.Husain SR, Behari N, Kreitman RJ, Pastan I, Puri RK. Complete regression of established human glioblastoma tumor xenograft by interleukin-4 toxin therapy. Cancer Res. 1998;58:3649–53. PMID:9721874. [PubMed] [Google Scholar]
  • 304.Rand RW, Kreitman RJ, Patronas N, Varricchio F, Pastan I, Puri RK. Intratumoral administration of recombinant circularly permuted interleukin-4-Pseudomonas exotoxin in patients with high-grade glioma. Clin Cancer Res. 2000;6:2157–65. PMID:10873064. [PubMed] [Google Scholar]
  • 305.Weber F, Asher A, Bucholz R, Berger M, Prados M, Chang S, Bruce J, Hall W, Rainov NG, Westphal M, et al.. Safety, tolerability, and tumor response of IL4-Pseudomonas exotoxin (NBI-3001) in patients with recurrent malignant glioma. J Neurooncol. 2003;64:125–37. doi: 10.1007/BF02700027. PMID:12952293. [DOI] [PubMed] [Google Scholar]
  • 306.Garland L, Gitlitz B, Ebbinghaus S, Pan H, Haan H de, Puri RK, Von Hoff D, Figlin R. Phase I trial of intravenous IL-4 pseudomonas exotoxin protein (NBI-3001) in patients with advanced solid tumors that express the IL-4 receptor. J Immunother. 2005;28:376–81. doi: 10.1097/01.cji.0000162782.86008.mL. PMID:16000956. [DOI] [PubMed] [Google Scholar]
  • 307.Joshi BH, Suzuki A, Fujisawa T, Leland P, Varrichio F, Lababidi S, Lloyd R, Kasperbauer J, Puri RK. Identification, characterization, and targeting of IL-4 receptor by IL-4-Pseudomonas exotoxin in mouse models of anaplastic thyroid cancer. Discov Med. 2015;20:273–84. PMID:26645899. [PubMed] [Google Scholar]
  • 308.Rosenberg SA, Restifo NP. Adoptive cell transfer as personalized immunotherapy for human cancer. Science. 2015;348:62–8. doi: 10.1126/science.aaa4967. PMID:25838374. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 309.Lim WA, June CH. The principles of engineering immune cells to treat cancer. Cell. 2017;168:724–40. doi: 10.1016/j.cell.2017.01.016. PMID:28187291. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 310.Sadelain M. CD19 CAR T cells. Cell. 2017;171:1471. doi: 10.1016/j.cell.2017.12.002. PMID:29245005. [DOI] [PubMed] [Google Scholar]
  • 311.Watanabe N, Bajgain P, Sukumaran S, Ansari S, Heslop HE, Rooney CM, Brenner MK, Leen AM, Vera JF. Fine-tuning the CAR spacer improves T-cell potency. Oncoimmunology. 2016;5:e1253656. doi: 10.1080/2162402X.2016.1253656. PMID:28180032. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 312.Lohmueller JJ, Ham JD, Kvorjak M, Finn OJ. mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology. 2017;7:e1368604. doi: 10.1080/2162402X.2017.1368604. PMID:29296519. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 313.Hurton LV, Singh H, Najjar AM, Switzer KC, Mi T, Maiti S, Olivares S, Rabinovich B, Huls H, Forget MA, et al.. Tethered IL-15 augments antitumor activity and promotes a stem-cell memory subset in tumor-specific T cells. Proc Natl Acad Sci U S A. 2016;113:E7788–e97. doi: 10.1073/pnas.1610544113. PMID:27849617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 314.Liu E, Tong Y, Dotti G, Shaim H, Savoldo B, Mukherjee M, Orange J, Wan X, Lu X, Reynolds A, et al.. Cord blood NK cells engineered to express IL-15 and a CD19-targeted CAR show long-term persistence and potent antitumor activity. Leukemia. 2017. doi: 10.1038/leu.2017.226. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 315.Le DT, Crocenzi TS, Uram JN, Lutz ER, Laheru DA, Sugar EA, Vonderheide RH, Fisher GA, Ko AH, Murphy A, et al.. Randomized phase 2 study of the safety, efficacy, and immune response of GVAX pancreas (with cyclophosphamide) and CRS-207 with or without nivolumab in patients with previously treated metastatic pancreatic adenocarcinoma (STELLAR). J. Clin. Oncol. 2016;34:TPS4153–TPS. doi: 10.1200/jco.2016.34.4_suppl.tps486. [DOI] [Google Scholar]
  • 316.Anderson PM, Ghisoli M, Barve MA, Gill JB, Wexler LH, DeAngulo G, Neville K, Manning L, Wallraven G, Senzer NN, et al.. A bi-shRNAfurin and GMCSF engineered autologous tumor cell immunotherapy vs. gemcitabine + docetaxel for Ewing sarcoma and with cryoablation in Ewing family tumors. J. Clin. Oncol. 2017;35:TPS11079–TPS. [Google Scholar]
  • 317.Rekoske BT, Olson BM, McNeel DG. Antitumor vaccination of prostate cancer patients elicits PD-1/PD-L1 regulated antigen-specific immune responses. Oncoimmunology. 2016;5:e1165377. doi: 10.1080/2162402X.2016.1165377. PMID:27471641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 318.Handy CE, Antonarakis ES. Sipuleucel-T for the treatment of prostate cancer: novel insights and future directions. Future Oncol. 2017. doi: 10.2217/fon-2017-0531. PMID:29260582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 319.Bilusic M, Madan RA, Gulley JL. Immunotherapy of prostate cancer: facts and hopes. Clin Cancer Res. 2017;23:6764–70. doi: 10.1158/1078-0432.CCR-17-0019. PMID:28663235. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Oncoimmunology are provided here courtesy of Taylor & Francis

RESOURCES