Skip to main content
Data in Brief logoLink to Data in Brief
. 2018 Mar 31;18:928–938. doi: 10.1016/j.dib.2018.03.120

Assessment and hydro-geochemical characterization for evaluation of corrosion and scaling potential of groundwater in South West Delhi, India

Sanigdha Acharya 1,, SK Sharma 1, Vinita Khandegar 1
PMCID: PMC5996502  PMID: 29901034

Abstract

In the present study, hydro-geochemical characteristics of groundwater samples collected from South West Delhi, India, have been assessed. 50 sampling locations were recorded with the help of global positioning system, to assess the groundwater quality and evaluate the corrosion and scaling potential. Hydro-geochemical characterization for different parameters such as pH, temperature (T), electrical conductivity (EC), total dissolved solids (TDS), salinity (SA), total hardness (TH), total alkalinity (HCO3), levels of anions such as calcium (Ca+2), magnesium (Mg+2), sodium (Na+), potassium (K+) and cations which include chloride (Cl-), Flouride (F-), sulfates (SO42), Nitrates (NO3) was done using standard APHA methods. The corrosion and scaling potential of groundwater was evaluated by five stability indices: Langelier saturation index (LSI), Ryznar stability index (RSI), Aggressive index (AI), Learson–Skold index (Ls) and Puckorius scaling index (PSI). The dataset classified groundwater as polluted and this indicates that the water is not safe for domestic, agricultural and industrial usage and will need further treatment. This dataset is beneficial for policymakers, and researchers in the field of water purification, quality management and in preventing the economic and safety concerns related to corrosion and scaling of groundwater.

Keywords: Groundwater, Hydro-geochemical, Corrosion, Scaling, Water stability index, Delhi


Specifications Table

Subject area Environmental Science
More specific subject area Groundwater study
Type of data Table and Figure
How data was acquired Water analysis kit via NPC363D, India, UV–vis Double Beam spectrophotometer (Hitachi U-2900, India), Flame photometer (Toshniwal TMF-45, India).
Data format Raw, analyzed
Experimental factor Groundwater samples from 50 different areas of South-West Delhi, India were collected from sources such as bore-wells, private and government hand pumps in the year 2016–17. All sampling sites were selected with a view to cover the entire area of the study area.
Experimental features Determination of hydro-geochemical parameters that represent the contamination of the studied groundwater samples.
Data source location South-West Delhi, New Delhi, India
Data accessibility This article contains corrosion and scaling potential dataset.

Value of the data

  • Determination of hydro-geochemical characterization such, T (°C), EC (µS/cm), pH TDS, SA, TH, HCO3, Ca+2, Mg+2, Na+, K+ , F, Cl, SO42 and NO3 (all values in mg/L except pH) in 50 groundwater samples of South West Delhi, India.

  • The chemistry of groundwater is an important factor determining its use for domestic, irrigation and industrial purposes. Due to limited literature available for the study area, this data can help to better understand the quality of groundwater and provide information for further studies in the field of purification and better water quality management.

  • The occurrence of scaling and corrosion may create staining and blocking of piping systems leading to economic and safety problems. In addition, corrosion products contaminate the water resulting in health problems. Therefore, corrosion control is an important aspect of safe drinking water supplies.

  • Corrosion indices calculated are important in the monitoring of water supply distribution networks.

1. Data

This dataset contains 5 Tables and 6 Figures that represent quality as well as corrosion and scaling potential of groundwater of the South West Delhi, India. Fig. 1 shows the sampling points of the study area. Table 1 shows the hydro-geochemical characterization including pH, T, EC, TDS, SA, TH, HCO3 , Ca+2, Mg+2, Na+, K+, Cl, F, SO42, NO3 determined using APHA method [1]. The statistical parameters (minimum, maximum, mean and standard deviation) of hydro-geochemical parameters and limits prescribed by World health organization (WHO [2]) and Bureau of Indian Standards (BIS [3]) are tabulated in Table 2 [2], [3]. Criteria and summary of water stability indices are shown in Tables 3 and 4, respectively. Table 5 shows the result obtained by LSI, RSI, PSI, LS, AI analysis of the studied area (Fig. 2, Fig. 3, Fig. 4, Fig. 5, Fig. 6).

Fig. 1.

Fig. 1

Sampling points of the study area.

Table 1.

Hydro-geochemical characterization of 50 groundwater samples of South West Delhi, India.

Sample numbers Temp (°C) pH EC (µS/cm) TDS (mg/L) Salinity (mg/L) Hardness (mg/L) Sodium (mg/L) Potassium (mg/L) Calcium (mg/L) Magnesium (mg/L) Nitrate (mg/L) Fluoride (mg/L) Sulphate (mg/L) Chloride (mg/L) Alkalinity (mg/L)
S1 27.5 7.18 5070 2535 4910 1336 514 8 201.8 200.13 1.32 1.2 100 321.5 265
S2 27.5 6.51 11,290 5645 10,190 4310 650 28 943.9 418.38 0.122 1 120 501.5 330
S3 26 6.92 3450 1725 2415 487 334 12 124.67 45.8 0.135 0.72 71 456.7 234
S4 27 7.24 2600 1300 1820 480 256 3 60.9 40.9 1.67 0.44 59 421 200
S5 26.5 7.35 2460 1230 1722 510 200 19 77.5 61.5 3.9 0.65 47 112.2 110
S6 27.5 7.16 1600 800 1120 150 139 7 23.8 20.7 2.9 0.78 38 100.9 100
S7 26.9 7.35 1800 900 1260 510 154 11 81.7 56.5 0.622 0.35 44 154.7 121
S8 27 6.96 2389 1194.5 1672.3 966 187 10 98 39.9 8.98 0.67 56 76.8 143
S9 27.5 7.45 3406 1703 2384.2 146 200 11 39.08 19.52 1.136 0.57 71 160.4 144
S10 27.5 7.05 8030 4015 5621 2141.4 245 6 410.58 242.87 1.896 0.76 110 2506.9 264
S11 27.7 7.52 1600 800 1120 206 178 6 34.48 35.81 21.194 0.98 42 176.2 345
S12 27.8 7.39 4320 2160 3024 526 213 11 89.19 59.22 0.234 0.57 98 638.4 480
S13 27.1 7.96 7540 3770 5278 2078 230 13 320.64 301.94 0.023 1.9 132 1439.5 345
S14 27.1 7.8 6500 3250 4550 2306 213 6 416.83 336.29 0.647 1.5 128 3061.45 460
S15 27 6.89 726 363 508.2 124 27 7 43.06 22.18 43 1.1 0 87.53 155
S16 27.1 7.49 340 170 238 860 24 8 204.37 106.92 1.818 0.33 0 728.4 315
S17 27 6.98 2680 1340 1876 484 120 11 77.53 75.94 2.878 0.62 87 375.8 315
S18 27.3 7.16 15,780 7890 11,046 3738 780 35 598.2 520.98 2.197 1.9 240 4678 220
S19 27.3 7.6 2690 1345 1883 167.32 165 12 44.05 28.11 1.214 0.9 89 306.63 405
S20 27.3 7.89 1658 829 1160.6 183 49 9 41.06 22.16 0.338 0.34 0 203.8 460
S21 27.3 7.58 1130 565 791 403 23 7 88.26 32.52 0.139 0.5 7 189.05 360
S22 27.3 7.55 8720 4360 6104 2203 197 27 402.75 336.39 2.945 0.7 120 1785 370
S23 27.2 7.87 5220 2610 3654 1803 164 12 361.75 219.83 2.308 0.7 108 1652.5 385
S24 27.3 7.14 5500 2750 3850 1146.66 123 14 182.46 132.12 0.538 1 112 1692.8 250
S25 27.3 7.69 659 329.5 461.3 120 23 13 45.06 23.52 0.195 0.4 23 90.3 425
S26 27.2 7.17 2867 1433.5 2006.9 180 54 11 34.05 30.11 20.75 0.9 39 387.1 365
S27 27.3 6.78 2230 1115 1561 813.33 45 7 212.38 96.49 1.271 0.8 22 637.4 460
S28 27.2 7.59 4970 2485 3479 1146 153 13 198.76 176.41 1.412 0.6 47 1180.8 445
S29 27 7.69 518 259 362.6 170.67 23 1 39.06 22.1 0.549 0.56 32 356 360
S30 27.5 6.9 4659 2329.5 3261.3 1054 200 11 165.45 81.7 27.6 0.67 106 678.97 445
S31 27.5 7.7 2870 1435 2009 991 69 8 108.98 41.75 1.62 0.45 23 556.9 345
S32 27.5 8 2560 1280 1792 980 58 7 89 42.89 0.686 0.78 45 539.97 340
S33 27.5 7.45 4987 2493.5 3490.9 2156 184 16 445.67 328 3.86 0.6 78 835.98 443
S34 27.5 8.2 2831 1415.5 1981.7 1105 89 9 208.76 109.25 18.84 0.8 63 880.8 434
S35 27.7 7.4 6720 3360 4704 872 260 21 89.19 42.5 21.38 0.45 134 545.61 345
S36 27.8 7.52 4130 2065 2891 1083 179 14 187.88 89.64 25.28 0 257 809.9 434
S37 27.1 7.67 2600 1300 1820 428 47 9 60.6 36.26 1.97 0 167 313.95 375.6
S38 25.1 7.38 2500 1250 1750 456 156 10 57.5 28.76 14.14 0.12 234 309.87 435.5
S39 26.4 7.65 6540 3270 4578 1884 356 23 209.5 157.38 23.98 0.56 345 910.18 880.75
S40 27.1 7.54 2610 1305 1827 458 162 12 68.34 32.15 20.47 0.3 53 420 417.67
S41 27.4 7.98 4680 2340 3276 762 175 14 88.97 59.76 12.79 0.3 200 489 405.56
S42 27.5 6.86 2430 1215 1701 418 120 10 54.5 23.45 1.214 0.56 78 367.17 276.45
S43 27.1 7.68 1718 859 1202.6 457 79 11 62.9 31.78 30.38 0.89 65 367 218.32
S44 27.2 7.98 5554 2777 3887.8 1732 230 17 252.55 186.6 34.39 0.56 268 719.67 506.45
S45 27.3 7.9 4620 2310 3234 1246 175 13 176.69 120.66 28.45 0.76 32 726.9 418.34
S46 27.2 8.25 4540 2270 3178 737 158 14 78.8 68.76 18.37 0.7 46 467.87 674.56
S47 27.1 7.22 3383 1691.5 2368.1 1401 100 10 209.16 145.35 32.84 0.8 54 801.98 534.54
S48 27.5 8.06 6978 3489 4884.6 2064 198 26 310.35 287.95 23.28 0.9 67 719.5 410.56
S49 27.3 8.5 5670 2835 3969 1592 210 18 178.09 146.87 15.8 0.46 118 639.98 410.75
S50 27.5 7.6 4925 2462.5 3447.5 1537 154 11 168.56 120.55 13.6 0.56 135 665.76 323.15

Table 2.

Statistics of hydro-geochemical parameters with limits prescribed by (WHO and BIS) [2], [3].

Parameter Mean Min Max St.dev WHO standards BIS standards
Temp (°C) 27.21 25.1 27.8 0.4
pH 7.49 6.51 8.5 2849.2 6.5–8.5 6.5–8.5
EC (µs/cm) 4104.96 340 15,780 1424.6 1500
TDS (mg/L) 2052.48 170 7890 2150.3 500 500
Salinity (mg/L) 2946.43 238 11,046 895.3
Hardness (mg/L) 1062.15 120 4310 895.6 450 300
Sodium (mg/L) 180.84 23 780 145.1 200 200
Potassium (mg/L) 12.44 1 35 6.5 12
Calcium (mg/L) 175.35 23.8 943.9 170.9 75 75
Magnesium (mg/L) 118.15 19.52 520.98 117.6 50 30
Nitrate (mg/L) 9.95 0.023 43 11.8 45 45
Fluoride (mg/L) 0.69 0 1.9 0.4 1.5 1
Sulphate (mg/L) 92.20 0 345 74.7 250 200
Chlorides (mg/L) 744.92 76.8 4678 824.6 250 250
Alkalinity (mg/L) 358.10 100 880.75 141.0 500 200

Table 3.

Corrosion and scaling index criteria [4], [5], [6], [7], [8], [9], [10], [11].

Index Equation Index value Condition
Langelier Saturation Index (LSI) LSI=pH−pHs LSI<0 No potential to scale, water will dissolve CaCO3
pHs=(9.3+A+B)−(C+D) LSI>0 Scale can form, CaCO3 precipitation may occur
where: LSI=0 Borderline scale potential
A=(Log10[TDS]−1)/10
B=−13.12×Log10(°C+273)+34.55
C=Log10[Ca2+ as CaCO3]−0.4
D=Log10[alkalinity as CaCO3]
Ryznar Stability Index (RSI) RSI=2(pHs)−pH RSI<6 Scale tendency increases as the index decreases
RSI>7 Calcium carbonate formation probably does not lead to a protective corrosion inhibitor film
RSI>8 Mild steel corrosion becomes an increasing problem.
Puckorius Scaling Index (PSI) PSI=2 (pHs)−pHeq PSI<6 Scaling is unlikely to occur
Where: PSI>7 Likely to dissolve scale
pHeq=1.465×Log10[Alkalinity]+4.54
Alkalinity= [HCO3 ]+2 [CO32 ]+[OH]
Larson-skold index(Ls) Ls=(Cl+SO42)/(HCO3+CO32) Ls<0.8 Chlorides and sulfate unlikely to interfere with natural film formation
0.8<Ls<1.2 Chlorides and sulfates may interfere with natural film formation.
Ls >1.2 High local corrosion tendency expected as the index increases
Aggressive index(AI) AI=pH+Log10[(Alkalinity)(H)] AI>12 Non aggressive
Where H=Calcium hardness mg/L 10<AI<12 Moderately aggressive
AI<10 Very aggressive

Table 4.

Summary of water stability indices in the present study.

Sample numbers LSI RSI PSI Ls AI
S1 −0.07 7.33 6.42 1.59 11.91
S2 −0.01 6.53 4.82 1.88 12.00
S3 −0.61 8.14 7.04 2.26 11.38
S4 −0.64 8.51 7.84 2.40 11.33
S5 −0.69 8.73 8.55 1.45 11.28
S6 −1.39 9.95 9.64 1.39 10.54
S7 −0.60 8.55 8.31 1.64 11.35
S8 −0.85 8.66 7.93 0.93 11.11
S9 −0.76 8.98 8.72 1.61 11.20
S10 0.08 6.88 5.84 9.91 12.09
S11 −0.33 8.18 7.45 0.63 11.60
S12 0.05 7.28 6.21 1.53 12.02
S13 1.00 5.96 5.67 4.56 13.00
S14 1.08 5.63 4.99 6.93 13.08
S15 −1.19 9.27 8.41 0.56 10.71
S16 0.43 6.64 5.93 2.31 12.30
S17 −0.60 8.17 6.95 1.47 11.37
S18 0.25 6.67 5.86 22.35 12.28
S19 −0.11 7.81 7.05 0.98 11.85
S20 0.23 7.43 6.88 0.44 12.17
S21 0.16 7.26 6.55 0.54 12.08
S22 0.71 6.12 5.37 5.15 12.72
S23 1.03 5.82 5.36 4.57 13.01
S24 −0.19 7.52 6.61 7.22 11.80
S25 0.08 7.54 6.84 0.27 11.97
S26 −0.70 8.57 7.44 1.17 11.26
S27 −0.18 7.14 5.48 1.43 11.77
S28 0.55 6.49 5.66 2.76 12.54
S29 −0.05 7.80 7.20 1.08 11.84
S30 −0.21 7.32 5.80 1.76 11.77
S31 0.32 7.06 6.50 1.68 12.28
S32 0.53 6.94 6.69 1.72 12.48
S33 0.77 5.92 4.95 2.06 12.75
S34 1.20 5.80 5.59 2.17 13.16
S35 −0.10 7.60 6.74 1.97 11.89
S36 0.46 6.59 5.71 2.46 12.43
S37 0.07 7.53 6.89 1.28 12.03
S38 −0.22 7.81 6.79 1.25 11.78
S39 0.90 5.84 4.64 1.43 12.92
S40 0.04 7.47 6.63 1.13 12.00
S41 0.56 6.86 6.48 1.70 12.54
S42 −0.91 8.68 7.43 1.61 11.04
S43 −0.12 7.93 7.64 1.98 11.82
S44 1.10 5.79 5.27 1.95 13.09
S45 0.79 6.32 5.84 1.81 12.77
S46 0.99 6.26 5.83 0.76 12.98
S47 0.30 6.63 5.31 1.60 12.27
S48 1.17 5.72 5.41 1.92 13.17
S49 1.37 5.75 5.88 1.85 13.36
S50 0.36 6.89 6.27 2.48 12.34

Table 5.

Corrosion and scaling potential in the present study.

Sample numbers LSI RSI PSI Ls AI
S1 Corrosive Corrosive Neutral High corrosive Mildly aggressive
S2 Corrosive Neutral Scaling High corrosive Non aggressive
S3 Corrosive Corrosive Corrosive High corrosive Mildly aggressive
S4 Corrosive Corrosive Corrosive High corrosive Mildly aggressive
S5 Corrosive Corrosive Corrosive High corrosive Mildly aggressive
S6 Corrosive Corrosive Corrosive High corrosive Mildly aggressive
S7 Corrosive Corrosive Corrosive High corrosive Mildly aggressive
S8 Corrosive Corrosive Corrosive Corrosion may occur Mildly aggressive
S9 Corrosive Corrosive Corrosive High corrosive Mildly aggressive
S10 Scaling Neutral Scaling High corrosive Non aggressive
S11 Corrosive Corrosive Corrosive Non corrosive Mildly aggressive
S12 Scaling Corrosive Neutral High corrosive Non aggressive
S13 Scaling Scaling Scaling High corrosive Non aggressive
S14 Scaling Scaling Scaling High corrosive Non aggressive
S15 Corrosive Corrosive Corrosive Non corrosive Mildly aggressive
S16 Scaling Neutral Scaling High corrosive Non aggressive
S17 Corrosive Corrosive Neutral High corrosive Mildly aggressive
S18 Scaling Neutral Scaling High corrosive Non aggressive
S19 Corrosive Corrosive Corrosive Corrosion may occur Mildly aggressive
S20 Scaling Corrosive Neutral Non corrosive Non aggressive
S21 Scaling Corrosive Neutral Non corrosive Non aggressive
S22 Scaling Neutral Scaling High corrosive Non aggressive
S23 Scaling Scaling Scaling High corrosive Non aggressive
S24 Corrosive Corrosive Neutral High corrosive Mildly aggressive
S25 Scaling Corrosive Neutral Non corrosive Mildly aggressive
S26 Corrosive Corrosive Corrosive Corrosion may occur Mildly aggressive
S27 Corrosive Corrosive Scaling High corrosive Mildly aggressive
S28 Scaling Neutral Scaling High corrosive Non aggressive
S29 Corrosive Corrosive Corrosive Corrosion may occur Mildly aggressive
S30 Corrosive Corrosive Scaling High corrosive Mildly aggressive
S31 Scaling Corrosive Neutral High corrosive Non aggressive
S32 Scaling Neutral Neutral High corrosive Non aggressive
S33 Scaling Scaling Scaling High corrosive Non aggressive
S34 Scaling Scaling Scaling High corrosive Non aggressive
S35 Corrosive Corrosive Neutral High corrosive Mildly aggressive
S36 Scaling Neutral Scaling High corrosive Non aggressive
S37 Scaling Corrosive Neutral High corrosive Non aggressive
S38 Corrosive Corrosive Neutral High corrosive Mildly aggressive
S39 Scaling Scaling Scaling High corrosive non aggressive
S40 Scaling Corrosive Neutral Corrosion may occur Mildly aggressive
S41 Scaling Neutral Neutral High corrosive Non aggressive
S42 Corrosive Corrosive Corrosive High corrosive Mildly aggressive
S43 Corrosive Corrosive Corrosive High corrosive Mildly aggressive
S44 Scaling Scaling Scaling High corrosive Non aggressive
S45 Scaling Neutral Scaling High corrosive Non aggressive
S46 Scaling Neutral Scaling Non corrosive Non aggressive
S47 Scaling Neutral Scaling High corrosive Non aggressive
S48 Scaling Scaling Scaling High corrosive Non aggressive
S49 Scaling Scaling Scaling High corrosive Non aggressive
S50 Scaling Neutral Neutral High corrosive Non aggressive

Fig. 2.

Fig. 2

Langelier saturation index.

Fig. 3.

Fig. 3

Ryznar stability index.

Fig. 4.

Fig. 4

Aggressive index.

Fig. 5.

Fig. 5

Learson–Skold index.

Fig. 6.

Fig. 6

Puckorius scaling index.

2. Experimental design, materials, and methods

2.1. Study area description

The South West District of N.C.T. of Delhi is situated between latitude 28 40′ and 28 29′ and longitude between 76 50′ and 77 14′. The South West district has a varied character with Kapashera Sub Division as predominantly rural and the Dwarka Sub Division as mostly urban and Najafgarh Sub Divisions as a mix of both urban and rural population.

2.2. Sample collection and analytical procedures

The samples were collected in thoroughly cleaned 2 L capacity bottles and stored at a suitable temperature with necessary precautions till the analysis was done. All sampling sites were selected with a view to cover the entire area of study. Parameters such as pH, EC, SA, and TDS were measured in the field and crosschecked in the laboratory using water analysis kit (NPC 365, India). Other parameters such as TH, Ca+2, Mg+2 were measured by EDTA titrimetric method. Na+, K+ were measured using Flame photometer (Toshniwal TMF-45, India). Cl−1 contents were measured by ergonometric titration. F was determined using SPANDS method, The concentration of NO3 and SO42 was determined using UV–vis Spectrophotometer (Hitachi U-2900, India) at wavelength 220 nm and 420 nm respectively.

Acknowledgments

The authors wish to acknowledge the financial support made by the Guru Gobind Singh Indraprastha University, New Delhi, India (grant number: GGSIPU/FRGS/1589) (Faculty Research Grant project 2016-17).

Footnotes

Transparency document

Supplementary data associated with this article can be found in the online version at 10.1016/j.dib.2018.03.120.

Transparency document. Supplementary material

Supplementary material

mmc1.jpg (766KB, jpg)

References

  • 1.APHA, Standard Methods for the Examination of Water and Waste Water (APHA), 1995. [DOI] [PMC free article] [PubMed]
  • 2.WHO. Guidelines for Drinking-water Quality [electronic resource incorporating first addendum] 2011.
  • 3.BIS (Bureau of Indian Standards) 10500 Indian Standard Drinking Water Specification, 1991, pp. 1–8.
  • 4.United States Environmental Protection Agency . United States Environmental Protection Agency (U.S. EPA); Washington, D.C: 1984. Corrosion Manual for Internal Corrosion of Water Distribution Systems. [Google Scholar]
  • 5.Melidis P., Sanosidou M., Mandusa A., Ouzounis K. Corrosion control by using indirect methods. Desalination. 2007:152–158. [Google Scholar]
  • 6.Shams M., Mohamadi A.A., Sajadi S.A. Evaluation of corrosion and scaling potential of water in rural water supply distribution networks of Tabas, Iran. World Appl. Sci. J. 2012;17:1484–1489. [Google Scholar]
  • 7.Amouei A., Fallah H., Asgharnia H., Bour R., Mehdinia M. Evaluation of corrosion and scaling potential of drinking water resources in Noor city (Iran) by using stability indices. Koomesh. 2016;18:326–333. [Google Scholar]
  • 8.Mirzabeygi M., Naji M., Yousefi N., Shams M., Biglari H., Mahvi A.H. Evaluation of corrosion and scaling tendency indices in water distribution system: a case study of Torbat Heydariye, Iran. Desalin. Water Treat. 2016;57(54):25918–25926. [Google Scholar]
  • 9.Shams M., Mohamadi A.A., Sajadi S.A. Evaluation of corrosion and scaling potential of water in rural water supply distribution networks of Tabas, Iran. World Appl. Sci. J. 2012;17(11):1484–1489. [Google Scholar]
  • 10.Yousefi M., Saleh H.N., Mahvi A.H., Alimohammadi M., Nabizadeh R., Mohammadi A.A. Data on corrosion and scaling potential of drinking water resources using stability indices in Jolfa, East Azerbaijan, Iran. Data Brief. 2018;16:724–731. doi: 10.1016/j.dib.2017.11.099. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Abbasnia A., Alimohammadi M., Mahvi A.H., Nabizadeh R., Yousefi M., Mohammadi A.A., Pasalari H., Mirzabeigi M. Assessment of groundwater quality and evaluation of scaling and corrosiveness potential of drinking water samples in villages of Chabahr city, Sistan and Baluchistan province in Iran. Data Brief. 2018;16:182–192. doi: 10.1016/j.dib.2017.11.003. [DOI] [PMC free article] [PubMed] [Google Scholar]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Supplementary material

mmc1.jpg (766KB, jpg)

Articles from Data in Brief are provided here courtesy of Elsevier

RESOURCES