Abstract
近几年,表皮生长因子受体(epidermal growth factor receptor, EGFR)是肿瘤学药物研发的一个重要靶点。EGFR的小分子抑制剂(tyrosine kinase inhibitors, TKIs)成为目前非小细胞肺癌(non-small cell lung cancer, NSCLC)靶向治疗的热点。临床研究表明,EGFR-TKIs的临床疗效存在明显的个体差异,EGFR分子的存在状态影响TKI的疗效。EGFR外显子突变、EGFR拷贝数增加的患者对TKI的疗效较好,而存在KRAS突变患者提示对TKI耐药。
Keywords: EGFR-TKIs, Erlotinib, Gefitinib, PCR, FISH, IHC
Abstract
Epidermal growth factor receptor (EGFR) is a major molecular for target therapy. The epidermal growth factor receptor tyrosine kinase inhibitors (TKIs), gefitinib (Iressa) and erlotinib (Tarceva), are two prospective agents towards non-small cell lung cancer (NSCLC). Multi-center clinical studies showed that there were obvious differences between indi- viduals by the treatment of EGFR-TKIs. EGFR status is the major factor that influences the outcome for the treatment by TKI. Exon mutations and amplification of EGFR molecule are the critical factors that predict good response to TKIs. On the other hand, KRAS mutations indicate the resistant to the TKIs.
Keywords: EGFR-TKIs, Erlotinib, Gefitinib, PCR, FISH, IHC
肺癌是当今世界最常见的恶性肿瘤之一。其中非小细胞肺癌(non-small cell lung cancer, NSCLC)约占80%,而NSCLC中85%以上又都属中晚期肺癌而失去根治性手术治疗的机会。化疗在中晚期NSCLC治疗中占据主要地位,但疗效不尽如人意。近几年,以EGFR为靶点的分子靶向治疗在NSCLC的治疗中日渐突出。表皮生长因子受体酪氨酸激酶抑制剂(epidermal growth factor receptor tyrosine kinase inhibitors, EGFR-TKIs)主要包括吉非替尼(Gefitinib)和厄洛替尼(Erlotinib),是选择性酪氨酸激酶抑制剂。它们通过与EGFR结构域中高度保守的ATP结合位点竞争性结合EGFR,阻止酪氨酸残基磷酸化,从而阻止EGFR信号通路的传导,最终达到抑制肿瘤细胞的增生、侵袭、转移、血管生成并促进肿瘤细胞的凋亡。临床试验结果表明EGFR-TKIs生物利用度高、选择性强、耐受性好、不良反应轻微,具有显著的抗肿瘤活性。
EGFR-TKIs人群选择性强。多项临床试验[1-3]表明,亚裔、女性、无吸烟史、腺癌尤其是细支气管肺泡癌(bronchioloalveolar carcinoma, BAC)为Gefitinib和Erlotinib药物治疗的优势人群,通过这种优势人群的选择可使TKIs药物的有效性升高到40%以上。近年来,根据分子标志状态分层选择EGFR-TKIs受益人群是EGFR-TKIs优化治疗的重要环节。因此采用EGFR基因状态作为预测分子标志物,指导EGFR-TKIs的治疗,是一个重要而又有实际意义的问题。为初步认识NSCLC对靶向药物Gefitinib或Erlotinib敏感的分子机制,从而为预测其疗效提供有效的分子水平的预测指标,开创NSCLC治疗的新思路,本文就检测EGFR基因状态对EGFR-TKIs疗效预测的最新进展做一综述。
1. EGFR基因突变与TKIs疗效
EGFR基因是ErbB家族成员之一,位于染色体7p12-14区。EGFR基因酪氨酸激酶(EGFR TK)功能区由外显子18-24编码,在肺癌中EGFR基因突变90%以上集中在外显子18-21,其中特征性突变主要有:(1)外显子18点突变,719密码子甘氨酸错义突变为半胱氨酸(G719S)。(2)外显子19缺失,主要是编码氨基酸(KELREAT)序列缺失,这一缺失改变了EGFR受体ATP结合巢(ATP-binding cleft)的角度,增强了肿瘤细胞对小分子酪氨酸激酶抑制剂的敏感性[3]。(3)外显子20的点突变或碱基插入突变,点突变主要是第790位密码子出现C-T转换,引起EGFR蛋白中该位点的氨基酸由苏氨酸转变为甲硫氨酸(T790M),这一突变见于EGFR-TKIs治疗后复发者,突变使得肿瘤细胞对Gefitinib或Erlotinib产生抗性; 碱基插入突变出现在第770-775位密码子,存在8种不同的插入方式,插入的片段为3-9个碱基。这类插入突变的临床意义目前尚不清楚[4, 5]。(4)外显子21点突变,858位密码子亮氨酸置换成精氨酸(L858R),位于DGF序列附近,其作用使A-loop的稳定性增强,提高了肿瘤细胞对EGFR-TKIs的敏感性。
EGFR基因突变可显著提高EGFR-TKIs的临床反应率(表 1)。EGFR基因突变人群对Gefitinib或Erlotinib反应的阳性预测值(positive predictive value, PPV)在39.5%-95.8%范围内变化,EGFR野生型患者对Gefitinib或Erlotinib反应的阴性预测值(negative predictive value, NPV)在78.5%-100%范围内[6-14]。由于多项临床试验的条件不一致,PPV和NPV变化范围较大。Gupta等[15]对23项采用PCR检测EGFR突变的研究进行meta分析,评估了EGFR突变肺腺癌患者和EGFR-TKIs治疗反应的相关性。分析发现其中18项研究报道EGFR突变可增强患者对EGFR-TKI的反应,5项研究无发现相关性。
1.
采用PCR方法检测的EGFR突变对TKIs治疗的反应
Studies evaluating the predictive value of EGFR mutation and response to TKIs therapy
| Author | Cases | EGFR(+) | EGFR-mutant patients responsive to TKI therapy | EGFR(-) | EGFR-nonmutant patients responsive to TKI therapy | PPV | NPV |
| PPV: positive predictive value; NPV: negative predictive value. | |||||||
| Yoshida et al. (2009)[7] | 100 | 48 | 46 (95.8%) | 52 | 3 (5.8%) | 95.8% | 94.2% |
| Marcello et al. (2009)[8] | 63 | 11 | 9 (81.8%) | 52 | 5 (9.6%) | 81.8% | 90.4% |
| Miller et al. (2008) [9] | 81 | 18 | 15 (83.3%) | 63 | 4 (6.3%) | 83.3% | 93.7% |
| Hirsch et al. (2007) [10] | 204 | 43 | 17 (39.5%) | 113 | 8 (7.1%) | 39.5% | 92.9% |
| Sone et al. (2007) [11] | 59 | 17 | 10 (58.8%) | 42 | 6 (14.2%) | 58.8% | 85.8% |
| Ichihara et al. (2007)[12] | 98 | 38 | 25 (65.8%) | 60 | 0 | 65.8% | 100% |
| Sasaki et al. (2007) [13] | 54 | 26 | 19 (73.1%) | 28 | 6 (21.4%) | 73.1% | 78.5% |
| Pugh et al. (2007) [14] | 39 | 8 | 7 (87.5%) | 31 | 4 (12.9%) | 87.5% | 87.1% |
| Cappuzzo et al. (2007) [15] | 42 | 24 | 15 (62.5%) | 13 | 3 (23.1%) | 62.5% | 76.9% |
EGFR基因突变为接受靶向治疗NSCLC患者预后良好的分子标志。多数临床试验显示,EGFR-TKIs在难治性NSCLC患者的治疗中效果较好,患者的反应率达9%-19%,中位生存期(median survival time, MST)为6个月-8个月; 其中EGFR突变人群反应率可达到75%-90%,中位生存期提高至12个月-23个月[16]。IPASS(Iressa panAsian study)研究近期公布的数据显示:在突变人群中,Gefitinib治疗组无进展生存期(progression-free survival, PFS)长于CP方案(顺铂和环磷酰胺)治疗组(HR=0.48, P < 0.000 1),在突变阴性人群中则相反; 亚洲学者的IPASS研究[17]显示EGFR突变与PFS改善和肿瘤缓解显著相关。TRUST(Tarceva Lung Cancer Survival Treatment)研究最新数据[18]表明所有患者的疾病控制率(disease control rate, DCR)为69%,即使用厄洛替尼可使70%左右的患者临床获益,中位PFS为14.3周,1年生存率为38.6%,不良反应发生率低,患者耐受性良好; 亚组分析表明与EGFR野生型患者相比,EGFR基因突变患者的OS和PFS较长[风险比(hazard ratio, HR)分别为0.32和0.43,P值分别为0.013和0.016],有效率较高(46% vs 7%,P=0.000 43)。大量的科学实验及临床研究表明:EGFR突变患者接受Gefitinib或Erlotinib治疗的有效率较高。meta分析证实EGFR突变为Gefitinib疗效的分子预测标志[15]。因此EGFR突变是预测EGFR-TKIs治疗有效率强有力的预测因素,肺癌病人接受靶向治疗之前应进行EGFR基因突变检测。
不同的EGFR突变类型预示EGFR-TKIs临床治疗效果的差异。Jackman等[19]对EGFR基因突变NSCLC患者进行的亚组分析结果表明,EGFR外显子19缺失患者总生存期及到进展/死亡时间都长于EGFR外显子21 L858R点突变者,且前者在症状改善方面也优于后者。
2. EGFR基因扩增
通过荧光原位杂交检测EGFR 基因拷贝数变化。EGFR 基因FISH(+)患者对TKIs的临床有效率高于FISH(-)(表 2)。PPV和NPV分别在30. 7%70%、53.3%-94.4%范围内变化[7, 9-14, 20]。Gupta等[15]通过meta分析16项研究,发现9项研究证实在肺腺癌患者中FISH检测的EGFR基因的拷贝数与EGFR-TKIs的疗效存在相关性,7项研究未得出这个结论,meta分析结果显示FISH(+)是TKIs有效的预测因子。
2.
采用FISH方法检测的EGFR扩增对TKIs治疗的反应
Studies evaluating the predictive value of EGFR amplification and polysomy and response to TKI therapy
| Author | Cases | EGFR(+) | EGFR-mutant patients responsive to TKI therapy | EGFR(-) | EGFR-nonmutant patients responsive to TKI therapy | PPV | NPV |
| Varella-Garcia et al. (2009)[21] | 44 | 29 | 19 (65.5%) | 15 | 4 (26.7%) | 65.5% | 73.3% |
| Marcello et al. (2009) [8] | 54 | 12 | 6 (50%) | 42 | 6(14.3%) | 50% | 85.7% |
| Hirsch et al. (2007) [10] | 204 | 59 | 20 (33.9%) | 124 | 7 (5.6%) | 33.9% | 94.4% |
| Sone et al. (2007) [11] | 59 | 26 | 8 (30.7%) | 28 | 6 (21.4%) | 30.7% | 78.6% |
| Sasaki et al. (2007)[13] | 27 | 12 | 7 (58.3%) | 15 | 7 (46.7%) | 58.3% | 53.3% |
| Pugh et al. (2007)[14] | 39 | 10 | 7 (70%) | 29 | 4 (13.8%) | 70% | 86.2% |
| Cappuzzo et al. (2007) [15] | 42 | 25 | 17 (68%) | 11 | 1 (9.1%) | 68% | 90.9% |
研究[21]证实EGFR基因拷贝数增加是EGFR-TKIs临床疗效的预测因子,为预后良好的分子标志。Schneider等[22]证实EGFR基因FISH(+)组对EGFR-TKIs反应率为17%,FISH(-)组仅为6%,且FISH(+)组PFS和OS明显增加; EGFR拷贝数增多与对Gefitinib的反应、DFS、OS相关[23, 24];Hirsch等[25]发现EGFR基因扩增可增强Erlotinib的疗效:EGFR基因FISH(+)和FISH(-)组患者的生存期无差别,但FISH(+)组患者的进展/死亡时间明显延长。Varella-Garcia等[26]发现日本人群中EGFR FISH(+)率高,但对EGFR-TKIs疗效预测能力低于西方国家人群。总的来说,EGFR基因拷贝数可作为一个预后因素。EGFR基因拷贝数变化可以作为一个病理相关的EGFR临床意义的补充,不宜作为一个生存的预后因素[27]。
3. EGFR蛋白表达
EGFR蛋白过表达对TKIs临床有效率的预测观点不一(表 3)。Dziadziuszko等[28]证实EGFR蛋白过表达不能提高Gefitinib临床总体反应率,多项研究[7, 8, 28]报道EGFR蛋白过表达和EGFR-TKIs应答有相关性。
3.
采用IHC方法检测的EGFR过表达对TKIs治疗的反应
Studies evaluating the predictive value of EGFR overexpression and response to TKI therapy
| Author | Cases | EGFR(+) | EGFR-mutant patients responsive to TKI therapy | EGFR(-) | EGFR-nonmutant patients responsive to TKI therapy | PPV | NPV |
| Marcello et al. (2009)[8] | 59 | 45 | 11 (24.4%) | 14 | 1 (7.1%) | 24.4% | 92.9% |
| Hirsch et al. (2007)[10] | 204 | 121 | 27 (22.3%) | 82 | 82 (4.9%) | 22.3% | 95.1% |
| Dziadziuszko et al. (2007) [29] | 82 | 58 | 12 (20.7%) | 20 | 4 (20%) | 20.7% | 80% |
| Cappuzzo et al. (2007)[15] | 42 | 23 | 13 (56.5%) | 11 | 4 (36.4%) | 56.5% | 63.6% |
Ohsaki等[29]研究290例NSCLC患者标本,124例为EGFR蛋白过表达,发现EGFR过表达和预后差相关(P=0.024 0); EGFR蛋白过表达对患者预后有预测价值,然而EGFR蛋白表达和EGFR-TKIs反应无相关性[30]。Rusch等[31]未发现EGFR蛋白过表达和预后的相关性; 且EGFR蛋白过表达和EGFR-TKIs反应无相关性[32]。EGFR蛋白表达对预后的重要性仍存在争议[33, 34]。
4. EGFR基因突变、扩增、蛋白表达的相关性
研究[35-37]证实EGFR基因突变、扩增、蛋白过表达三者有显著的相关性。El-Zammar等[38]分别采用直接测序、FISH和免疫组织化学检测49例样本的EGFR基因变异,研究发现5例EGFR基因突变样本有4例FISH(+)和3例IHC(+),15例IHC(+)样本有13例FISH(+),因此应联合检测同一靶点基因不同状态的敏感性,从而选择更合适的治疗人群。
5. KRAS基因突变
KRAS基因是EGFR下游的关键调节分子,NSCLC中KRAS基因突变约占20%。Raponi等[39]报道NSCLC中KRAS基因突变对抗EGFR治疗的阴性预测值为97%,因此KRAS基因突变可用于排除NSCLC患者的抗-EGFR治疗,在EGFR-TKIs治疗前,KRAS基因突变作为常规检测指标; KRAS基因突变常提示患者预后不良,并对Gefitinib和Erlotinib的治疗有抗性,KRAS基因突变与肺癌患者对TKIs药物的原发耐药有关[40-43]。KRAS基因突变是EGFR靶向治疗的负性预测因子。
6. 问题与展望
NSCLC的靶向治疗中,EGFR-TKIs应用最为广泛,且肿瘤取得缓解、生存期延长,生活质量和疾病相关症状改善,且耐受性好,显示出了较好的疗效与安全性。对女性、亚裔、非吸烟以及腺癌尤其是BAC患者等临床受益人群疗效更为明显。然而,如何根据分子基因指标对肺癌预后或疗效的预测进行分子分型,选择个体化的治疗方案,是提高NSCLC患者的治疗水平、延长患者生存的关键。EGFR突变、EGFR FISH/IHC等作为EGFR-TKIs临床应用的预测及预后候选分子标志成为目前的研究热点,EGFR基因状态对EGFR-TKIs疗效的预测仍需大样本量的临床实验进一步验证。随着靶向治疗研究的深入,相信会有更多的分子基因指标指导我们进行个体化治疗,如何选择有限数目基因作为分子标志用于临床试验或指导NSCLC患者选择用药为今后研究的重点。
Funding Statement
本研究受国家自然科学基金(No.30972963)、天津市自然科学基金(No.09JCYBJC16200)和吴阶平医学基金(No.08-ZH-002)资助
This study was supported by grants from the National Natural Science Foundation of China (to Jun CHEN) (No.30972963), the Natural Science Foundation of Tianjin (to Jun CHEN)(No.09JCYBJC16200) and Wu Jieping Medical Foundation (to Jun CHEN)(No.08-ZH-002)
References
- 1.Pao W, Miller V, Zakowski M, et al. EGF receptor gene mutations are common in lung cancers from "never smokers" and are associated with sensitivity of tumors to gefitinib and erlotinib. Proc Natl Acad Sci USA. 2004;101(36):13306–13311. doi: 10.1073/pnas.0405220101. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 2.Marchetti A, Martella C, Felicioni L, et al. EGFR mutations in non-small cell lung cancer: analysis of a large series of cases and development of a rapid and sensitive method for diagnostic screening with potential implications on pharmacologic treatment. J Clin Oncol. 2005;23(4):857–865. doi: 10.1200/JCO.2005.08.043. [DOI] [PubMed] [Google Scholar]
- 3.Shigematsu H, Lin L, Takahashi T, et al. Clinical and biological features associated with epidermal growth factor receptor gene mutations in lung cancers. J Natl Cancer Inst. 2005;97(5):339–346. doi: 10.1093/jnci/dji055. [DOI] [PubMed] [Google Scholar]
- 4.Onitsuka T, Uramoto H, Nose N, et al. Acquired resistance to gefitinib: The contribution of mechanisms other than the T790M, MET, and HGF status. https://www.sciencedirect.com/science/article/pii/S0169500209003249. Lung Cancer. 2009 doi: 10.1016/j.lungcan.2009.05.022. [DOI] [PubMed] [Google Scholar]
- 5.Calvo E, Baselga J. Ethnic differences in response to epidermal growth factor receptor tyrosine kinase inhibitors. J Clin Oncol. 2006;24(14):2158–2163. doi: 10.1200/JCO.2006.06.5961. [DOI] [PubMed] [Google Scholar]
- 6.Yoshida K, Yatabe Y, Park J, et al. Clinical outcomes of advanced non-small cell lung cancer patients screened for epidermal growth factor receptor gene mutations. J Cancer Res Clin Oncol. 2010;136(4):527–535. doi: 10.1007/s00432-009-0685-2. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Tiseo M, Rossi G, Capelletti M, et al. Predictors of gefitinib outcomes in advanced non-small cell lung cancer (NSCLC): Study of a comprehensive panel of molecular markers. Lung Cancer. 2010;67(3):355–360. doi: 10.1016/j.lungcan.2009.04.021. [DOI] [PubMed] [Google Scholar]
- 8.Miller VA, Riely GJ, Zakowski MF, et al. Molecular characteristics of bronchioloalveolar carcinoma and adenocarcinoma, bronchioloalveolar carcinoma subtype, predict response to erlotinib. J Clin Oncol. 2008;26(9):1472–1478. doi: 10.1200/JCO.2007.13.0062. [DOI] [PubMed] [Google Scholar]
- 9.Hirsch FR, Varella-Garcia M, Cappuzzo F, et al. Combination of EGFR gene copy number and protein expression predicts outcome for advanced non-small-cell lung cancer patients treated with gefitinib. https://academic.oup.com/annonc/article/18/4/752/133879. Ann Oncol. 2007;18(4):752–760. doi: 10.1093/annonc/mdm003. [DOI] [PubMed] [Google Scholar]
- 10.Sone T, Kasahara K, Kimura H, et al. Comparative analysis of epidermal growth factor receptor mutations and gene amplification as predictors of gefitinib efficacy in Japanese patients with non-small cell lung cancer. Cancer. 2007;109(9):1836–1844. doi: 10.1002/(ISSN)1097-0142. [DOI] [PubMed] [Google Scholar]
- 11.Ichihara S, Toyooka S, Fujiwara Y, et al. The impact of epidermal growth factor receptor gene status on gefitinib-treated Japanese patients with nonsmall-cell lung cancer. Int J Cancer. 2007;120(6):1239–1247. doi: 10.1002/(ISSN)1097-0215. [DOI] [PubMed] [Google Scholar]
- 12.Sasaki H, Endo K, Okuda K, et al. Epidermal growth factor receptor gene amplification and gefitinib sensitivity in patients with recurrent lung cancer. J Cancer Res Clin Oncol. 2008;134(5):569–577. doi: 10.1007/s00432-007-0320-z. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Pugh TJ, Bebb G, Barclay L, et al. Correlations of EGFR mutations and increases in EGFR and HER2 copy number to gefitinib response in a retrospective analysis of lung cancer patients. BMC Cancer. 2007;7:128. doi: 10.1186/1471-2407-7-128. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Cappuzzo F, Ligorio C, Janne PA, et al. Prospective study of gefitinib in epidermal growth factor receptor fluorescence in situ hybridizationpositive/phospho-Akt-positive or never smoker patients with advanced nonsmall-cell lung cancer: the ONCOBELL trial. J Clin Oncol. 2007;25(16):2248–2255. doi: 10.1200/JCO.2006.09.4300. [DOI] [PubMed] [Google Scholar]
- 15.Gupta R, Dastane AM, McKenna R Jr, et al. The predictive value of epidermal growth factor receptor tests in patients with pulmonary adenocarcinoma: review of current "best evidence" with meta-analysis. Hum Pathol. 2009;40(3):356–365. doi: 10.1016/j.humpath.2008.08.008. [DOI] [PubMed] [Google Scholar]
- 16.Linardou H, Dahabreh IJ, Bafaloukos D, et al. Somatic EGFR mutations and efficacy of tyrosine kinase inhibitors in NSCLC. Nat Rev Clin Oncol. 2009;6(6):352–366. doi: 10.1038/nrclinonc.2009.62. [DOI] [PubMed] [Google Scholar]
- 17.Tony Mok et al. IPASS: Gefitinib (IRESSA)(TM) shows superior efficacy compared to doublet chemotherapy in phase Ⅲ Asian 1st line advanced non-small cell lung cancer (NSCLC) study. Poster presented at 2008 ESMO meeting in Stockholm.
- 18.TRUST: Tarceva lung cancer survival treatment. Poster presented at 2008 ESMO meeting in Stockholm.
- 19.Jackman DM, Miller VA, Cioffredi LA, et al. Impact of epidermal growth factor receptor and KRAS mutations on clinical outcomes in previously untreated non-small cell lung cancer patients: results of an online tumor registry of clinical trials. Clin Cancer Res. 2009;15(16):5267–5273. doi: 10.1158/1078-0432.CCR-09-0888. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 20.Varella-Garcia M, Mitsudomi T, Yatabe Y, et al. EGFR and HER2 genomic gain in recurrent non-small cell lung cancer after surgery: impact on outcome to treatment with gefitinib and association with EGFR and KRAS mutations in a Japanese cohort. J Thorac Oncol. 2009;4(3):318–325. doi: 10.1097/JTO.0b013e31819667a3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.Sasaki H, Shimizu S, Okuda K, et al. Epidermal growth factor receptor gene amplification in surgical resected Japanese lung cancer. Lung Cancer. 2009;64(3):295–300. doi: 10.1016/j.lungcan.2008.10.005. [DOI] [PubMed] [Google Scholar]
- 22.Schneider CP, Heigener D, Schott-von-Römer K, et al. Epidermal growth factor receptor-related tumor markers and clinical outcomes with erlotinib in non-small cell lung cancer: an analysis of patients from german centers in the TRUST study. J Thorac Oncol. 2008;3(12):1446–1453. doi: 10.1097/JTO.0b013e31818ddcaa. [DOI] [PubMed] [Google Scholar]
- 23.Cappuzzo F, Hirsch FR, Rossi E, et al. Epidermal growth factor receptor gene and protein and gefitinib sensitivity in non-small-cell lung cancer. J Natl Cancer Inst. 2005;97(9):643–655. doi: 10.1093/jnci/dji112. [DOI] [PubMed] [Google Scholar]
- 24.Hirsch FR, Varella-Garcia M, McCoy J, et al. Increased epidermal growth factor receptor gene copy number detected by fluorescence in situ hybridization associates with increased sensitivity to gefitinib in patients with bronchioloalveolar carcinoma subtypes: a Southwest Oncology Group Study. J Clin Oncol. 2005;23(28):6838–6845. doi: 10.1200/JCO.2005.01.2823. [DOI] [PubMed] [Google Scholar]
- 25.Hirsch FR, Varella-Garcia M, Dziadziuszko R, et al. Fluorescence in situ hybridization subgroup analysis of TRIBUTE, a phase Ⅲ trial of erlotinib plus carboplatin and paclitaxel in non-small cell lung cancer. Clin Cancer Res. 2008;14(19):6317–6323. doi: 10.1158/1078-0432.CCR-08-0539. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Varella-Garcia M, Mitsudomi T, Yatabe Y, et al. EGFR and HER2 genomic gain in recurrent non-small cell lung cancer after surgery: impact on outcome to treatment with gefitinib and association with EGFR and KRAS mutations in a Japanese cohort. J Thorac Oncol. 2009;4(3):318–325. doi: 10.1097/JTO.0b013e31819667a3. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Cherneva RV, Georgiev OB, Petrov DB, et al. Epidermal growth factor receptor gene copy number changes in lung cancer. Folia Med (Plovdiv) 2009;51(2):12–18. [PubMed] [Google Scholar]
- 28.Dziadziuszko R, Witta SE, Cappuzzo F, et al. Epidermal growth factor receptor messenger RNA expression, gene dosage, and gefitinib sensitivity in non–small cell lung cancer. Clin Cancer Res. 2006;12(10):3078–3084. doi: 10.1158/1078-0432.CCR-06-0106. [DOI] [PubMed] [Google Scholar]
- 29.Ohsaki Y, Tanno S, Fujita Y, et al. Epidermal growth factor receptor expression correlates with poor prognosis in non-small cell lung cancer patients with p53 overexpression. Oncol Rep. 2000;7(3):603–607. doi: 10.3892/or.7.3.603. [DOI] [PubMed] [Google Scholar]
- 30.Tsao MS, Sakurada A, Cutz JC, et al. Erlotinib in lung cancer-molecular and clinical predictors of outcome. N Engl J Med. 2005;353(2):133–144. doi: 10.1056/NEJMoa050736. [DOI] [PubMed] [Google Scholar]
- 31.Rusch V, Klimstra D, Venkatraman E, et al. Overexpression of the epidermal growth factor receptor and its ligand transforming growth factor alpha is frequent in resectable non-small cell lung cancer but does not predict tumor progression. Clin Cancer Res. 1997;3(4):515–522. [PubMed] [Google Scholar]
- 32.Parra HS, Cavina R, Latteri F, et al. Analysis of epidermal growth factor receptor expression as a predictive factor for response to gefitinib ('Iressa', ZD1839) in non-small-cell lung cancer. Br J Cancer. 2004;91(2):208–212. doi: 10.1038/sj.bjc.6601923. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 33.Gatzemeier U, Pluzanska A, Szczesna A, et al. Phase Ⅲ study of erlotinib in combination with cisplatin and gemcitabine in advanced non-small cell lung cancer; the Tarceva Lung Cancer investigation Trial. J Clin Oncol. 2007;25(12):1545–1552. doi: 10.1200/JCO.2005.05.1474. [DOI] [PubMed] [Google Scholar]
- 34.Herbst RS, Prager D, Hermann R, et al. TRIBUTE: a phase Ⅲ trial of erlotinib hydrochloride (OSI-774) combined with carboplatin and paclitaxel chemotherapy in advanced non-small-cell lung cancer. J Clin Oncol. 2005;23(25):5892–5899. doi: 10.1200/JCO.2005.02.840. [DOI] [PubMed] [Google Scholar]
- 35.Morinaga R, Okamoto I, Fujita Y, et al. Association of epidermal growth factor receptor (EGFR) gene mutations with EGFR amplification in advanced non-small cell lung cancer. Cancer Sci. 2008;99(12):2455–2460. doi: 10.1111/cas.2008.99.issue-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 36.Lee HJ, Xu X, Choe G, et al. Protein overexpression and gene amplification of epidermal growth factor receptor in nonsmall cell lung carcinomas: Comparison of four commercially available antibodies by immunohistochemistry and fluorescence in situ hybridization study. http://onlinelibrary.wiley.com/doi/10.1002/cncr.20909/full. Lung Cancer. 2009 doi: 10.1016/j.lungcan.2009.07.014. [DOI] [PubMed] [Google Scholar]
- 37.Gupta R, Dastane AM, Forozan F, et al. Evaluation of EGFR abnormalities in patients with pulmonary adenocarcinoma: the need to test neoplasms with more than one method. Mod Pathol. 2009;22(1):128–133. doi: 10.1038/modpathol.2008.182. [DOI] [PubMed] [Google Scholar]
- 38.El-Zammar OA, Zhang S, Katzenstein AL, et al. Comparison of FISH, PCR, and immunohistochemistry in assessing EGFR status in lung adenocarcinoma and correlation with clinicopathologic features. Diagn Mol Pathol. 2009;18(3):133–137. doi: 10.1097/PDM.0b013e3181857ea9. [DOI] [PubMed] [Google Scholar]
- 39.Raponi M, Winkler H, Dracopoli NC, et al. KRAS mutations predict response to EGFR inhibitors. Curr Opin Pharmacol. 2008;8(4):413–418. doi: 10.1016/j.coph.2008.06.006. [DOI] [PubMed] [Google Scholar]
- 40.Riely GJ, Marks J, Pao W, et al. KRAS mutations in non-small cell lung cancer. Proc Am Thorac Soc. 2009;6(2):201–205. doi: 10.1513/pats.200809-107LC. [DOI] [PubMed] [Google Scholar]
- 41.Linardou H, Dahabreh IJ, Kanaloupiti D, et al. Assessment of somatic k-RAS mutations as a mechanism associated with resistance to EGFR-targeted agents: a systematic review and meta-analysis of studies in advanced nonsmall-cell lung cancer and metastatic colorectal cancer. Lancet Oncol. 2008;9(10):962–972. doi: 10.1016/S1470-2045(08)70206-7. [DOI] [PubMed] [Google Scholar]
- 42.Ding L, Getz G, Wheeler DA, et al. somatic mutations affect key pathways in lung adenocarcinoma. Nature. 2008;455(7216):1069–1075. doi: 10.1038/nature07423. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 43.Mascaux C, Iannino N, Martin B, et al. The role of RAS oncogene in survival of patients with lung cancer: a systematic review of the literature with meta-analysis. Br J Cancer. 2005;92(1):131–139. doi: 10.1038/sj.bjc.6602258. [DOI] [PMC free article] [PubMed] [Google Scholar]
