Skip to main content
Chinese Journal of Lung Cancer logoLink to Chinese Journal of Lung Cancer
. 2010 Nov 20;13(11):1059–1063. [Article in Chinese] doi: 10.3779/j.issn.1009-3419.2010.11.12

Akt在非小细胞肺癌中作用的研究现状

Current Status of Akt in Non-small Cell Lung Cancer

Editor: 李 为民1,*
Reviewed by: 陈 勃江1, 陈 勃江1
PMCID: PMC6000488  PMID: 21081049

Abstract

肺癌是目前世界上最常见的恶性肿瘤之一,但其发病机制尚不完全清楚。Akt是一种重要的信号通路关键蛋白,广泛参与肿瘤细胞的生长、增殖、凋亡及侵袭等过程。本文就Akt及其重要的上下游调节分子之——PDK1、Raf-1和p70S6K在非小细胞肺癌中的作用研究现状做一综述,以期为阐明非小细胞肺癌的发病机制提供新的依据。

Keywords: Akt, PDK1, Raf-1, 肺肿瘤


肺癌是目前对人类健康威胁最大的恶性肿瘤之一,全球每年约有135万人被确诊为肺癌,120万人死于肺癌[1]。虽然医学技术有了长足发展,但肺癌患者的5年生存率并未得到明显改善,仅为15%左右[1]。其根本原因在于肺癌的发病机制尚不清楚、临床缺乏有效的早期诊断和治疗手段。病理学上,肺癌分为小细胞肺癌(small cell lung cancer, SCLC)和非小细胞肺癌(non-small cell lung cancer, NSCLC),后者约占80%-85%。20世纪90年代以来,信号传导通路逐渐成为肿瘤学研究领域的热点。丝氨酸/苏氨酸蛋白激酶B(protein kinase B, PKB/Akt)因其处于多条信号通路的交叉点而受到广泛关注。

1. Akt的研究现状

Akt是存在于人类染色体基因组中鼠类胸腺淋巴瘤病毒(T-8 strain from AKR/J mouse, AKT8)致癌基因(v-Akt)的同源物,其编码的蛋白质Akt是一种丝氨酸/苏氨酸蛋白激酶,因与蛋白激酶A、C高度同源,又名蛋白激酶B(protein kinase B, PKB)[2]。Akt经磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase, PI3K)活化后,磷酸化其下游多种底物,参与细胞生物学功能的调节,影响细胞生物学行为,主要表现为促进细胞增殖、抑制细胞凋亡、提高细胞的乏氧耐受性、促进肿瘤细胞侵袭转移和组织血管生成等,从而参与多种肿瘤的发生[3]。随着研究的深入,现已基本绘制了以Akt为中心的信号通路图(图 1)。

1.

1

Akt信号通路图

Signaling pathway of Akt

Akt家族包括Akt1、Akt2、Akt3三种亚型,其中Akt2是最重要的一种,不仅具有Akt的普遍特征,还有其独特的生物学功能,主要介导肿瘤细胞的粘附、运动、侵袭和转移[4-6]。有学者研究发现,约10%-20%的原代胰腺癌细胞和胰腺癌细胞株存在Akt2的扩增或过表达。当用Akt2反义核苷酸转染胰腺癌细胞后,肿瘤生长明显受抑,且仅局限于管腔内;而导入正义核苷酸的对照组肿瘤细胞,其生长则无明显变化,并侵入管壁。此现象表明Akt2的过度表达促进了胰腺癌细胞的生长和侵袭[7-10]。Rychahou等[11]用qRT-PCR的方法检测了86例结肠癌患者肿瘤组织和正常结肠组织中Akt2 mRNA的水平,发现肿瘤组织中的Akt2 mRNA是正常组织的8倍-10倍;随后对36例有肝转移的结肠癌患者的正常组织、结肠癌原发灶及肝转移灶进行免疫组织化学染色,结果显示:超过80%的病例的原发灶和转移灶存在Akt2的高表达。为了进一步验证Akt2对细胞侵袭及转移能力的影响,他们用特异性的Akt2 siRNA载体感染已被荧光素标记的肿瘤细胞,并以空转肿瘤细胞为对照,将细胞注入裸鼠脾脏。4周后,实验组裸鼠均未出现肝脏转移,而对照组则出现明显的多发肝脏转移灶。该研究从不同的水平说明了Akt2在促进结肠癌形成和转移中的重要作用,与其在前列腺癌及脑胶质细胞瘤中的结果基本一致[12, 13]

关于Akt在NSCLC中的研究,有学者发现NSCLC组织中,Akt2基因的重要功能位点(激酶区)低突变,而Akt1与Akt3则未见突变,提示Akt2基因突变可能是促进肺癌发生的重要原因[14]。Nishioka等[15]用烟草的主要致癌物质之一亚硝胺吡啶基丁酮(NNK)处理小鼠支气管上皮细胞,1小时后即检测到细胞中的Akt被激活,形成磷酸化Akt(phosphorylated Akt, p-Akt)。Binaifer等[16]利用免疫组织化学染色技术检测p-Akt在支气管上皮细胞中的表达,发现16例发育不良或化生的支气管上皮组织中p-Akt为阳性,9例增生组织呈弱阳性,而所有的正常组织则均为阴性。进一步对110例NSCLC组织进行分析,结果显示NSCLC中p-Akt的阳性率为51%(56/110),明显高于正常组织,且免疫组织化学染色提示56例肿瘤组织均表达p-Akt2。以上研究提示:Akt尤其是Akt2的活化可能是导致支气管上皮细胞恶变的重要早期事件。

Park等[17]将细胞间粘附分子-3(intercellular adhesion molecule -3, ICAM-3)基因过表达载体导入NSCLC NCI-H1299细胞株,发现细胞中的Akt被激活,继而细胞的迁移和侵袭能力明显增加。我国学者[18]也证实肺腺癌细胞的Akt的活化与细胞的侵袭能力呈正相关。另有动物试验[16]显示,p-Akt不仅能在体外促进细胞的迁移,而且还能在体内增强气道上皮细胞对粘膜的侵蚀,促进气道肿瘤的生长。

关于Akt与NSCLC患者预后的关系,目前的研究结果尚不完全一致。Shah等[19]分析了82例NSCLC患者病灶组织中p-Akt的表达与患者术后生存时间的关系,结果显示:p-Akt高表达组较低表达组生存时间更长,差异有统计学意义(P=0.007);而另一项纳入335例NSCLC患者的研究[20]结果则与之相反,单因素和多因素分析均提示:高水平的p-Akt是患者预后不良的独立危险因素。然而,Binaifer[16]的研究发现,在110例NSCLC患者中,p-Akt阳性组与阴性组的中位生存时间差异无统计学意义(23个月vs 26个月,P=0.796 4)。

2. Akt上游信号通路蛋白分子——PDK1的研究现状

业已证明,Akt属酯类激酶家族,其活化依赖于上游信号分子的作用。当细胞受到胰岛素样生长因子、血小板源性生长因子等胞外信号刺激时,PI3K的P110催化亚基被激活,磷酸化二磷酸酯酰肌醇[phosphtidylinositol (4, 5)-bisphosphate, PIP2]生成三磷酸酯酰肌醇[phos-phatidylinositol (3, 4, 5)- triphosphate, PIP3],诱导无活性的Akt和PDK1从细胞质易位至细胞膜,同时使Akt的构象发生改变,暴露出Thr308和Ser473磷酸化位点。位于细胞膜的Akt与PDK1相互靠近,PDK1催化Akt磷酸化,使其活化[21],见图 2。由此可见,PDK1是Akt的重要上游调节分子。

2.

2

PDK1的作用机制

Mechanism of the action of PDK1

Liu等[22]观察到EGF诱导细胞中PDK1和Akt共易位。当用PDK1 siRNA干扰乳腺癌细胞PDK1的表达时,Akt的磷酸化水平明显降低,且细胞的转移和趋化能力明显受损。在裸鼠体内,PDK1 siRNA干扰的乳腺癌细胞成瘤速度缓慢,且不能形成肺部转移病灶。Lee等[23]用PDK1抑制剂OSU-03012处理恶性神经鞘瘤细胞,亦发现细胞的增殖减慢,凋亡增加,体内成瘤能力下降。

然而,目前鲜有关于PDK1在NSCLC中的作用及其对Akt的调节机制的报道。笔者所在课题组在前期研究中发现PDK1和Akt在NSCLC组织中的表达均增高,推测PDK1可能参与Akt的活化,进而影响NSCLC的发生。

3. Akt下游信号通路蛋白分子——Raf-1和p70S6K的研究现状

现已证实,Raf是一种原癌基因,其编码产物为丝氨酸/苏氨酸蛋白激酶,主要参与Ras/Raf/MEK/ERK信号通路的传导。Raf有3种同型异构体,分别为A-Raf、B-Raf和C-Raf(Raf-1)。B-Raf的作用机制目前已较清楚,而Raf-1的功能则了解较少,一般认为与细胞的抗凋亡作用有关[24]。近年来,有学者研究发现,Raf-1除了通过Ras/Raf/MEK/ERK通路发挥作用外,还存在非MEK/ERK依赖机制。Raf-1被Akt磷酸化后,在调节细胞增殖、分化和凋亡等方面发挥重要作用[25]。p70S6K是Raf-1的作用底物之一,它是核糖体40s小亚基S6蛋白激酶,被Raf-1活化后,促进含5’-末端寡聚嘧啶(5’-terminal oligopolypyrimidine, 5’-TOP)mRNA的翻译,刺激细胞生长、增殖等[26]

Jilavean等[27]检测了263例痣和523例恶性黑色素瘤组织中Raf-1的表达,发现肿瘤组织Raf-1的水平较痣明显增高(P < 0.000 1),且转移灶较原发灶更高(P=0.022 5)。用Raf-1 siRNA干扰恶性黑色素瘤细胞株Raf-1的表达,细胞凋亡增加。Lyustikman等[28]的研究结果也显示:神经胶质瘤组织中Raf-1的表达增高;将Raf-1重组逆转录病毒导入小鼠神经胶质细胞,细胞恶变形成神经胶质瘤。目前尚未在NSCLC组织中检测到Raf-1的基因突变;Raf-1转基因小鼠的肺内腺瘤形成的发生率也较低,存在时间亦较短[29]。然而,Cekanov等[30]利用烟草致癌原NNK诱导仓鼠发生肺腺癌,并用NNK处理人气道上皮细胞。5周、10周和20周后,仓鼠肺微腺瘤及人气道上皮细胞均被检出有Raf-1的高表达,且呈时间依赖性增加。该实验提示Raf-1可能与肺腺癌的形成有关,是肺腺癌发生的早期标志物之一。实际上,早在20世纪90年代,就有学者利用反义寡核苷酸技术来特异性阻断NSCLC组织中Raf-1的表达,结果发现大部分细胞出现包括染色质浓缩、DNA断裂、annexin Ⅴ结合等在内的凋亡现象,最终细胞死亡[31]。Kerkhoff等[29]的分析进一步显示:肺癌细胞株中Raf-1蛋白激酶表达水平的升高可能导致细胞恶性转化。因此临床上出现了利用Raf激酶抑制剂BAY 43-9006治疗NSCLC的方法。2005年在美国临床肿瘤学会(American Society of Clinical Oncology, ASCO)会议上,Adjei等[32]首次报道了12例NSCLC患者的BAY43-9006 Ⅰ期临床试验结果:1例患者达部分缓解;8例(67%)患者处于疾病稳定期,其中2例长达24周。

p70S6K在乳腺癌及消化道肿瘤中的作用研究较多,而其与NSCLC的关系则报道相对较少。多项研究[33-35]表明,p70S6K在乳腺癌、肝癌、食道癌、胆囊癌等肿瘤组织中高表达,且磷酸化水平与肿瘤转移、术后复发或死亡等明显正相关。p70S6K对NSCLC意义的研究中,Shen等[36]用高通量免疫印迹、Western blot和免疫组织化学染色等方法检测肺腺癌和正常支气管上皮组织中p70S6K的表达水平,发现p70S6K在肺腺癌组织中增高,故其在肺腺癌的鉴别诊断中有一定价值。本课题组在前期研究中探讨了Raf-1和p70S6K在不同病理类型NSCLC中的表达,结果显示Raf-1在肺腺癌和鳞癌组织中均呈高表达;而p70S6K则在肺腺癌组织中表达增高,在鳞癌组织中阴性表达。因此,Akt/ Raf-1在肺腺癌和鳞癌组织中是否均通过作用于底物p70S6K而发挥作用尚需进一步的研究和分析。

4. 小结

综上所述,现有的研究已经提示PDK1、Akt、Raf-1和p70S6K四种蛋白质参与了包括NSCLC在内的多种肿瘤的发生。然而,以Akt为中心的PDK1/Akt/p70S6K信号通路在NSCLC中的作用机制尚有待于系统的深入研究,以期进一步明确NSCLC的发生机制,探寻NSCLC早期诊断的分子标志物和靶向治疗新靶点。

Funding Statement

本研究受成都市“十一五”科技规划重大专项(No.07YTYB9612020)资助

This study was supported by a grant from the "The Eleventh Five-Year" Development Planning of Major Projects Chengdu, China (to Weimin LI)(No.07YTYB961020)

References

  • 1.Hocking WG, Hu P, Oken MM, et al. Lung cancer screening in the randomized prostate, lung, colorectal, and ovarian (PLCO) screening trial. J Natl Cancer Inst. 2010;102(10):722–731. doi: 10.1093/jnci/djq126. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Badve S, Collins NR, Bhat-Nakshatri P, et al. Subcellular localization of activated AKT in estrogen receptor- and progesterone receptor-expressing breast cancers: potential clinical implications. Am J Pathol. 2010;176(5):2139–2149. doi: 10.2353/ajpath.2010.090477. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Chin YR, Toker A. Function of Akt/PKB signaling to cell motility, invasion and the tumor stroma in cancer. Cell Signal. 2009;21(4):470–476. doi: 10.1016/j.cellsig.2008.11.015. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 4.Weng L, Enomoto A, Ishida-Takagishi M, et al. Girding for migratory cues: roles of the Akt substrate Girdin in cancer progression and angiogenesis. Cancer Sci, 2010 Feb 2. [Epub ahead of print]
  • 5.Tsutsui S, Matsuyama A, Yamamoto M, et al. The Akt expression correlates with the VEGF-A and -C expression as well as the microvessel and lymphatic vessel density in breast cancer. https://www.labome.org/expert/japan/hyogo/tanaka/fumihiro-tanaka-1480618.html. Oncol Rep. 2010;23(3):621–630. doi: 10.3892/or_00000677. [DOI] [PubMed] [Google Scholar]
  • 6.Cheng GZ, Zhang W, Wang LH. Regulation of cancer cell survival, migration, and invasion by Twist: AKT2 comes to interplay. Cancer Res. 2008;68(4):957–960. doi: 10.1158/0008-5472.CAN-07-5067. [DOI] [PubMed] [Google Scholar]
  • 7.Shi XH, Liang ZY, Ren XY, et al. Combined silencing of K-ras and Akt2 oncogenes achieves synergistic effects in inhibiting pancreatic cancer cell growth in vitro and in vivo. Cancer Gene Ther. 2009;16(3):227–236. doi: 10.1038/cgt.2008.82. [DOI] [PubMed] [Google Scholar]
  • 8.Ghaneh P, Costello E, Neoptolemos JP. Neoptolemos. Biology and management of pancreatic cancer. Postgrad Med J. 2008;84(995):478–497. doi: 10.1136/gut.2006.103333. [DOI] [PubMed] [Google Scholar]
  • 9.Koorstra JB, Hustinx SR, Offerhaus GJ, et al. Pancreatic carcinogenesis. Pancreatology. 2008;8(2):110–125. doi: 10.1159/000123838. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 10.Chadha KS, Khoury T, Yu J, et al. Activated Akt and Erk expression and survival after surgery in pancreatic carcinoma. Ann Surg Oncol. 2006;13(7):933–939. doi: 10.1245/ASO.2006.07.011. [DOI] [PubMed] [Google Scholar]
  • 11.Rychahou PG, Kang J, Gulhati P, et al. Akt2 overexpression plays a critical role in the establishment of colorectal cancer metastasis. Proc Natl Acad Sci USA. 2008;105(51):20315–20320. doi: 10.1073/pnas.0810715105. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Moro L, Arbini AA, Yao JL, et al. Mitochondrial DNA depletion in prostate epithelial cells promotes anoikis resistance and invasion through activation of PI3K/Akt2. Cell Death Differ. 2009;16(4):571–583. doi: 10.1038/cdd.2008.178. [DOI] [PubMed] [Google Scholar]
  • 13.Mure H, Matsuzaki K, Kitazato KT, et al. Akt2 and Akt3 play a pivotal role in malignant gliomas. Neuro Oncol. 2010;12(3):221–232. doi: 10.1093/neuonc/nop026. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Soung YH, Lee JW, Nam SW, et al. Mutational analysis of AKT1, AKT2 and AKT3 genes in common human carcinomas. Oncology. 2006;70(4):285–289. doi: 10.1159/000096289. [DOI] [PubMed] [Google Scholar]
  • 15.Nishioka T, Guo JJ, Yamamoto D, et al. Nicotine, through upregulating prosurvival signaling, cooperates with NNK to promote transformation. https://www.researchgate.net/publication/38087451_Nicotine_Through_Upregulating_Pro-Survival_Signaling_Cooperates_With_NNK_to_Promote_Transformation. J Cell Biochem. 2010;109(1):152–161. doi: 10.1002/jcb.22392. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Balsara BR, Pei J, Mitsuuchi Y, et al. Frequent activation of AKT in non-small cell lung carcinomas and preneoplastic bronchial lesions. Carcinogenesis. 2004;25(11):2053–2059. doi: 10.1093/carcin/bgh226. [DOI] [PubMed] [Google Scholar]
  • 17.Park JK, Park SH, So K, et al. ICAM-3 enhances the migratory and invasive MMP-9 via Akt and CREB. Int J Oncol. 2010;36(1):181–192. [PubMed] [Google Scholar]
  • 18.Chen CH, Lai JM, Chou TY, et al. VEGFA upregulates FLJ10540 and modulates migration and invasion of lung cancer via PI3K/AKT pathway. PLoS One. 2009;4(4):5052. doi: 10.1371/journal.pone.0005052. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Shah A, Swain WA, Richardson D, et al. Phospho-akt expression is associated with a favorable outcome in non-small cell lung cancer. Clin Cancer Res. 2005;11(8):2930–2936. doi: 10.1158/1078-0432.CCR-04-1385. [DOI] [PubMed] [Google Scholar]
  • 20.Al-Saad S, Donnem T, Al-Shibli K, et al. Diverse prognostic roles of Akt isoforms, PTEN and PI3K in tumor epithelial cells and stromal compartment in non-small cell lung cancer. Anticancer Res. 2009;29(10):4175–4183. [PubMed] [Google Scholar]
  • 21.Lu Z, Cox-Hipkin MA, Windsor WT, et al. 3-Phosphoinositide-dependent protein kinase-1 regulates proliferation and survival of cancer cells with an activated mitogen-activated protein kinase pathway. Mol Cancer Res. 2010;8(3):421–432. doi: 10.1158/1541-7786.MCR-09-0179. [DOI] [PubMed] [Google Scholar]
  • 22.Liu Y, Wang J, Wu M, et al. Down-regulation of 3-phosphoinositide-dependent protein kinase-1 levels inhibits migration and experimental metastasis of human breast cancer cells. Mol Cancer Res. 2009;7(6):944–954. doi: 10.1158/1541-7786.MCR-08-0368. [DOI] [PubMed] [Google Scholar]
  • 23.Lee TX, Packer MD, Huang J, et al. Growth inhibitory and anti-tumour activities of OSU-03012, a novel PDK-1 inhibitor, on vestibular schwannoma and malignant schwannoma cells. Eur J Cancer. 2009;45(9):1709–1720. doi: 10.1016/j.ejca.2009.03.013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Niault TS, Baccarini M. Targets of Raf in tumorigenesis. Carcinogenesis. 2010;31(7):1165–1174. doi: 10.1093/carcin/bgp337. [DOI] [PubMed] [Google Scholar]
  • 25.Smalley KS, Xiao M, Villanueva J, et al. C-RAF inhibition induces apoptosis in melanoma cells with non-V600E BRAF mutations. Oncogene. 2009;28(1):85–94. doi: 10.1038/onc.2008.362. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Lekmine F, Uddin S, Sassano A, et al. Activation of the p70 S6 kinase and phosphorylation of the 4E-BP1 repressor of mRNA translation by type Ⅰ interferons. J Biol Chem. 2003;278(30):27772–27780. doi: 10.1074/jbc.M301364200. [DOI] [PubMed] [Google Scholar]
  • 27.Jilaveanu LB, Zito CR, Aziz SA, et al. C-Raf is associated with disease progression and cell proliferation in a subset of melanomas. Clin Cancer Res. 2009;15(18):5704–5713. doi: 10.1158/1078-0432.CCR-09-0198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 28.Lyustikman Y, Momota H, Pao W, et al. Constitutive activation of Raf-1 induces glioma formation in mice. Neoplasia. 2008;10(5):501–510. doi: 10.1593/neo.08206. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Kerkhoff E, Fedorov LM, Siefken R, et al. Lung-targeted expression of the c-Raf-1 kinase in transgenic mice exposes a novel oncogenic character of the wild-type protein. https://ohsu.pure.elsevier.com/en/publications/lung-targeted-expression-of-the-c-raf-1-kinase-in-transgenic-mice-2. Cell Growth Differ. 2000;11(4):185–190. [PubMed] [Google Scholar]
  • 30.Cekanova M, Majidy M, Masi T, et al. Overexpressed Raf-1 and phosphorylated cyclic adenosine 3'-5'-monophosphatate response element-binding protein are early markers for lung adenocarcinoma. Cancer. 2007;109(6):1164–1173. doi: 10.1002/(ISSN)1097-0142. [DOI] [PubMed] [Google Scholar]
  • 31.Lau QC, Brusselbach S, Muller R. A brogation of c-Raf expression induces apoptosis in tumor cells. Oncogene. 1998;16(14):1899–1902. doi: 10.1038/sj.onc.1201709. [DOI] [PubMed] [Google Scholar]
  • 32.Adjei AA, Mandrekar S, Marks RS, et al. A phase Ⅰ study of BAY 43-9006 and gefitinib in patients with refractory or recurrent non-small-cell lung cancer (NSCLC) J Clin Oncol. 2005;23(16S):3067. [Google Scholar]
  • 33.Klos KS, Wyszomierski SL, Sun M, et al. ErbB2 increases vascular endothelial growth factor protein synthesis via activation of mammalian target of rapamycin/p70S6K leading to increased angiogenesis and spontaneousmetastasis of human breast cancer cells. Cancer Res. 2006;66(4):2028–2037. doi: 10.1158/0008-5472.CAN-04-4559. [DOI] [PubMed] [Google Scholar]
  • 34.Hu JH, Li DQ. Expression and clinical significance of p-Tyr, p-Akt and p-p70S6K in breast carcinoma. J Clin Exp Pathol. 2009;25(3):260–263. [Google Scholar]; 胡 江辉, 李 代强. 乳腺癌组织中p-Tyr、p-Akt和p-p70S6K的表达及其临床意义. 临床与实验病理学杂志. 2009;25(3):260–263. [Google Scholar]
  • 35.Peng GZ, Wu B, Shan RF, et al. Expression and clinical significance of mTOR/P70S6K signaling pathway in hepatocellular carcinoma. World J Gastroenterol. 2008;16(29):3279–3282. doi: 10.3969/j.issn.1009-3079.2008.29.006. [DOI] [Google Scholar]; 彭 贵主, 吴 波, 单 人锋, et al. mTOR/P70S6K信号通路在肝细胞肝癌中的表达及临床意义. 世界华人消化杂志. 2008;16(29):3279–3282. doi: 10.3969/j.issn.1009-3079.2008.29.006. [DOI] [Google Scholar]
  • 36.Shen J, Behrens C, Wistuba II, et al. Identification and validation of differences in protein levels in normal, premalignant, and malignant lung cells and tissues using high-throughput western array and immunohistochemistry. Cancer Res. 2006;66(23):11194–11206. doi: 10.1158/0008-5472.CAN-04-1444. [DOI] [PubMed] [Google Scholar]

Articles from Chinese Journal of Lung Cancer are provided here courtesy of Editorial office of Chinese Journal of Lung Cancer

RESOURCES