Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 May 15;74(Pt 6):786–790. doi: 10.1107/S2056989018006394

Synthesis and structure of an aryl­selenenium(II) cation, [C34H41N4Se+]2[Hg(SeCN)4]2−, based on a 5-tert-butyl-1,3-bis­(1-pentyl-1H-benzimidazol-2-yl)benzene scaffold

Varsha Rani a, Harkesh B Singh a, Ray J Butcher b,*
PMCID: PMC6002820  PMID: 29951230

In [C34H41N4Se+]2[Hg(SeCN)4]2−, the aryl­selenenium cations, [C34H41N4Se]+, and [Hg(SeCN)4]2− anions are linked by C—H⋯N hydrogen bonds. In the cation, the geometry around the Se atom is T-shaped, resulting from the coordination of Se by the C atom of the central aromatic ring and the N atoms of the benzimidazolyl moieties.

Keywords: crystal structure, aryl­selenenium(II) cation, tetra­seleno­cyanate­mercury(II) anion

Abstract

In the title salt, bis­{[5-tert-butyl-1,3-bis­(1-pentyl-1H-benzimidazol-2-yl)benzene]selenium} tetra­kis­(seleno­cyanato)­mercury, (C34H41N4Se)2[Hg(SeCN)4], the aryl­selenenium cations, [C34H41N4Se]+, are linked through [Hg(SeCN)4]2− anions by C—H⋯N hydrogen bonds. In the cation, the geometry around the Se atom in the 5-tert-butyl-1,3-bis­(1-pentyl-1H-benzimidazol-2-yl)benzene scaffold is T-shaped, resulting from the coordination of Se by the C atom of the central aromatic ring and the N atoms of both of the benzimidazole moieties. The trans Se—N bond lengths are almost equal [2.087 (3) and 2.099 (3) Å] and the Se—C bond length is 1.886 (3) Å. The N—Se—N angle is 159.29 (11)°. The geometry around the HgII atom in the [Hg(SeCN)4]2− anion is distorted tetra­hedral, with Se—Hg—Se angles ranging from 88.78 (3) to 126.64 (2)°. In [Hg(SeCN)4]2−, the Hg—Se bonds are unsymmetrical [2.5972 (4) and 2.7242 (5) Å]. One of the pentyl substituents is disordered over two equivalent conformations, with occupancies of 0.852 (8) and 0.148 (8).

Chemical context  

Over the past two decades, organochalcogen chemistry has gained the attention of synthetic chemists because of its promising utility in biomimetic chemistry (Mugesh & Singh, 2000; Zhao et al., 2012; Bhuyan & Mugesh, 2012), synthetic organic chemistry (Back 1999; Singh & Wirth, 2012; Chivers & Laitinen, 2015) and material science (Manjare et al., 2014; Kremer et al., 2015). The first stable selenenium cation complex, [2,6-(Me2NCH2)2C6H3Se]+[PF6], was isolated while attempting the synthesis of the respective oxides from the reaction of 2,6-bis­[(di­methyl­amino)­meth­yl]phenyl methyl selenide with t-BuOCl (Fujihara et al., 1995). In the literature, examples of aryl­selenenium(II) cations are limited to a basic scaffold, the [2,6-bis­(di­methyl­amino­meth­yl)phen­yl]sel­enen­ium moiety, which is stabilized by different counter-anions [Cl, Br, I (Pop et al., 2014) and HF2 (Poleschner & Seppelt, 2004)].

Our group has been active in the area of synthesis and isolation of novel, unstable aryl­chalcogen derivatives featuring intra­molecular inter­actions (ED; E = S, Se, Te and D = N, O) between chalcogen heteroatoms by using either one or two coordinating groups (Zade et al., 2004a ,b ; Selvakumar et al., 2011a ,b ,c ,d ; Singh et al., 2011; Prasad et al., 2016). Recently, and for the first time, we have shown the use of the bis-benzimidazole group to isolate an organometallic derivative of a non-transition metal where 1,3-bis­(N-substituted benzimidazol-2′-yl)benzene has been used as a pincer ligand with chalcogens (Rani et al., 2018a ).

As far as the synthesis of transition metal complexes with the bis-benzimidazole group is concerned, there are several reports in the literature for platinum(II) pincer complexes with similar kinds of scaffolds. Some of these were investigated for their photoluminescence properties (Wang et al., 2014; Dorazco-González, 2014; Chan et al., 2016). Recently, we also reported some palladium(II) pincer complexes with a 1,3-bis­(N-substituted benzimidazol-2′-yl)benzene-based ligand. In all the cases, we found that the transition metal complexes were quite stable and in no case was auto-ionization observed (Rani et al., 2018b ).

In an attempt to synthesize {4-(tert-but­yl)-2,6-bis­(1-pentyl-1H-benzo[d]imidazol-2-yl)phen­yl}(seleno­cyanato)­mercury (3), [4-tert-butyl-2,6-bis­(1-pentyl-1H-benzimidazol-2-yl)phen­yl]mercury(II) chloride (1) was reacted with potassium seleno­cyanate in 1,4-dioxane under reflux conditions. It was observed that, instead of the formation of the desired compound, the reaction leads to the isolation of an aryl­selenenium(II) cation via auto-ionization (Scheme 1). The procedure for the synthesis of complex 1 will be reported elsewhere. A plausible mechanism for the formation of complex 2 is shown in Scheme 2. Organomercury complex 1 reacts with potassium seleno­cyanate to form the desired product 3 with potassium chloride as a by-product. However, if complex II is unstable, mercury may be eliminated in elemental form via a reductive elimination pathway to form inter­mediate III. Strong secondary bonding inter­actions between Se⋯N atoms may facilitate auto-ionization and the formation of an aryl­selenenium cation with CN as the counter-anion IV. In the presence of a polar protic solvent, there is the possibility of decomposition of organomercury complex 1 to give the free ligand along with HgCl2 and Hg(OMe)2 as by-products.graphic file with name e-74-00786-scheme1.jpg

HgCl2 reacts with an excess of KSeCN to form K2[Hg(SeCN)4] (Space & Armeanu, 1930). Two selenenium cations can then associate with the [Hg(SeCN)4]2− anion to form complex 2. Since we only used one equivalent of potassium seleno­cyanate for the reaction, the product was obtained in low yield (11%).graphic file with name e-74-00786-scheme3.jpg graphic file with name e-74-00786-scheme2.jpg

Structural commentary  

The title compound, 2, crystallizes in the monoclinic space group C2/c. The asymmetric unit contains a selenenium cation along with half of a [Hg(SeCN)4]2− anion with the Hg atom located on a crystallographic twofold axis (Fig. 1). In the cation, the coordination geometry around Se is T-shaped with each Se atom bonded to the central carbon atom of the aromatic ring and intra­molecularly coordinated to the two N atoms. This coordination gives rise to a hepta­cyclic framework. The tetra­cyano­seleno­mercurate anion [Hg(SeCN)4]2− is sandwiched between two aryl­selenenium cationic units. The observed Se—C bond length is 1.886 (3) Å, which is comparable with that found for a NCN pincer-based selenenium cation [2,6-(Me2NCH2)2C6H3Se]+[PF6] (1.874 Å; Furukawa et al., 1995), and an OCN pincer-based selenenium cation [2-NO2,6-(C6H5N=CH)C6H3Se]+[Br3] (1.84 Å). The Se3—N1 and Se3—N2 bond lengths are almost equal [2.087 (3) and 2.099 (3) Å]. The Se—N distances are shorter than the sum of the van der Waals radii for Se and N [Σrvdw(Se,N) 3.45 Å] and longer than the covalent radii [Σrcov(Se,N) 1.91 Å] (Bondi, 1964). This implies stronger intra­molecular Se⋯N inter­actions in the selenenium cation. The N1—Se3—N2 bond angle is found to be 159.29 (11)°. In related mol­ecules (Rani et al., 2017a ,b ,c ), in the absence of coordinated Hg or Se atoms, the benzimidazole arms are twisted significantly out of the plane of the central phenyl ring. However, in the present structure, as a result of the inter­action with Se, the two benzimid­azole arms are almost in the plane of the central phenyl ring [dihedral angles of 3.10 (16) and 7.18 (19)°]. The Se atom is displaced by 0.116 (4) Å from the plane of the central phenyl ring. The atoms involved in the chelating system (N2, C11, C6, C1, C2, C11A, N1) form a plane (r.m.s deviation for fitted atoms of 0.0182 Å) with the Se in this plane [deviation from the plane of 0.011 (2) Å].

Figure 1.

Figure 1

A view of the structure of the title compound, showing the atom-labelling scheme and the disorder in the pentyl side chain. Displacement ellipsoids are drawn at the 50% probability level. Symmetry code for generating equivalent atoms: 1 − x, y, Inline graphic − z.

In the anion, the mercury atom is coordinated by four seleno­cyanate anions (two are crystallographically unique) and the geometry around the mercury atom is distorted tetra­hedral with Se—Hg—Se angles ranging from 88.78 (3) to 126.64 (2)°. The tetra­cyano­seleno­mercurate anion [Hg(SeCN)4]2− acts as a bridging moiety between two selenenium cationic units. The Se3⋯Se2(−x, −y, 1 − z) distance is 4.189 (2) Å and the C1—Se3⋯Se2(−x, −y, 1 − z) angle is 163.40 (9)°, which indicates that there is a weak secondary inter­action between the two different kinds of Se atoms in the cation and anion (Se3 and Se2). In the [Hg(SeCN)4]2− anion, two sets of Hg—Se bonds exist. One set is shorter [2.5972 (4) Å] and the other set is longer [2.7242 (5) Å]. The Hg–SeCN moieties are not linear, with Hg—Se—C angles of 101.31 (14) and 101.43 (11)°.

Supra­molecular features  

In the crystal, the mol­ecules are arranged in a parallel fashion along the b-axis direction as shown in Fig. 2. These parallel units are stacked together by C18—H18A⋯N1S and C18A—H18C⋯N2S inter­actions (numerical details are given in Table 1) and π–π stacking inter­actions between the benzimidazole rings (centroid–centroid distances = 3.535 Å).

Figure 2.

Figure 2

Packing diagram viewed along the b axis. C—H⋯N inter­actions linking the cations and anions are shown as dashed lines. Only the major disorder component is shown for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C18—H18A⋯N1S i 0.99 2.62 3.568 (5) 160
C18A—H18C⋯N2S 0.99 2.38 3.324 (8) 159
C18B—H18F⋯N2S 0.99 2.22 3.06 (6) 142

Symmetry code: (i) Inline graphic.

Database survey  

There are no structural reports in the literature on a [phenyl­enebis(benzimidazole)]selenenium cation. However, there have been several reports of structures containing [Hg(SeCN)x]2− moieties [CICLOP, Brodersen et al. 1984; LENHES, Li et al., 2006a ; LENHES01, Sun et al., 2005; MURQOH, Li et al., 2006b ; PUMVAU, Kushch, et al., 1998; WUYGUU, Sun et al., 2013; YIHKUV, Shibaeva et al. 1994; YIHKUV01, Shibaeva et al. 1997]

Synthesis and crystallization  

To a solution of 1 (0.2 g, 0.269 mmol) in 1,4-dioxane (30 ml) was added potassium seleno­cyanate (0.039 g, 0.270 mmol) dissolved in MeOH. The reaction mixture was stirred for 6 h under a nitro­gen atmosphere and refluxed. The reaction mixture was filtered and the precipitate was washed with dioxane. Colourless prism-shaped crystals of 2 were obtained by layering a MeOH solution with diethyl ether at room temperature.

Yield 11% (0.058 g, 0.036 mmol); m. p. turned blackish after 423 K was reached. FT–IR (KBr) (cm−1): 3059 (w), 2957 (s), 2931 (s), 2869 (s), 2124 (s, needle-like, C≡N), 1614 (m), 1464 (s), 1458 (s), 1440 (s), 1330 (w), 1288 (w), 1273 (w), 1154 (w), 1137 (w), 1011 (w), 892 (w), 746 (s). ESI–MS: m/z calculated for C34H41N4Se: 585.2496. Found: 585.2552.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H distances ranging from 0.95 to 0.99 Å. U iso(H) = xUeq(C), where x = 1.5 for methyl H atoms and 1.2 for all other C-bound H atoms. One of the pentyl substituents is disordered with an occupancy ratio of 0.852 (8):0.148 (8). It was refined as two equivalent conformations using SAME and SIMU instructions (SAME 0.01 and SIMU 0.01).

Table 2. Experimental details.

Crystal data
Chemical formula (C34H41N4Se)2[Hg(CNSe)4]
M r 1789.84
Crystal system, space group Monoclinic, C2/c
Temperature (K) 100
a, b, c (Å) 12.7788 (15), 27.276 (3), 20.180 (3)
β (°) 95.591 (2)
V3) 7000.4 (15)
Z 4
Radiation type Mo Kα
μ (mm−1) 5.37
Crystal size (mm) 0.24 × 0.23 × 0.19
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2002)
T min, T max 0.267, 0.336
No. of measured, independent and observed [I > 2σ(I)] reflections 46553, 9030, 8196
R int 0.095
(sin θ/λ)max−1) 0.676
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.040, 0.097, 1.03
No. of reflections 9030
No. of parameters 463
No. of restraints 147
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 1.97, −2.10

Computer programs: APEX2 (Bruker, 2005), SAINT and XPREP (Bruker, 2002), SHELXT (Sheldrick, 2015a ), SHELXL2018 (Sheldrick, 2015b ) and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018006394/zl2726sup1.cif

e-74-00786-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006394/zl2726Isup2.hkl

e-74-00786-Isup2.hkl (717.1KB, hkl)

CCDC reference: 1839609

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

(C34H41N4Se)2[Hg(CNSe)4] F(000) = 3528
Mr = 1789.84 Dx = 1.698 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 12.7788 (15) Å Cell parameters from 9623 reflections
b = 27.276 (3) Å θ = 2.4–28.8°
c = 20.180 (3) Å µ = 5.37 mm1
β = 95.591 (2)° T = 100 K
V = 7000.4 (15) Å3 Prism, colorless
Z = 4 0.24 × 0.23 × 0.19 mm

Data collection

Bruker APEXII CCD diffractometer 8196 reflections with I > 2σ(I)
ω scans Rint = 0.095
Absorption correction: multi-scan (SADABS; Bruker, 2002) θmax = 28.7°, θmin = 3.2°
Tmin = 0.267, Tmax = 0.336 h = −17→17
46553 measured reflections k = −36→36
9030 independent reflections l = −26→27

Refinement

Refinement on F2 147 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.040 H-atom parameters constrained
wR(F2) = 0.097 w = 1/[σ2(Fo2) + (0.0353P)2 + 29.0826P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max = 0.002
9030 reflections Δρmax = 1.97 e Å3
463 parameters Δρmin = −2.10 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Hg1 0.500000 0.26306 (2) 0.750000 0.02668 (6)
Se1 0.34755 (3) 0.22031 (2) 0.67740 (2) 0.03961 (11)
Se2 0.60087 (4) 0.33443 (2) 0.68639 (3) 0.06039 (16)
C1S 0.3559 (3) 0.15796 (14) 0.7105 (2) 0.0329 (8)
N1S 0.3565 (3) 0.11791 (14) 0.7281 (2) 0.0530 (11)
C2S 0.5511 (4) 0.32426 (16) 0.6025 (3) 0.0527 (14)
N2S 0.5206 (5) 0.3180 (2) 0.5468 (3) 0.0818 (18)
Se3 0.35746 (3) 0.55143 (2) 0.44746 (2) 0.02529 (8)
C1 0.3163 (3) 0.49229 (12) 0.48583 (17) 0.0246 (7)
N1 0.4520 (2) 0.50194 (11) 0.40157 (15) 0.0268 (6)
N2 0.2460 (2) 0.57747 (10) 0.50876 (15) 0.0266 (6)
C2 0.3607 (3) 0.44802 (12) 0.46652 (17) 0.0253 (7)
N3 0.1405 (2) 0.56201 (11) 0.58694 (16) 0.0266 (6)
C3 0.3253 (3) 0.40392 (13) 0.49273 (18) 0.0274 (7)
H3 0.355121 0.373771 0.480319 0.033*
N4 0.5031 (2) 0.42500 (11) 0.39049 (15) 0.0258 (6)
C4 0.2474 (3) 0.40351 (12) 0.53656 (18) 0.0268 (7)
C5 0.2061 (3) 0.44847 (12) 0.55594 (18) 0.0264 (7)
H5 0.153811 0.448618 0.586325 0.032*
C6 0.2404 (3) 0.49287 (12) 0.53141 (17) 0.0244 (7)
C7 0.2071 (3) 0.35552 (12) 0.56442 (19) 0.0289 (7)
C8 0.2489 (4) 0.35045 (15) 0.6371 (2) 0.0415 (10)
H8A 0.220563 0.320554 0.655474 0.062*
H8B 0.227426 0.378964 0.661992 0.062*
H8C 0.325862 0.348547 0.640679 0.062*
C9 0.2425 (5) 0.31052 (15) 0.5271 (3) 0.0593 (15)
H9A 0.319392 0.310115 0.528966 0.089*
H9B 0.212572 0.311945 0.480534 0.089*
H9C 0.218126 0.280689 0.547898 0.089*
C10 0.0862 (4) 0.35594 (18) 0.5592 (4) 0.0672 (18)
H10A 0.060786 0.324118 0.573535 0.101*
H10B 0.058519 0.362129 0.513002 0.101*
H10C 0.062382 0.381828 0.587900 0.101*
C11 0.2057 (3) 0.54262 (12) 0.54487 (18) 0.0253 (7)
C12 0.1378 (3) 0.61244 (13) 0.57613 (19) 0.0276 (7)
C13 0.0821 (3) 0.64909 (14) 0.6057 (2) 0.0352 (8)
H13 0.038815 0.642379 0.640317 0.042*
C14 0.0942 (3) 0.69620 (15) 0.5809 (2) 0.0417 (10)
H14 0.057845 0.722574 0.599213 0.050*
C15 0.1576 (3) 0.70585 (14) 0.5305 (2) 0.0389 (9)
H15 0.162170 0.738592 0.514960 0.047*
C16 0.2146 (3) 0.66971 (13) 0.5018 (2) 0.0325 (8)
H16 0.258323 0.676713 0.467486 0.039*
C17 0.2036 (3) 0.62215 (12) 0.52651 (19) 0.0266 (7)
C18 0.0780 (3) 0.53739 (13) 0.63476 (18) 0.0275 (7)
H18A 0.078020 0.557671 0.675445 0.033*
H18B 0.110525 0.505402 0.647584 0.033*
C19 −0.0355 (3) 0.52925 (14) 0.60471 (18) 0.0317 (8)
H19C −0.069910 0.561405 0.595627 0.038*
H19D −0.035131 0.511632 0.561841 0.038*
C20 −0.0988 (3) 0.49959 (14) 0.65154 (19) 0.0336 (8)
H20C −0.084659 0.512629 0.697324 0.040*
H20D −0.174743 0.503795 0.637724 0.040*
C21 −0.0724 (3) 0.44565 (15) 0.6518 (2) 0.0376 (9)
H21C 0.003550 0.441622 0.665720 0.045*
H21D −0.085951 0.432855 0.605869 0.045*
C22 −0.1347 (3) 0.41508 (18) 0.6977 (2) 0.0482 (11)
H22D −0.125713 0.428832 0.742783 0.072*
H22E −0.108927 0.381218 0.698705 0.072*
H22F −0.209348 0.415560 0.681153 0.072*
C11A 0.4382 (3) 0.45556 (13) 0.42009 (17) 0.0257 (7)
C12A 0.5610 (3) 0.45354 (14) 0.35008 (18) 0.0276 (7)
C13A 0.6369 (3) 0.44094 (15) 0.30797 (18) 0.0303 (8)
H13A 0.658408 0.407932 0.302826 0.036*
C14A 0.6792 (3) 0.47904 (16) 0.2740 (2) 0.0360 (9)
H14A 0.731050 0.472026 0.244678 0.043*
C15A 0.6474 (3) 0.52805 (16) 0.2819 (2) 0.0355 (9)
H15A 0.678307 0.553194 0.257699 0.043*
C16A 0.5729 (3) 0.54032 (15) 0.3238 (2) 0.0325 (8)
H16A 0.552318 0.573426 0.329275 0.039*
C17A 0.5288 (3) 0.50248 (13) 0.35761 (18) 0.0278 (7)
C18A 0.5203 (10) 0.3728 (3) 0.3997 (3) 0.0244 (14) 0.852 (8)
H18C 0.510020 0.364134 0.446248 0.029* 0.852 (8)
H18D 0.594009 0.365117 0.392479 0.029* 0.852 (8)
C19A 0.4470 (8) 0.3412 (3) 0.3527 (5) 0.0277 (9) 0.852 (8)
H19A 0.450494 0.352300 0.306284 0.033* 0.852 (8)
H19B 0.373681 0.345283 0.363775 0.033* 0.852 (8)
C20A 0.4781 (4) 0.2871 (3) 0.3588 (4) 0.0309 (12) 0.852 (8)
H20A 0.478389 0.276876 0.405842 0.037* 0.852 (8)
H20B 0.424614 0.267235 0.332065 0.037* 0.852 (8)
C21A 0.5855 (4) 0.27671 (18) 0.3354 (3) 0.0380 (11) 0.852 (8)
H21A 0.640296 0.291481 0.367370 0.046* 0.852 (8)
H21B 0.589821 0.292579 0.291671 0.046* 0.852 (8)
C22A 0.6079 (5) 0.2223 (2) 0.3291 (3) 0.0549 (16) 0.852 (8)
H22A 0.604420 0.206332 0.372400 0.082* 0.852 (8)
H22B 0.678187 0.217741 0.314583 0.082* 0.852 (8)
H22C 0.555409 0.207595 0.296356 0.082* 0.852 (8)
C18B 0.517 (6) 0.3685 (19) 0.411 (3) 0.025 (3) 0.148 (8)
H18E 0.592583 0.359205 0.414384 0.031* 0.148 (8)
H18F 0.490086 0.362428 0.454562 0.031* 0.148 (8)
C19B 0.455 (5) 0.3390 (17) 0.356 (3) 0.028 (3) 0.148 (8)
H19E 0.379655 0.348402 0.354008 0.034* 0.148 (8)
H19F 0.480373 0.347037 0.312626 0.034* 0.148 (8)
C20B 0.4652 (19) 0.2838 (16) 0.368 (2) 0.031 (3) 0.148 (8)
H20E 0.431322 0.275516 0.409056 0.037* 0.148 (8)
H20F 0.426915 0.266244 0.330620 0.037* 0.148 (8)
C21B 0.5777 (19) 0.2659 (10) 0.3768 (12) 0.036 (3) 0.148 (8)
H21E 0.577496 0.230268 0.386154 0.043* 0.148 (8)
H21F 0.614890 0.282350 0.415953 0.043* 0.148 (8)
C22B 0.639 (2) 0.2747 (12) 0.3169 (13) 0.042 (5) 0.148 (8)
H22G 0.700518 0.253336 0.319720 0.064* 0.148 (8)
H22H 0.661217 0.309070 0.316499 0.064* 0.148 (8)
H22I 0.593579 0.267534 0.275995 0.064* 0.148 (8)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Hg1 0.02158 (9) 0.01884 (9) 0.03905 (12) 0.000 −0.00001 (7) 0.000
Se1 0.03104 (19) 0.02352 (18) 0.0598 (3) −0.00375 (14) −0.01827 (18) 0.00848 (17)
Se2 0.0556 (3) 0.0361 (2) 0.0907 (4) −0.0220 (2) 0.0137 (3) 0.0094 (3)
C1S 0.0283 (17) 0.0288 (18) 0.040 (2) −0.0052 (14) −0.0040 (15) 0.0027 (16)
N1S 0.061 (3) 0.0317 (19) 0.061 (3) −0.0115 (17) −0.018 (2) 0.0078 (18)
C2S 0.053 (3) 0.031 (2) 0.080 (4) 0.0182 (19) 0.033 (3) 0.033 (2)
N2S 0.110 (4) 0.076 (3) 0.066 (3) 0.052 (3) 0.038 (3) 0.045 (3)
Se3 0.02258 (15) 0.02116 (16) 0.03000 (18) −0.00393 (12) −0.00818 (13) 0.00354 (13)
C1 0.0241 (15) 0.0218 (15) 0.0252 (16) −0.0042 (12) −0.0106 (13) 0.0045 (13)
N1 0.0242 (13) 0.0267 (14) 0.0279 (15) −0.0031 (11) −0.0055 (11) 0.0037 (12)
N2 0.0218 (13) 0.0233 (13) 0.0332 (16) −0.0014 (11) −0.0054 (11) 0.0018 (12)
C2 0.0263 (16) 0.0235 (16) 0.0239 (16) −0.0023 (13) −0.0086 (13) 0.0013 (13)
N3 0.0264 (14) 0.0214 (13) 0.0309 (15) −0.0033 (11) −0.0034 (11) 0.0008 (12)
C3 0.0312 (17) 0.0218 (15) 0.0278 (17) −0.0018 (13) −0.0048 (14) −0.0008 (13)
N4 0.0255 (13) 0.0251 (14) 0.0250 (14) −0.0026 (11) −0.0060 (11) −0.0002 (11)
C4 0.0305 (17) 0.0209 (15) 0.0270 (17) −0.0064 (13) −0.0068 (13) 0.0006 (13)
C5 0.0267 (16) 0.0242 (16) 0.0265 (17) −0.0043 (13) −0.0062 (13) −0.0007 (13)
C6 0.0232 (15) 0.0226 (15) 0.0250 (16) −0.0017 (12) −0.0106 (12) 0.0028 (13)
C7 0.0363 (18) 0.0184 (15) 0.0319 (18) −0.0026 (13) 0.0025 (14) −0.0024 (14)
C8 0.062 (3) 0.0283 (19) 0.034 (2) −0.0092 (18) 0.0025 (19) 0.0041 (16)
C9 0.108 (4) 0.0217 (19) 0.054 (3) −0.021 (2) 0.037 (3) −0.0152 (19)
C10 0.036 (2) 0.039 (2) 0.123 (5) −0.015 (2) −0.010 (3) 0.028 (3)
C11 0.0218 (15) 0.0236 (15) 0.0282 (17) −0.0026 (12) −0.0103 (13) −0.0001 (13)
C12 0.0273 (16) 0.0226 (16) 0.0309 (18) −0.0013 (13) −0.0067 (13) 0.0013 (14)
C13 0.040 (2) 0.0285 (18) 0.038 (2) −0.0022 (16) 0.0052 (16) 0.0005 (16)
C14 0.045 (2) 0.0262 (18) 0.055 (3) 0.0020 (17) 0.0071 (19) −0.0025 (18)
C15 0.038 (2) 0.0216 (17) 0.057 (3) −0.0031 (15) 0.0064 (19) 0.0032 (17)
C16 0.0283 (17) 0.0247 (17) 0.044 (2) −0.0057 (14) −0.0006 (15) 0.0043 (16)
C17 0.0242 (15) 0.0202 (15) 0.0336 (18) −0.0017 (12) −0.0062 (13) −0.0014 (13)
C18 0.0272 (16) 0.0271 (17) 0.0264 (17) −0.0041 (13) −0.0066 (13) 0.0012 (14)
C19 0.0244 (16) 0.039 (2) 0.0294 (18) −0.0047 (14) −0.0076 (14) 0.0019 (16)
C20 0.0272 (17) 0.043 (2) 0.0294 (18) −0.0078 (15) −0.0048 (14) −0.0012 (16)
C21 0.0316 (19) 0.043 (2) 0.037 (2) −0.0084 (16) −0.0023 (16) 0.0050 (17)
C22 0.039 (2) 0.054 (3) 0.051 (3) −0.012 (2) 0.0008 (19) 0.013 (2)
C11A 0.0243 (15) 0.0275 (16) 0.0236 (16) −0.0007 (13) −0.0061 (12) 0.0011 (13)
C12A 0.0242 (15) 0.0329 (18) 0.0234 (16) −0.0031 (13) −0.0100 (13) 0.0001 (14)
C13A 0.0249 (16) 0.039 (2) 0.0251 (17) 0.0003 (14) −0.0074 (13) 0.0012 (15)
C14A 0.0230 (16) 0.053 (2) 0.0300 (19) −0.0047 (16) −0.0060 (14) 0.0019 (17)
C15A 0.0292 (18) 0.044 (2) 0.0311 (19) −0.0082 (16) −0.0074 (15) 0.0083 (17)
C16A 0.0280 (17) 0.0344 (19) 0.0331 (19) −0.0037 (15) −0.0071 (14) 0.0056 (16)
C17A 0.0234 (15) 0.0304 (17) 0.0274 (17) −0.0021 (13) −0.0084 (13) 0.0027 (14)
C18A 0.026 (2) 0.024 (2) 0.022 (3) 0.0008 (18) −0.005 (3) 0.004 (2)
C19A 0.026 (2) 0.028 (2) 0.028 (2) 0.0015 (16) −0.0036 (17) −0.0035 (18)
C20A 0.034 (2) 0.027 (2) 0.030 (3) −0.0015 (18) −0.0016 (18) −0.0035 (19)
C21A 0.043 (3) 0.037 (2) 0.034 (2) 0.013 (2) 0.002 (2) −0.001 (2)
C22A 0.069 (4) 0.049 (3) 0.047 (3) 0.024 (3) 0.004 (3) −0.005 (3)
C18B 0.026 (6) 0.024 (6) 0.026 (6) 0.003 (6) −0.001 (6) 0.000 (6)
C19B 0.028 (5) 0.028 (5) 0.027 (5) 0.002 (5) −0.004 (5) −0.002 (5)
C20B 0.033 (5) 0.030 (5) 0.029 (5) 0.005 (5) 0.000 (5) −0.004 (5)
C21B 0.039 (5) 0.034 (5) 0.033 (5) 0.005 (5) −0.002 (5) −0.004 (5)
C22B 0.042 (10) 0.048 (10) 0.037 (10) 0.011 (9) 0.003 (9) −0.008 (9)

Geometric parameters (Å, º)

Hg1—Se1 2.5972 (4) C18—C19 1.533 (4)
Hg1—Se1i 2.5972 (4) C18—H18A 0.9900
Hg1—Se2 2.7242 (5) C18—H18B 0.9900
Hg1—Se2i 2.7242 (5) C19—C20 1.533 (5)
Se1—C1S 1.826 (4) C19—H19C 0.9900
Se2—C2S 1.771 (7) C19—H19D 0.9900
C1S—N1S 1.149 (5) C20—C21 1.509 (5)
C2S—N2S 1.165 (8) C20—H20C 0.9900
Se3—C1 1.886 (3) C20—H20D 0.9900
Se3—N1 2.087 (3) C21—C22 1.527 (5)
Se3—N2 2.099 (3) C21—H21C 0.9900
C1—C6 1.400 (5) C21—H21D 0.9900
C1—C2 1.405 (5) C22—H22D 0.9800
N1—C11A 1.336 (4) C22—H22E 0.9800
N1—C17A 1.386 (5) C22—H22F 0.9800
N2—C11 1.332 (5) C12A—C13A 1.393 (5)
N2—C17 1.395 (4) C12A—C17A 1.410 (5)
C2—C3 1.406 (5) C13A—C14A 1.384 (6)
C2—C11A 1.443 (5) C13A—H13A 0.9500
N3—C11 1.353 (5) C14A—C15A 1.410 (6)
N3—C12 1.393 (4) C14A—H14A 0.9500
N3—C18 1.473 (5) C15A—C16A 1.375 (6)
C3—C4 1.394 (5) C15A—H15A 0.9500
C3—H3 0.9500 C16A—C17A 1.387 (5)
N4—C11A 1.355 (5) C16A—H16A 0.9500
N4—C12A 1.392 (5) C18A—C19A 1.530 (5)
N4—C18A 1.450 (9) C18A—H18C 0.9900
N4—C18B 1.60 (5) C18A—H18D 0.9900
C4—C5 1.406 (5) C19A—C20A 1.530 (5)
C4—C7 1.534 (5) C19A—H19A 0.9900
C5—C6 1.395 (5) C19A—H19B 0.9900
C5—H5 0.9500 C20A—C21A 1.520 (6)
C6—C11 1.461 (5) C20A—H20A 0.9900
C7—C8 1.517 (6) C20A—H20B 0.9900
C7—C9 1.531 (5) C21A—C22A 1.520 (6)
C7—C10 1.537 (6) C21A—H21A 0.9900
C8—H8A 0.9800 C21A—H21B 0.9900
C8—H8B 0.9800 C22A—H22A 0.9800
C8—H8C 0.9800 C22A—H22B 0.9800
C9—H9A 0.9800 C22A—H22C 0.9800
C9—H9B 0.9800 C18B—C19B 1.531 (9)
C9—H9C 0.9800 C18B—H18E 0.9900
C10—H10A 0.9800 C18B—H18F 0.9900
C10—H10B 0.9800 C19B—C20B 1.529 (9)
C10—H10C 0.9800 C19B—H19E 0.9900
C12—C13 1.394 (5) C19B—H19F 0.9900
C12—C17 1.394 (5) C20B—C21B 1.512 (10)
C13—C14 1.393 (6) C20B—H20E 0.9900
C13—H13 0.9500 C20B—H20F 0.9900
C14—C15 1.387 (6) C21B—C22B 1.519 (10)
C14—H14 0.9500 C21B—H21E 0.9900
C15—C16 1.386 (6) C21B—H21F 0.9900
C15—H15 0.9500 C22B—H22G 0.9800
C16—C17 1.402 (5) C22B—H22H 0.9800
C16—H16 0.9500 C22B—H22I 0.9800
Se1—Hg1—Se1i 126.637 (19) H19C—C19—H19D 108.0
Se1—Hg1—Se2 114.732 (19) C21—C20—C19 112.7 (3)
Se1i—Hg1—Se2 102.907 (18) C21—C20—H20C 109.1
Se1—Hg1—Se2i 102.908 (18) C19—C20—H20C 109.1
Se1i—Hg1—Se2i 114.732 (19) C21—C20—H20D 109.1
Se2—Hg1—Se2i 88.78 (3) C19—C20—H20D 109.1
C1S—Se1—Hg1 101.43 (11) H20C—C20—H20D 107.8
C2S—Se2—Hg1 101.31 (14) C20—C21—C22 113.9 (4)
N1S—C1S—Se1 175.7 (4) C20—C21—H21C 108.8
N2S—C2S—Se2 178.3 (5) C22—C21—H21C 108.8
C1—Se3—N1 79.95 (14) C20—C21—H21D 108.8
C1—Se3—N2 79.34 (14) C22—C21—H21D 108.8
N1—Se3—N2 159.29 (11) H21C—C21—H21D 107.7
C6—C1—C2 121.1 (3) C21—C22—H22D 109.5
C6—C1—Se3 119.9 (3) C21—C22—H22E 109.5
C2—C1—Se3 119.0 (3) H22D—C22—H22E 109.5
C11A—N1—C17A 108.1 (3) C21—C22—H22F 109.5
C11A—N1—Se3 113.0 (2) H22D—C22—H22F 109.5
C17A—N1—Se3 138.9 (2) H22E—C22—H22F 109.5
C11—N2—C17 107.6 (3) N1—C11A—N4 110.9 (3)
C11—N2—Se3 113.7 (2) N1—C11A—C2 115.8 (3)
C17—N2—Se3 138.6 (2) N4—C11A—C2 133.4 (3)
C1—C2—C3 118.5 (3) N4—C12A—C13A 131.4 (4)
C1—C2—C11A 112.3 (3) N4—C12A—C17A 106.8 (3)
C3—C2—C11A 129.2 (3) C13A—C12A—C17A 121.8 (4)
C11—N3—C12 107.2 (3) C14A—C13A—C12A 116.5 (4)
C11—N3—C18 129.7 (3) C14A—C13A—H13A 121.8
C12—N3—C18 123.1 (3) C12A—C13A—H13A 121.8
C4—C3—C2 121.4 (3) C13A—C14A—C15A 121.7 (4)
C4—C3—H3 119.3 C13A—C14A—H14A 119.2
C2—C3—H3 119.3 C15A—C14A—H14A 119.2
C11A—N4—C12A 107.3 (3) C16A—C15A—C14A 121.6 (4)
C11A—N4—C18A 129.7 (5) C16A—C15A—H15A 119.2
C12A—N4—C18A 122.8 (5) C14A—C15A—H15A 119.2
C11A—N4—C18B 122 (3) C15A—C16A—C17A 117.4 (4)
C12A—N4—C18B 129 (3) C15A—C16A—H16A 121.3
C3—C4—C5 118.7 (3) C17A—C16A—H16A 121.3
C3—C4—C7 121.7 (3) N1—C17A—C16A 132.1 (4)
C5—C4—C7 119.6 (3) N1—C17A—C12A 107.0 (3)
C6—C5—C4 121.3 (4) C16A—C17A—C12A 121.0 (4)
C6—C5—H5 119.4 N4—C18A—C19A 113.4 (6)
C4—C5—H5 119.4 N4—C18A—H18C 108.9
C5—C6—C1 119.0 (3) C19A—C18A—H18C 108.9
C5—C6—C11 129.0 (3) N4—C18A—H18D 108.9
C1—C6—C11 112.0 (3) C19A—C18A—H18D 108.9
C8—C7—C9 108.0 (4) H18C—C18A—H18D 107.7
C8—C7—C4 109.4 (3) C18A—C19A—C20A 110.8 (4)
C9—C7—C4 112.2 (3) C18A—C19A—H19A 109.5
C8—C7—C10 108.9 (4) C20A—C19A—H19A 109.5
C9—C7—C10 108.4 (4) C18A—C19A—H19B 109.5
C4—C7—C10 109.9 (3) C20A—C19A—H19B 109.5
C7—C8—H8A 109.5 H19A—C19A—H19B 108.1
C7—C8—H8B 109.5 C21A—C20A—C19A 113.0 (5)
H8A—C8—H8B 109.5 C21A—C20A—H20A 109.0
C7—C8—H8C 109.5 C19A—C20A—H20A 109.0
H8A—C8—H8C 109.5 C21A—C20A—H20B 109.0
H8B—C8—H8C 109.5 C19A—C20A—H20B 109.0
C7—C9—H9A 109.5 H20A—C20A—H20B 107.8
C7—C9—H9B 109.5 C20A—C21A—C22A 113.0 (5)
H9A—C9—H9B 109.5 C20A—C21A—H21A 109.0
C7—C9—H9C 109.5 C22A—C21A—H21A 109.0
H9A—C9—H9C 109.5 C20A—C21A—H21B 109.0
H9B—C9—H9C 109.5 C22A—C21A—H21B 109.0
C7—C10—H10A 109.5 H21A—C21A—H21B 107.8
C7—C10—H10B 109.5 C21A—C22A—H22A 109.5
H10A—C10—H10B 109.5 C21A—C22A—H22B 109.5
C7—C10—H10C 109.5 H22A—C22A—H22B 109.5
H10A—C10—H10C 109.5 C21A—C22A—H22C 109.5
H10B—C10—H10C 109.5 H22A—C22A—H22C 109.5
N2—C11—N3 111.0 (3) H22B—C22A—H22C 109.5
N2—C11—C6 114.9 (3) C19B—C18B—N4 106 (3)
N3—C11—C6 134.1 (3) C19B—C18B—H18E 110.5
N3—C12—C13 130.3 (4) N4—C18B—H18E 110.5
N3—C12—C17 107.0 (3) C19B—C18B—H18F 110.5
C13—C12—C17 122.7 (3) N4—C18B—H18F 110.5
C14—C13—C12 115.4 (4) H18E—C18B—H18F 108.7
C14—C13—H13 122.3 C20B—C19B—C18B 111.6 (13)
C12—C13—H13 122.3 C20B—C19B—H19E 109.3
C15—C14—C13 122.1 (4) C18B—C19B—H19E 109.3
C15—C14—H14 118.9 C20B—C19B—H19F 109.3
C13—C14—H14 118.9 C18B—C19B—H19F 109.3
C16—C15—C14 122.7 (4) H19E—C19B—H19F 108.0
C16—C15—H15 118.6 C21B—C20B—C19B 113.8 (13)
C14—C15—H15 118.6 C21B—C20B—H20E 108.8
C15—C16—C17 115.7 (4) C19B—C20B—H20E 108.8
C15—C16—H16 122.1 C21B—C20B—H20F 108.8
C17—C16—H16 122.1 C19B—C20B—H20F 108.8
C12—C17—N2 107.2 (3) H20E—C20B—H20F 107.7
C12—C17—C16 121.3 (3) C20B—C21B—C22B 114.6 (13)
N2—C17—C16 131.5 (4) C20B—C21B—H21E 108.6
N3—C18—C19 111.1 (3) C22B—C21B—H21E 108.6
N3—C18—H18A 109.4 C20B—C21B—H21F 108.6
C19—C18—H18A 109.4 C22B—C21B—H21F 108.6
N3—C18—H18B 109.4 H21E—C21B—H21F 107.6
C19—C18—H18B 109.4 C21B—C22B—H22G 109.5
H18A—C18—H18B 108.0 C21B—C22B—H22H 109.5
C20—C19—C18 111.6 (3) H22G—C22B—H22H 109.5
C20—C19—H19C 109.3 C21B—C22B—H22I 109.5
C18—C19—H19C 109.3 H22G—C22B—H22I 109.5
C20—C19—H19D 109.3 H22H—C22B—H22I 109.5
C18—C19—H19D 109.3
N1—Se3—C1—C6 −179.9 (3) Se3—N2—C17—C16 8.2 (6)
N2—Se3—C1—C6 0.1 (2) C15—C16—C17—C12 1.0 (5)
N1—Se3—C1—C2 −1.6 (2) C15—C16—C17—N2 178.2 (4)
N2—Se3—C1—C2 178.3 (3) C11—N3—C18—C19 −96.6 (4)
C6—C1—C2—C3 1.5 (5) C12—N3—C18—C19 80.9 (4)
Se3—C1—C2—C3 −176.6 (2) N3—C18—C19—C20 174.9 (3)
C6—C1—C2—C11A −179.1 (3) C18—C19—C20—C21 −76.2 (4)
Se3—C1—C2—C11A 2.7 (4) C19—C20—C21—C22 −179.7 (3)
C1—C2—C3—C4 0.5 (5) C17A—N1—C11A—N4 0.3 (4)
C11A—C2—C3—C4 −178.7 (3) Se3—N1—C11A—N4 −178.3 (2)
C2—C3—C4—C5 −1.7 (5) C17A—N1—C11A—C2 179.7 (3)
C2—C3—C4—C7 178.9 (3) Se3—N1—C11A—C2 1.1 (4)
C3—C4—C5—C6 1.0 (5) C12A—N4—C11A—N1 −0.7 (4)
C7—C4—C5—C6 −179.6 (3) C18A—N4—C11A—N1 175.0 (5)
C4—C5—C6—C1 1.0 (5) C18B—N4—C11A—N1 171 (3)
C4—C5—C6—C11 178.9 (3) C12A—N4—C11A—C2 −179.9 (3)
C2—C1—C6—C5 −2.3 (5) C18A—N4—C11A—C2 −4.3 (7)
Se3—C1—C6—C5 175.9 (2) C18B—N4—C11A—C2 −9 (3)
C2—C1—C6—C11 179.5 (3) C1—C2—C11A—N1 −2.3 (4)
Se3—C1—C6—C11 −2.3 (4) C3—C2—C11A—N1 176.9 (3)
C3—C4—C7—C8 106.9 (4) C1—C2—C11A—N4 176.9 (3)
C5—C4—C7—C8 −72.5 (4) C3—C2—C11A—N4 −3.9 (6)
C3—C4—C7—C9 −13.0 (5) C11A—N4—C12A—C13A −178.7 (3)
C5—C4—C7—C9 167.7 (4) C18A—N4—C12A—C13A 5.3 (6)
C3—C4—C7—C10 −133.6 (4) C18B—N4—C12A—C13A 11 (3)
C5—C4—C7—C10 47.0 (5) C11A—N4—C12A—C17A 0.8 (3)
C17—N2—C11—N3 −1.5 (4) C18A—N4—C12A—C17A −175.3 (5)
Se3—N2—C11—N3 175.4 (2) C18B—N4—C12A—C17A −170 (3)
C17—N2—C11—C6 178.7 (3) N4—C12A—C13A—C14A 179.5 (3)
Se3—N2—C11—C6 −4.4 (3) C17A—C12A—C13A—C14A 0.2 (5)
C12—N3—C11—N2 1.0 (4) C12A—C13A—C14A—C15A 0.2 (5)
C18—N3—C11—N2 178.8 (3) C13A—C14A—C15A—C16A 0.1 (5)
C12—N3—C11—C6 −179.3 (3) C14A—C15A—C16A—C17A −0.7 (5)
C18—N3—C11—C6 −1.5 (6) C11A—N1—C17A—C16A 180.0 (4)
C5—C6—C11—N2 −173.6 (3) Se3—N1—C17A—C16A −2.0 (6)
C1—C6—C11—N2 4.4 (4) C11A—N1—C17A—C12A 0.2 (4)
C5—C6—C11—N3 6.7 (6) Se3—N1—C17A—C12A 178.2 (2)
C1—C6—C11—N3 −175.3 (3) C15A—C16A—C17A—N1 −178.6 (3)
C11—N3—C12—C13 179.1 (4) C15A—C16A—C17A—C12A 1.2 (5)
C18—N3—C12—C13 1.1 (6) N4—C12A—C17A—N1 −0.6 (3)
C11—N3—C12—C17 −0.2 (4) C13A—C12A—C17A—N1 178.9 (3)
C18—N3—C12—C17 −178.1 (3) N4—C12A—C17A—C16A 179.6 (3)
N3—C12—C13—C14 −177.4 (4) C13A—C12A—C17A—C16A −0.9 (5)
C17—C12—C13—C14 1.7 (6) C11A—N4—C18A—C19A 90.1 (8)
C12—C13—C14—C15 −0.2 (6) C12A—N4—C18A—C19A −94.9 (10)
C13—C14—C15—C16 −1.0 (7) N4—C18A—C19A—C20A 172.9 (7)
C14—C15—C16—C17 0.6 (6) C18A—C19A—C20A—C21A −65.4 (11)
N3—C12—C17—N2 −0.7 (4) C19A—C20A—C21A—C22A −169.3 (5)
C13—C12—C17—N2 179.9 (3) C11A—N4—C18B—C19B 104 (4)
N3—C12—C17—C16 177.1 (3) C12A—N4—C18B—C19B −87 (6)
C13—C12—C17—C16 −2.2 (5) N4—C18B—C19B—C20B 178 (4)
C11—N2—C17—C12 1.3 (4) C18B—C19B—C20B—C21B −55 (7)
Se3—N2—C17—C12 −174.3 (2) C19B—C20B—C21B—C22B −60 (4)
C11—N2—C17—C16 −176.1 (4)

Symmetry code: (i) −x+1, y, −z+3/2.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C18—H18A···N1Sii 0.99 2.62 3.568 (5) 160
C18A—H18C···N2S 0.99 2.38 3.324 (8) 159
C18B—H18F···N2S 0.99 2.22 3.06 (6) 142

Symmetry code: (ii) −x+1/2, y+1/2, −z+3/2.

Funding Statement

This work was funded by National Science Foundation grants 1205608 and CHE0619278. Department of Science and Technology, Ministry of Science and Technology grant J. C. Bose National Fellowship to H.B. Singh. Council of Scientific and Industrial Research grant Senior Research Fellowship to V. Rani.

References

  1. Back, T. G. (1999). Organoselenium Chemistry: A Practical Approach. Oxford University Press.
  2. Bhuyan, B. J. & Mugesh, G. (2012). Biological and Biochemical Aspects of Selenium Compounds In Organoselenium Chemistry: Synthesis and Reactions edited by T. Wirth, p. 361. Weinheim: Wiley-VCH.
  3. Bondi, A. (1964). J. Phys. Chem. 68, 441–451.
  4. Brodersen, K., Cygan, M. & Hummel, H.-U. (1984). Z. Naturforschung, Teil B, 39, 582-5.
  5. Bruker (2002). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Bruker (2005). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
  7. Chan, M. H.-Y., Wong, H.-L. & Yam, V. W.-W. (2016). Inorg. Chem. 55, 5570–5577. [DOI] [PubMed]
  8. Chivers, T. & Laitinen, R. S. (2015). Chem. Soc. Rev. 44, 1725–1739. [DOI] [PubMed]
  9. Dorazco-González, A. (2014). Organometallics, 33, 868–875.
  10. Fujihara, H., Mima, H. & Furukawa, N. (1995). J. Am. Chem. Soc. 117, 10153–10154.
  11. Fujihara, H., Mima, H. & Furukawa, H. (1995). J. Am. Chem. Soc. 117, 10153–10154.
  12. Kremer, A., Aurisicchio, C., De Leo, F., Ventura, B., Wouters, J., Armaroli, N., Barbieri, A. & Bonifazi, D. (2015). Chem. Eur. J. 21, 15377–15387. [DOI] [PubMed]
  13. Kushch, N. D., Buravov, L. I., Pesotskii, S. I., Lyubovskii, R. B., Yagubskii, E. B., Kaplunov, M. G., Golubev, E. V., Narymbetov, B. Zh., Khasanov, S. S., Zorina, L. V., Rozenberg, L. P., Shibaeva, R. P., Kobayashi, A. & Kobayashi, H. (1998). J. Mater. Chem. 8, 897–901.
  14. Li, S.-L., Fun, H.-K., Chantrapromma, S., Wu, J.-Y. & Tian, Y.-P. (2006a). Acta Cryst. E62, i47–i49.
  15. Li, S.-L., Wu, J.-Y., Tian, Y.-P., Ming, H., Wang, P., Jiang, M.-H. & Fun, H.-K. (2006b). Eur. J. Inorg. Chem. pp. 2900–2907.
  16. Manjare, S. T., Kim, Y. & Churchill, D. G. (2014). Acc. Chem. Res. 47, 2985–2998. [DOI] [PubMed]
  17. Mugesh, G. & Singh, H. B. (2000). Chem. Soc. Rev. 29, 347–357.
  18. Poleschner, H. & Seppelt, K. (2004). Chem. Eur. J. 10, 6565–6574. [DOI] [PubMed]
  19. Pop, A., Silvestru, A., Juárez-Pérez, E. J., Arca, M., Lippolis, V. & Silvestru, C. (2014). Dalton Trans. 43, 2221–2233. [DOI] [PubMed]
  20. Prasad, P. R., Selvakumar, K., Singh, H. B. & Butcher, R. J. (2016). J. Org. Chem. 81, 3214–3226. [DOI] [PubMed]
  21. Rani, V., Singh, H. B. & Butcher, R. J. (2017a). Acta Cryst. E73, 341–344. [DOI] [PMC free article] [PubMed]
  22. Rani, V., Singh, H. B. & Butcher, R. J. (2017b). IUCrData, 2, x171746.
  23. Rani, V., Singh, H. B. & Butcher, R. J. (2017c). Organometallics, 36, 4741–4752.
  24. Rani, V., Singh, H. B. & Butcher, R. J. (2018a). Acta Cryst. E74, 390–393. [DOI] [PMC free article] [PubMed]
  25. Rani, V., Singh, H. B. & Butcher, R. J. (2018b). J. Organomet. Chem. 859, 33–43.
  26. Selvakumar, K., Shah, P., Singh, H. B. & Butcher, R. J. (2011a). Chem. Eur. J. 17, 12741–12755. [DOI] [PubMed]
  27. Selvakumar, K., Singh, H. B. & Butcher, R. J. (2011b). Tetrahedron Lett. 52, 6831–6834.
  28. Selvakumar, K., Singh, H. B., Goel, N. & Singh, U. P. (2011c). Organometallics, 30, 3892–3896.
  29. Selvakumar, K., Singh, V. P., Shah, P. & Singh, H. B. (2011d). Main Group Chemistry, 10, 141–152.
  30. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  31. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  32. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  33. Shibaeva, R. P., Khasanov, S. S., Rozenberg, L. P., Kushch, N. D., Yagubskii, E. B. & Canadell, E. (1997). Kristallografiya, 42, 846–850.
  34. Shibaeva, R. P., Rozenberg, L. P., Kushch, N. D. & Yagubskii, E. B. (1994). Kristallografiya, 39, 825–831.
  35. Singh, V. P., Singh, H. B. & Butcher, R. J. (2011). Chem. Commun. 47, 7221–7223. [DOI] [PubMed]
  36. Singh, F. V. & Wirth, T. (2012). Selenium Compounds as Ligands and Catalysts In Organoselenium Chemistry: Synthesis and Reactions edited by T. Wirth, pp. 321–334. Weinheim: Wiley-VCH.
  37. Space, G. & Armeanu, V. (1930). Bul. Soc. Stiinte Cluj, 5, 294–318.
  38. Sun, H.-Q., Wang, X.-Q. & Zhang, W.-W. (2013). Acta Cryst. E69, i59. [DOI] [PMC free article] [PubMed]
  39. Sun, H.-Q., Yu, W.-T., Yuan, D.-R., Wang, X.-Q. & Xue, G. (2005). Acta Cryst. E61, i111–i112.
  40. Wang, Z., Sun, Z., Hao, X.-Q., Niu, J.-L., Wei, D., Tu, T., Gong, J.-F. & Song, M.-P. (2014). Organometallics, 33, 1563–1573.
  41. Zade, S. S., Panda, S., Tripathi, S. K., Singh, H. B. & Wolmershäuser, G. (2004a). Eur. J. Org. Chem. pp. 3857–3864.
  42. Zade, S. S., Singh, H. B. & Butcher, R. J. (2004b). Angew. Chem. Int. Ed. 43, 4513–4515. [DOI] [PubMed]
  43. Zhao, L., Li, J., Li, Y., Liu, J., Wirth, T. & Li, Z. (2012). Bioorg. Med. Chem. 20, 2558–2563. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018006394/zl2726sup1.cif

e-74-00786-sup1.cif (1.3MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006394/zl2726Isup2.hkl

e-74-00786-Isup2.hkl (717.1KB, hkl)

CCDC reference: 1839609

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES