Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 May 1;74(Pt 6):766–771. doi: 10.1107/S2056989018006473

RbFe(HAsO4)2 and TlFe(HAsO4)2, two new hydrogenarsenates adopting two closely related structure types

Karolina Schwendtner a,*, Uwe Kolitsch b
PMCID: PMC6002822  PMID: 29951226

Rubidium iron bis­[hydrogen arsenate(V)] and thallium iron bis­[hydrogen arsenate(V)] were grown under mild hydro­thermal conditions (T = 493 K, 7 d). RbFe(HAsO4)2 adopts the RbFe(HPO4)2 structure type (space group R Inline graphic c), while TlFe(HAsO4)2 crystallizes in the (NH4)Fe(HPO4)2 structure type (space group P Inline graphic).

Keywords: crystal structure, RbFe(HAsO4)2, TlFe(HAsO4)2, arsenate, hydrogenarsenate(V), framework structure, cation disorder

Abstract

Rubidium iron bis­[hydrogen arsenate(V)], RbFe(HAsO4)2, and thallium iron bis­[hydrogen arsenate(V)], TlFe(HAsO4)2, were grown under mild hydro­thermal conditions (T = 493 K, 7 d). RbFe(HAsO4)2 adopts the RbFe(HPO4)2 structure type (space group R Inline graphic c), while TlFe(HAsO4)2 crystallizes in the (NH4)Fe(HPO4)2 structure type (space group P Inline graphic). Both compounds have tetra­hedral–octa­hedral framework topologies. The M + cations are located in channels of the respective framework and are disordered in TlFe(HAsO4)2, which may suggest that the M + cations can move in the channels.

Chemical context  

Compounds with mixed tetra­hedral–octa­hedral (T–O) framework structures exhibit a broad range of different topologies, resulting in structures with various inter­esting properties. Arsenates, similar to phosphates or silicates, tend to form T–O framework structures, with properties such as ion conductivity (Chouchene et al., 2017; d’Yvoire et al., 1983, 1986, 1988; Masquelier et al., 1990, 1994, 1995, 1996,1998; Ouerfelli et al., 2007a , 2008; Pintard-Scrépel et al., 1983) and ion exchange (Masquelier et al., 1996), as well as unusual piezoelectric (Cambon et al., 2003, 2005; Krempl, 2005; Ren et al., 2015), magnetic (Ouerfelli et al., 2007b ) or non-linear optical features (frequency doubling) (Carvajal et al., 2005; Kato, 1975; Sun et al., 2017). To further increase the know­ledge about the possible compounds and structure types of arsenates, a comprehensive study of the system M +M 3+–O–(H)–As5+ (M + = Li, Na, K, Rb, Cs, Ag, Tl, NH4; M 3+ = Al, Ga, In, Sc, Fe, Cr, Tl) was undertaken, which led to a large number of new compounds, most of which have been published (Schwendtner & Kolitsch, 2004, 2017, 2018 and references therein).

Among the many different structure types found during our study, one atomic arrangement, the RbFe(HPO4)2 type (Lii & Wu, 1994; rhombohedral, R Inline graphic c), was found to be extremely versatile, allowing the incorporation of a wide variety of cations. Representatives of this structure type are presently known among arsenates and phosphates containing Rb or Cs as the M + cation and Al, Ga, Fe, In as M 3+; see Table 1 for a complete compilation of these compounds. RbFe(HAsO4)2 (Fig. 1 a) is the fifth arsenate adopting this structure type. There is only one other Rb–Fe–arsenate known to date, Rb2Fe2O(AsO4)2 (Chang et al., 1997; Garlea et al., 2014). The literature reports one arsenate containing Tl and Fe, the diarsenate TlFe0.22Al0.78As2O7 (Ouerfelli et al., 2007a ); however, the second title compound, TlFe(HAsO4)2 (Fig. 1 b), is the sole arsenate containing only Tl and Fe to date. It adopts the triclinic (P Inline graphic) (NH4)Fe(HPO4)2 structure type (Yakubovich, 1993), along with CsSc(HAsO4)2 (Schwendtner & Kolitsch, 2004) and (NH4)Fe(HAsO4)2 (Ouerfelli et al., 2014) as arsenate members and a wide variety of phosphate members (see compilation in Table 1). These two structure types are closely related, the (NH4)Fe(HPO4)2 structure type (Yakubovich, 1993) representing a distorted version of the RbFe(HPO4)2-type atomic arrangement (Lii & Wu, 1994).

Table 1. Compilation of all published compounds adopting the (NH4)Fe(HPO4)2 structure type (Yakubovich, 1993) and the RbFe(HPO4)2 structure type (Lii & Wu, 1994).

(NH4)Fe(HPO4)2 type (P Inline graphic, Z = 3)              
  a (Å) b (Å) c (Å) α (°) β (°) γ (°) V3)
CsSc(HAsO4)2 a 7.520 (2) 9.390 (2) 10.050 (2) 65.48 (3) 70.66 (3) 70.10 (3) 592.0 (2)
TlFe(HAsO4)2 7.346 (2) 9.148 (2) 9.662 (2) 64.89 (3) 70.51 (3) 69.94 (3) 538.6 (2)
(NH4)Fe(HAsO4)2 b 7.3473 (7) 9.1917 (8) 9.7504 (9) 64.545 (5) 70.710 (7) 69.638 (6) 544.54 (2)
(NH4)Fe(HPO4)2 c 7.185 (3) 8.857 (3) 9.478 (3) 64.79 (3) 70.20 (3) 69.38 (3) 498.0 (3)
(NH4)Fe(HPO4)2 d 7.121 8.839 9.465 64.598 70.321 69.574 491.88
(NH4)V(HPO4)2 e 7.173 (2) 8.841 (2) 9.458 (2) 65.08 (2) 70.68 (2) 69.59 (2) 497.59 (2)
(NH4)(Al0.64Ga0.36)f(HPO4)2 7.109 (4) 8.695 (4) 9.252 (6) 65.01 (4) 70.25 (5) 69.01 (4) 472.1 (4)
(ND4)Fe(DPO4)2 d,g 7.11830 (3) 8.83828 (4) 9.46407 (4) 64.5802 (4) 70.3127 (4) 69.5733 (5) 491.495 (4)
KFe(HPO4)2 h 7.20 8.76 9.49 64.58 69.82 70.13  
(H3O)Al(HPO4)2 i 7.1177 (2) 8.6729 (2) 9.2200 (3) 65.108 (2) 70.521 (1) 68.504 (2) 469.4 (2)
CsIn(HPO4)2 j 7.4146 (3) 9.0915 (3) 9.7849 (3) 65.525 (3) 70.201 (3) 69.556 (3) 547.77 (4)
RbFe(HPO4)2 j 7.2025 (4) 8.8329 (8) 9.4540 (8) 65.149 (8) 70.045 (6) 69.591 (6) 497.44 (8)
RbV(HPO4)2 k 7.188 (2) 8.831 (1) 9.450(2 65.34 70.449 69.739 498.5 (2)
RbFe(HPO4)2 type (R Inline graphic c, Z = 18)              
RbIn(HAsO4)2 l 8.512 (1) 8.512 (1) 56.43 (1) 90 90 120 3541.1 (9)
CsIn(HAsO4)2 l 8.629 (1) 8.629 (1) 56.99 (1) 90 90 120 3674.7 (9)
RbAl(HAsO4)2 m 8.318 (1) 8.318 (1) 52.87 (1) 90 90 120 3167.9 (9)
RbFe(HAsO4)2 8.425 (1) 8.425 (1) 54.75 (1) 90 90 120 3365.5 (9)
CsFe(HAsO4)2 m 8.525 (1) 8.525 (1) 55.00 (1) 90 90 120 3461.5 (9)
RbFe(HPO4)2 n 8.160 (1) 8.160 (1) 52.75 (1) 90 90 120 3041.82
RbAl(HPO4)2 j 8.0581 (18) 8.0581 (18) 51.081 (12) 90 90 120 2872 (11)
RbGa(HPO4)2 j 8.1188 (15) 8.1188 (15) 51.943 (4) 90 90 120 2965.1 (8)

Notes: (a) Schwendtner & Kolitsch (2004); (b) Ouerfelli et al. (2014); (c) Yakubovich (1993), transformed from I Inline graphic; (d) Alfonso et al. (2011), converted to reduced cell; (e) Bircsak & Harrison (1998); (f) Stalder & Wilkinson (1998); (g) Alfonso et al. (2010); (h) Smith & Brown (1959); (i) Yan et al. (2000); (j) Lesage et al. (2007); (k) Haushalter et al. (1995), converted to reduced cell; (l) Schwendtner & Kolitsch (2017); (m) Schwendtner & Kolitsch (2018); (n) Lii & Wu (1994).

Figure 1.

Figure 1

SEM micrographs of crystals of (a) RbFe(HAsO4)2 and (b) TlFe(HAsO4)2.

Structural commentary  

The two structure types are very closely related to each other and are modifications of a basic tetra­hedral–octa­hedral framework structure (Figs. 2–4 ) containing inter­penetrating channels, which host the M + cations. The general building unit in these structure types contains M 3+O6 octa­hedra, which are connected via their six corners to six protonated AsO4 tetra­hedra (M 3+As6O24 group). These are in turn connected via three corners to other M 3+O6 octa­hedra, the free, protonated corner of each AsO4 tetra­hedron forming a hydrogen bond to the neighbouring M 3+As6O24 group. In both types, the M 3+As6O24 groups are arranged in layers perpendicular to the c axis (Fig. 2 a) and parallel to the ab plane (Fig. 3a). The groups within these layers are held together by medium-strong hydrogen bonds (Tables 2 and 3). The different modifications are caused by strong distortion of the whole structure (see detailed comparison in Lesage et al., 2007).

Figure 2.

Figure 2

Structure drawing of RbFe(HAsO4)2 along (a) [100] and (b) [001]. The Rb atoms, located in channels of the framework structure, are shown with displacement ellipsoids at the 70% probability level. Hydrogen bonds are shown as dashed lines.

Figure 3.

Figure 3

Structure drawing of TlFe(HAsO4)2 along (a) [100] and (b) [101]. The disordered Tl atoms are shown with displacement ellipsoids at the 70% probability level. Hydrogen bonds are shown as dashed lines.

Figure 4.

Figure 4

The principal building units of (a) RbFe(HAsO4)2 and (b) TlFe(HAsO4)2 shown as displacement ellipsoids at the 70% probability level. Symmetry codes: RbFe(HAsO4)2: (i) x − y, −y, −z + Inline graphic; (ii) −x, −x + y, −z + Inline graphic; (iii) −x + y, −x, z; (iv) y, x, −z + Inline graphic; (v) −y, x − y, z; (vi) −x + Inline graphic, −y − Inline graphic, −z + Inline graphic; (vii) y + Inline graphic, −x + y+Inline graphic, −z + Inline graphic; (viii) x − y − Inline graphic, x − Inline graphic, −z + Inline graphic; (ix) x − Inline graphic, x − y − Inline graphic, z − Inline graphic; (x) −y − Inline graphic, −x + Inline graphic, z − Inline graphic; (xi) −x + y + Inline graphic, y + Inline graphic, z − Inline graphic; (xii) −x − Inline graphic, −y − Inline graphic, −z + Inline graphic; (xiii) y + Inline graphic, −x + y + Inline graphic, −z + Inline graphic; (xiv) x − y − Inline graphic, x + Inline graphic, −z + Inline graphic; (xv) −y, x − y + 1, z; (xvi) x + 1, y + 1, z; (xvii) x, y + 1, z; (xviii) −x + y + 1, −x + 1, z; (xix) −x + Inline graphic, −y + Inline graphic, −z + Inline graphic; (xx) x − 1, y, z; TlFe(HAsO4)2: −z; (ii) −x, −y + 2, −z; (iv) −x + 1, −y + 1, −z; (viii) −x, −y + 1, −z + 1; (ix) −x, −y + 1, −z.

Table 2. Hydrogen-bond geometry (Å, °) for RbFe(HAsO4)2 .

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H⋯O4xxi 0.81 (3) 1.82 (3) 2.615 (3) 166 (4)

Symmetry code: (xxi) Inline graphic.

Table 3. Hydrogen-bond geometry (Å, °) for TlFe(HAsO4)2 .

D—H⋯A D—H H⋯A DA D—H⋯A
O2—H2⋯O9iii 0.85 (3) 1.86 (3) 2.707 (3) 176 (5)
O8—H8⋯O10v 0.982 (2) 1.598 (2) 2.569 (3) 169.44 (15)
O12—H12⋯O3 0.88 (3) 1.86 (3) 2.729 (3) 172 (5)

Symmetry codes: (iii) Inline graphic; (v) Inline graphic.

In both compounds the Tl/Rb atoms are 12-coordinated (Tables 4 and 5). The average Tl—O (3.279 and 3.312 Å) and Rb—O (3.257 and 3.390 Å) bond lengths are longer than the grand mean bond lengths in Tl/RbO12 polyhedra of 3.195 (Gagné & Hawthorne, 2018) and 3.228 Å (Gagné & Hawthorne, 2016), thus leading to rather low bond-valence sums (BVSs) (Gagné & Hawthorne, 2015) for the involved M + cations (0.76/0.88 and 0.82/0.85 valence units, v.u., for the RbFe and TlFe representative, respectively). The average Tl2—O bond length in TlFe(HAsO4)2 (3.312 Å) is the longest average bond length found so far for TlO12 polyhedra (max. Tl—O = 3.304 Å; Gagné & Hawthorne, 2018) and the corresponding average Rb2—O bond length in RbFe(HAsO4)2 is also close to the longest observed such bond lengths in RbO12 polyhedra of 3.410 Å (Gagné & Hawthorne, 2016). These loose bonds reflect the observation that the alkali cations ‘rattle’ somewhat in their hosting voids, with considerable positional disorder of the Tl atoms in these voids (Fig. 4 b). The Tl atoms were therefore modelled with two Tl1 positions (Tl1A, Tl1B) and three Tl2 positions (Tl2A, Tl2B, Tl2C), between 0.28 (2) and 0.48 (2) Å apart. The refined occupancies of the dominant positions (Tl1A and Tl2A) are 63 and 45%, respectively. The influence of a stereochemically active lone pair of electrons on the Tl+ cations may also play a role in the positional disorder.

Table 4. Selected bond lengths (Å) for RbFe(HAsO4)2 .

Rb1—O3 3.146 (2) Rb2—O4xi 3.562 (2)
Rb1—O3i 3.147 (2) Rb2—O3xii 3.640 (2)
Rb1—O3ii 3.147 (2) Rb2—O3xiii 3.640 (2)
Rb1—O3iii 3.147 (2) Rb2—O3xiv 3.640 (2)
Rb1—O3iv 3.147 (2) Fe1—O2xv 1.9957 (18)
Rb1—O3v 3.147 (2) Fe1—O2iii 1.9957 (18)
Rb1—O2ii 3.3671 (19) Fe1—O2xvi 1.9957 (18)
Rb1—O2iv 3.3671 (19) Fe1—O4xvii 2.0055 (19)
Rb1—O2iii 3.3671 (19) Fe1—O4v 2.0055 (18)
Rb1—O2i 3.3671 (19) Fe1—O4xviii 2.0055 (18)
Rb1—O2v 3.3671 (19) Fe2—O1vii 1.998 (2)
Rb1—O2 3.3671 (19) Fe2—O1xiv 1.998 (2)
Rb2—O3v 2.965 (2) Fe2—O1xix 1.998 (2)
Rb2—O3iii 2.965 (2) Fe2—O1v 1.998 (2)
Rb2—O3 2.965 (2) Fe2—O1xviii 1.998 (2)
Rb2—O1vi 3.394 (2) Fe2—O1xvii 1.998 (2)
Rb2—O1vii 3.394 (2) As—O1xx 1.6555 (19)
Rb2—O1viii 3.394 (2) As—O2 1.6720 (18)
Rb2—O4ix 3.562 (2) As—O4ii 1.6801 (18)
Rb2—O4x 3.562 (2) As—O3 1.742 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic; (x) Inline graphic; (xi) Inline graphic; (xii) Inline graphic; (xiii) Inline graphic; (xiv) Inline graphic; (xv) Inline graphic; (xvi) Inline graphic; (xvii) Inline graphic; (xviii) Inline graphic; (xix) Inline graphic; (xx) Inline graphic.

Table 5. Selected bond lengths (Å) for TlFe(HAsO4)2 .

Tl1A—O1 2.853 (2) Fe1—O4viii 1.942 (2)
Tl1A—O1i 2.853 (2) Fe1—O4 1.942 (2)
Tl1A—O8i 3.094 (3) Fe1—O6viii 2.015 (2)
Tl1A—O8 3.094 (3) Fe1—O6 2.015 (2)
Tl1A—O2 3.227 (3) Fe1—O9 2.060 (2)
Tl1A—O2i 3.227 (3) Fe1—O9viii 2.060 (2)
Tl1A—O7ii 3.344 (2) Fe2—O5 1.946 (2)
Tl1A—O7iii 3.344 (2) Fe2—O11 1.970 (2)
Tl1A—O5ii 3.543 (2) Fe2—O1 1.978 (2)
Tl1A—O5iii 3.543 (2) Fe2—O10ix 2.014 (2)
Tl1A—O12iv 3.615 (3) Fe2—O7ii 2.044 (2)
Tl1A—O12v 3.615 (3) Fe2—O3iv 2.065 (2)
Tl2A—O3vi 2.804 (4) As1—O4 1.652 (2)
Tl2A—O2 2.852 (4) As1—O1 1.668 (2)
Tl2A—O6iii 2.936 (5) As1—O3 1.683 (2)
Tl2A—O12v 3.020 (4) As1—O2 1.720 (2)
Tl2A—O8 3.091 (5) As2—O6 1.670 (2)
Tl2A—O7iii 3.362 (5) As2—O5 1.671 (2)
Tl2A—O7vii 3.450 (4) As2—O7 1.684 (2)
Tl2A—O9viii 3.523 (5) As2—O8 1.738 (2)
Tl2A—O10viii 3.572 (5) As3—O11 1.655 (2)
Tl2A—O12vi 3.638 (5) As3—O10 1.6730 (19)
Tl2A—O4vi 3.691 (4) As3—O9 1.679 (2)
Tl2A—O4 3.811 (5) As3—O12 1.721 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic; (viii) Inline graphic; (ix) Inline graphic.

The average Fe—O bond lengths, which show a fairly narrow range between 1.998 and 2.006 Å for the four FeO6 octa­hedra in the two title compounds, are slightly lower than the corresponding grand mean average of 2.011 Å reported by Baur (1981), thus leading to slightly higher BVSs of between 3.11 and 3.15 v.u. (Gagné & Hawthorne, 2015).

The AsO4 tetra­hedra are distorted with three short bond lengths of those bonds connecting to neighbouring FeO6 octa­hedra and one considerably elongated bond length to the protonated corner. The average As—O bond lengths are close to the calculated average of 1.686 (10) Å (calculated on 704 AsO4 polyhedra; Schwendtner, 2008), and the two As—OH bond lengths (Tables 3 and 4) are also close to the average of such lengths in HAsO4 polyhedra of 1.72 (3) Å (Schwendtner, 2008), but the two bond lengths to O atoms with rather strong hydrogen bonds [DA = 2.569 (3) and 2.615 (3) Å] are considerably elongated to 1.738 (2) and 1.742 (2) Å, respectively (Tables 2 and 3).

Synthesis and crystallization  

The compounds were grown by hydro­thermal synthesis at 493 K (7 d, autogeneous pressure, slow furnace cooling) using Teflon-lined stainless steel autoclaves with an approximate filling volume of 2 cm3. Reagent-grade Rb2CO3/Tl2CO3, Fe2O3 and H3AsO4·0.5H2O were used as starting reagents in approximate volume ratios of M +:M 3+:As of 1:1:2. The vessels were filled with distilled water to about 70% of their inner volumes which led to initial and final pH values of 1.5 and 1, respectively, for both synthesis batches. The reaction products were washed thoroughly with distilled water, filtered and dried at room temperature. They are stable in air.

RbFe(HAsO4)2 formed colorless pseudohexa­gonal platelets (Fig. 1 a). TlFe(HAsO4)2 formed pseudo-‘disphenoidic-monoclinic’, short prismatic, colourless glassy crystals (Fig. 1 b), some of which showed fine-grained red inclusions, probably either unreacted Fe2O3 or some Fe–O–(OH) compound, mainly in the core of the crystals.

Measured X-ray powder diffraction diagrams of RbFe(HAsO4)2 and TlFe(HAsO4)2 were deposited at the Inter­national Centre for Diffraction Data under PDF numbers 00-057-0160 (Prem et al., 2005a ) and 00-057-0159 (Prem et al., 2005b ), respectively.

The chemical compositions of the title compounds were checked by standard SEM–EDS analysis of several carbon-coated crystals of each compound; no impurities could be detected.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 6.

Table 6. Experimental details.

  RbFe(HAsO4)2 TlFe(HAsO4)2
Crystal data
M r 421.18 540.08
Crystal system, space group Trigonal, R Inline graphic c:H Triclinic, P Inline graphic
Temperature (K) 293 293
a, b, c (Å) 8.425 (1), 8.425 (1), 54.749 (11) 7.346 (2), 9.148 (2), 9.662 (2)
α, β, γ (°) 90, 90, 120 64.89 (3), 70.51 (3), 69.94 (3)
V3) 3365.5 (10) 538.6 (3)
Z 18 3
Radiation type Mo Kα Mo Kα
μ (mm−1) 17.27 33.58
Crystal size (mm) 0.09 × 0.08 × 0.03 0.10 × 0.05 × 0.04
 
Data collection
Diffractometer Nonius KappaCCD single-crystal four-circle Nonius KappaCCD single-crystal four-circle
Absorption correction Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) Multi-scan (HKL SCALEPACK; Otwinowski et al., 2003)
T min, T max 0.306, 0.625 0.134, 0.347
No. of measured, independent and observed [I > 2σ(I)] reflections 3994, 1105, 1014 7723, 3906, 3391
R int 0.023 0.021
(sin θ/λ)max−1) 0.704 0.758
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.021, 0.052, 1.12 0.022, 0.051, 1.06
No. of reflections 1105 3906
No. of parameters 62 208
No. of restraints 1 4
H-atom treatment All H-atom parameters refined Only H-atom displacement parameters refined
Δρmax, Δρmin (e Å−3) 0.87, −0.72 0.96, −1.13

Computer programs: COLLECT (Nonius, 2003), HKL DENZO and SCALEPACK (Otwinowski et al., 2003), SHELXS97 (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015), DIAMOND (Brandenburg, 2005), publCIF (Westrip, 2010) and WinGX (Farrugia, 2012).

For the final refinement the atomic positions of RbFe(HPO4)2 (Lii & Wu, 1994) and CsSc(HAsO4)2 (Schwendtner & Kolitsch, 2004) were used for RbFe(HAsO4)2 and TlFe(HAsO4)2, respectively. The H atoms were then located from the difference-Fourier map and O—H distances were restrained to 0.90 (4) Å. The position of H8 was fixed to the coordinates where it was located in the difference-Fourier map, since a refinement of the position led to an unreasonably close distance to the neighbouring As atom. At this point, electron densities of up to 2.79 and 4.71 e Å−3, respectively, were found close to the Tl1 and Tl2 atoms, along with anomalous displacement ellipsoids of these atoms. This suggested the presence of positional disorder (and, possibly, some mobility) of the Tl atoms in the cavities. The disorder was then modeled by additional, partially occupied Tl positions. The bulk occupancy for each of the two disordered Tl positions (Tl1A and Tl1B for Tl1 and Tl2A, Tl2B and Tl2C for Tl2) was constrained to 1.00. As a result, the R value dropped from 0.0335 to 0.0224, and the weight parameters also improved. Final equivalent isotropic displacement parameters of all the partially occupied Tl sites are reasonable, with values between ca 0.03 and 0.04 Å2, very similar to those in the Rb compound. The final residual electron densities are < 1 e Å−3 for both compounds.

Supplementary Material

Crystal structure: contains datablock(s) RbFeHAsO42, TlFeHAsO42. DOI: 10.1107/S2056989018006473/pj2051sup1.cif

e-74-00766-sup1.cif (529KB, cif)

Structure factors: contains datablock(s) RbFeHAsO42. DOI: 10.1107/S2056989018006473/pj2051RbFeHAsO42sup3.hkl

Structure factors: contains datablock(s) TlFeHAsO42. DOI: 10.1107/S2056989018006473/pj2051TlFeHAsO42sup2.hkl

CCDC references: 1839860, 1839859

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the TU Wien University Library for financial support through its Open Access Funding Program.

supplementary crystallographic information

Rubidium iron bis[hydrogen arsenate(V)] (RbFeHAsO42). Crystal data

RbFe(HAsO4)2 Dx = 3.741 Mg m3
Mr = 421.18 Mo Kα radiation, λ = 0.71073 Å
Trigonal, R3c:H Cell parameters from 2.794 reflections
a = 8.425 (1) Å θ = 2.9–30.0°
c = 54.749 (11) Å µ = 17.27 mm1
V = 3365.5 (10) Å3 T = 293 K
Z = 18 Hexagonal platelet, colourless
F(000) = 3510 0.09 × 0.08 × 0.03 mm

Rubidium iron bis[hydrogen arsenate(V)] (RbFeHAsO42). Data collection

Nonius KappaCCD single-crystal four-circle diffractometer 1014 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.023
φ and ω scans θmax = 30.0°, θmin = 2.9°
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) h = −11→11
Tmin = 0.306, Tmax = 0.625 k = −9→9
3994 measured reflections l = −76→76
1105 independent reflections

Rubidium iron bis[hydrogen arsenate(V)] (RbFeHAsO42). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.021 All H-atom parameters refined
wR(F2) = 0.052 w = 1/[σ2(Fo2) + (0.0241P)2 + 19.8694P] where P = (Fo2 + 2Fc2)/3
S = 1.12 (Δ/σ)max = 0.001
1105 reflections Δρmax = 0.87 e Å3
62 parameters Δρmin = −0.72 e Å3
1 restraint Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.000112 (19)

Rubidium iron bis[hydrogen arsenate(V)] (RbFeHAsO42). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Rubidium iron bis[hydrogen arsenate(V)] (RbFeHAsO42). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Rb1 0.000000 0.000000 0.750000 0.03271 (19)
Rb2 0.000000 0.000000 0.66752 (2) 0.03704 (16)
Fe1 0.333333 0.666667 0.75352 (2) 0.00828 (13)
Fe2 0.333333 0.666667 0.666667 0.00999 (17)
As −0.42107 (3) −0.38770 (3) 0.71298 (2) 0.00949 (9)
O1 0.4739 (3) −0.4215 (3) 0.68632 (3) 0.0215 (4)
O2 −0.4425 (2) −0.2504 (2) 0.73312 (3) 0.0123 (3)
O3 −0.1873 (3) −0.2762 (3) 0.70652 (4) 0.0200 (4)
O4 0.4749 (2) −0.1197 (2) 0.77593 (3) 0.0117 (3)
H −0.149 (5) −0.342 (4) 0.7113 (6) 0.022 (10)*

Rubidium iron bis[hydrogen arsenate(V)] (RbFeHAsO42). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Rb1 0.0391 (3) 0.0391 (3) 0.0199 (4) 0.01955 (14) 0.000 0.000
Rb2 0.0453 (2) 0.0453 (2) 0.0205 (3) 0.02266 (12) 0.000 0.000
Fe1 0.00900 (18) 0.00900 (18) 0.0068 (3) 0.00450 (9) 0.000 0.000
Fe2 0.0122 (3) 0.0122 (3) 0.0055 (4) 0.00610 (13) 0.000 0.000
As 0.01225 (14) 0.01058 (13) 0.00780 (13) 0.00733 (10) 0.00099 (9) 0.00115 (9)
O1 0.0324 (12) 0.0306 (11) 0.0101 (8) 0.0222 (10) −0.0067 (8) −0.0012 (8)
O2 0.0127 (8) 0.0115 (8) 0.0126 (8) 0.0060 (7) 0.0039 (7) −0.0015 (7)
O3 0.0153 (9) 0.0184 (10) 0.0295 (11) 0.0110 (8) 0.0104 (8) 0.0129 (8)
O4 0.0128 (8) 0.0108 (8) 0.0138 (8) 0.0076 (7) −0.0019 (7) −0.0048 (7)

Rubidium iron bis[hydrogen arsenate(V)] (RbFeHAsO42). Geometric parameters (Å, º)

Rb1—O3 3.146 (2) Rb2—O3xii 3.640 (2)
Rb1—O3i 3.147 (2) Rb2—O3xiii 3.640 (2)
Rb1—O3ii 3.147 (2) Rb2—O3xiv 3.640 (2)
Rb1—O3iii 3.147 (2) Rb2—Asxii 3.8044 (6)
Rb1—O3iv 3.147 (2) Rb2—Asxiii 3.8044 (6)
Rb1—O3v 3.147 (2) Rb2—Asxiv 3.8044 (6)
Rb1—O2ii 3.3671 (19) Fe1—O2xv 1.9957 (18)
Rb1—O2iv 3.3671 (19) Fe1—O2iii 1.9957 (18)
Rb1—O2iii 3.3671 (19) Fe1—O2xvi 1.9957 (18)
Rb1—O2i 3.3671 (19) Fe1—O4xvii 2.0055 (19)
Rb1—O2v 3.3671 (19) Fe1—O4v 2.0055 (18)
Rb1—O2 3.3671 (19) Fe1—O4xviii 2.0055 (18)
Rb1—H 3.28 (3) Fe2—O1vii 1.998 (2)
Rb1—Hv 3.28 (4) Fe2—O1xiv 1.998 (2)
Rb1—Hiii 3.28 (3) Fe2—O1xix 1.998 (2)
Rb2—O3v 2.965 (2) Fe2—O1v 1.998 (2)
Rb2—O3iii 2.965 (2) Fe2—O1xviii 1.998 (2)
Rb2—O3 2.965 (2) Fe2—O1xvii 1.998 (2)
Rb2—O1vi 3.394 (2) As—O1xx 1.6555 (19)
Rb2—O1vii 3.394 (2) As—O2 1.6720 (18)
Rb2—O1viii 3.394 (2) As—O4ii 1.6801 (18)
Rb2—O4ix 3.562 (2) As—O3 1.742 (2)
Rb2—O4x 3.562 (2) O3—H 0.81 (3)
Rb2—O4xi 3.562 (2)
O3—Rb1—O3i 164.86 (8) O4xi—Rb2—Asxii 70.60 (3)
O3—Rb1—O3ii 121.47 (8) O3xii—Rb2—Asxii 26.95 (3)
O3i—Rb1—O3ii 68.99 (6) O3xiii—Rb2—Asxii 62.25 (4)
O3—Rb1—O3iii 68.99 (6) O3xiv—Rb2—Asxii 96.36 (4)
O3i—Rb1—O3iii 103.28 (7) O3v—Rb2—Asxiii 101.27 (5)
O3ii—Rb1—O3iii 164.86 (8) O3iii—Rb2—Asxiii 105.92 (5)
O3—Rb1—O3iv 103.28 (8) O3—Rb2—Asxiii 175.05 (4)
O3i—Rb1—O3iv 68.99 (6) O1vi—Rb2—Asxiii 88.88 (4)
O3ii—Rb1—O3iv 68.99 (6) O1vii—Rb2—Asxiii 25.79 (3)
O3iii—Rb1—O3iv 121.47 (8) O1viii—Rb2—Asxiii 104.27 (4)
O3—Rb1—O3v 68.99 (6) O4ix—Rb2—Asxiii 53.64 (3)
O3i—Rb1—O3v 121.47 (8) O4x—Rb2—Asxiii 70.60 (3)
O3ii—Rb1—O3v 103.28 (7) O4xi—Rb2—Asxiii 26.10 (3)
O3iii—Rb1—O3v 68.99 (6) O3xii—Rb2—Asxiii 96.36 (4)
O3iv—Rb1—O3v 164.86 (8) O3xiii—Rb2—Asxiii 26.95 (3)
O3—Rb1—O2ii 126.04 (5) O3xiv—Rb2—Asxiii 62.24 (4)
O3i—Rb1—O2ii 68.90 (5) Asxii—Rb2—Asxiii 78.998 (15)
O3ii—Rb1—O2ii 48.72 (5) O3v—Rb2—Asxiv 175.05 (4)
O3iii—Rb1—O2ii 116.78 (5) O3iii—Rb2—Asxiv 101.27 (5)
O3iv—Rb1—O2ii 113.39 (5) O3—Rb2—Asxiv 105.92 (5)
O3v—Rb1—O2ii 65.41 (5) O1vi—Rb2—Asxiv 104.27 (4)
O3—Rb1—O2iv 65.40 (5) O1vii—Rb2—Asxiv 88.88 (4)
O3i—Rb1—O2iv 113.39 (5) O1viii—Rb2—Asxiv 25.79 (3)
O3ii—Rb1—O2iv 68.90 (5) O4ix—Rb2—Asxiv 70.60 (3)
O3iii—Rb1—O2iv 126.04 (5) O4x—Rb2—Asxiv 26.10 (3)
O3iv—Rb1—O2iv 48.72 (5) O4xi—Rb2—Asxiv 53.64 (3)
O3v—Rb1—O2iv 116.78 (5) O3xii—Rb2—Asxiv 62.24 (4)
O2ii—Rb1—O2iv 112.77 (3) O3xiii—Rb2—Asxiv 96.36 (4)
O3—Rb1—O2iii 113.39 (5) O3xiv—Rb2—Asxiv 26.95 (3)
O3i—Rb1—O2iii 65.41 (5) Asxii—Rb2—Asxiv 78.998 (15)
O3ii—Rb1—O2iii 116.78 (5) Asxiii—Rb2—Asxiv 78.997 (15)
O3iii—Rb1—O2iii 48.72 (5) O2xv—Fe1—O2iii 91.74 (8)
O3iv—Rb1—O2iii 126.04 (5) O2xv—Fe1—O2xvi 91.74 (8)
O3v—Rb1—O2iii 68.90 (5) O2iii—Fe1—O2xvi 91.74 (8)
O2ii—Rb1—O2iii 74.90 (6) O2xv—Fe1—O4xvii 92.04 (8)
O2iv—Rb1—O2iii 171.63 (6) O2iii—Fe1—O4xvii 175.92 (8)
O3—Rb1—O2i 116.78 (5) O2xvi—Fe1—O4xvii 89.66 (7)
O3i—Rb1—O2i 48.72 (5) O2xv—Fe1—O4v 89.66 (7)
O3ii—Rb1—O2i 113.39 (5) O2iii—Fe1—O4v 92.04 (8)
O3iii—Rb1—O2i 65.41 (5) O2xvi—Fe1—O4v 175.92 (8)
O3iv—Rb1—O2i 68.90 (5) O4xvii—Fe1—O4v 86.47 (8)
O3v—Rb1—O2i 126.04 (5) O2xv—Fe1—O4xviii 175.92 (8)
O2ii—Rb1—O2i 112.77 (3) O2iii—Fe1—O4xviii 89.66 (7)
O2iv—Rb1—O2i 112.77 (3) O2xvi—Fe1—O4xviii 92.04 (7)
O2iii—Rb1—O2i 59.80 (6) O4xvii—Fe1—O4xviii 86.47 (8)
O3—Rb1—O2v 68.90 (5) O4v—Fe1—O4xviii 86.47 (8)
O3i—Rb1—O2v 126.04 (5) O2xv—Fe1—Rb2xxi 124.02 (5)
O3ii—Rb1—O2v 65.41 (5) O2iii—Fe1—Rb2xxi 124.02 (6)
O3iii—Rb1—O2v 113.39 (5) O2xvi—Fe1—Rb2xxi 124.02 (5)
O3iv—Rb1—O2v 116.78 (5) O4xvii—Fe1—Rb2xxi 52.27 (6)
O3v—Rb1—O2v 48.72 (5) O4v—Fe1—Rb2xxi 52.27 (5)
O2ii—Rb1—O2v 59.80 (6) O4xviii—Fe1—Rb2xxi 52.27 (5)
O2iv—Rb1—O2v 74.90 (6) O1vii—Fe2—O1xiv 93.72 (8)
O2iii—Rb1—O2v 112.77 (3) O1vii—Fe2—O1xix 93.72 (8)
O2i—Rb1—O2v 171.63 (7) O1xiv—Fe2—O1xix 93.72 (8)
O3—Rb1—O2 48.71 (5) O1vii—Fe2—O1v 180.0
O3i—Rb1—O2 116.78 (5) O1xiv—Fe2—O1v 86.29 (8)
O3ii—Rb1—O2 126.04 (5) O1xix—Fe2—O1v 86.29 (8)
O3iii—Rb1—O2 68.90 (5) O1vii—Fe2—O1xviii 86.29 (8)
O3iv—Rb1—O2 65.41 (5) O1xiv—Fe2—O1xviii 180.0
O3v—Rb1—O2 113.39 (5) O1xix—Fe2—O1xviii 86.29 (8)
O2ii—Rb1—O2 171.63 (6) O1v—Fe2—O1xviii 93.71 (8)
O2iv—Rb1—O2 59.80 (6) O1vii—Fe2—O1xvii 86.29 (8)
O2iii—Rb1—O2 112.77 (3) O1xiv—Fe2—O1xvii 86.29 (8)
O2i—Rb1—O2 74.90 (6) O1xix—Fe2—O1xvii 180.0
O2v—Rb1—O2 112.77 (3) O1v—Fe2—O1xvii 93.71 (8)
O3—Rb1—H 14.3 (5) O1xviii—Fe2—O1xvii 93.71 (8)
O3i—Rb1—H 169.7 (7) O1vii—Fe2—Rb2xix 58.77 (7)
O3ii—Rb1—H 107.3 (5) O1xiv—Fe2—Rb2xix 70.91 (7)
O3iii—Rb1—H 82.4 (5) O1xix—Fe2—Rb2xix 146.11 (6)
O3iv—Rb1—H 100.7 (7) O1v—Fe2—Rb2xix 121.23 (7)
O3v—Rb1—H 68.4 (6) O1xviii—Fe2—Rb2xix 109.09 (7)
O2ii—Rb1—H 116.4 (6) O1xvii—Fe2—Rb2xix 33.90 (6)
O2iv—Rb1—H 56.8 (6) O1vii—Fe2—Rb2xvii 121.23 (7)
O2iii—Rb1—H 123.8 (6) O1xiv—Fe2—Rb2xvii 109.09 (7)
O2i—Rb1—H 129.4 (6) O1xix—Fe2—Rb2xvii 33.90 (6)
O2v—Rb1—H 57.1 (6) O1v—Fe2—Rb2xvii 58.77 (7)
O2—Rb1—H 56.9 (6) O1xviii—Fe2—Rb2xvii 70.91 (7)
O3—Rb1—Hv 82.4 (5) O1xvii—Fe2—Rb2xvii 146.10 (6)
O3i—Rb1—Hv 107.3 (6) Rb2xix—Fe2—Rb2xvii 180.0
O3ii—Rb1—Hv 100.7 (6) O1vii—Fe2—Rb2xvi 109.09 (7)
O3iii—Rb1—Hv 68.4 (7) O1xiv—Fe2—Rb2xvi 33.90 (6)
O3iv—Rb1—Hv 169.7 (6) O1xix—Fe2—Rb2xvi 121.23 (7)
O3v—Rb1—Hv 14.3 (5) O1v—Fe2—Rb2xvi 70.91 (7)
O2ii—Rb1—Hv 56.8 (6) O1xviii—Fe2—Rb2xvi 146.10 (6)
O2iv—Rb1—Hv 129.4 (6) O1xvii—Fe2—Rb2xvi 58.77 (7)
O2iii—Rb1—Hv 57.1 (6) Rb2xix—Fe2—Rb2xvi 60.0
O2i—Rb1—Hv 116.4 (6) Rb2xvii—Fe2—Rb2xvi 120.0
O2v—Rb1—Hv 56.9 (6) O1vii—Fe2—Rb2 33.90 (6)
O2—Rb1—Hv 123.8 (6) O1xiv—Fe2—Rb2 121.23 (7)
H—Rb1—Hv 82.7 (9) O1xix—Fe2—Rb2 109.09 (7)
O3—Rb1—Hiii 68.5 (6) O1v—Fe2—Rb2 146.10 (6)
O3i—Rb1—Hiii 100.7 (6) O1xviii—Fe2—Rb2 58.77 (7)
O3ii—Rb1—Hiii 169.7 (6) O1xvii—Fe2—Rb2 70.91 (7)
O3iii—Rb1—Hiii 14.3 (5) Rb2xix—Fe2—Rb2 60.0
O3iv—Rb1—Hiii 107.3 (5) Rb2xvii—Fe2—Rb2 120.0
O3v—Rb1—Hiii 82.4 (5) Rb2xvi—Fe2—Rb2 120.0
O2ii—Rb1—Hiii 129.4 (6) O1vii—Fe2—Rb2xxii 70.91 (7)
O2iv—Rb1—Hiii 116.4 (7) O1xiv—Fe2—Rb2xxii 146.11 (6)
O2iii—Rb1—Hiii 56.9 (6) O1xix—Fe2—Rb2xxii 58.77 (7)
O2i—Rb1—Hiii 56.8 (6) O1v—Fe2—Rb2xxii 109.09 (7)
O2v—Rb1—Hiii 123.8 (6) O1xviii—Fe2—Rb2xxii 33.90 (6)
O2—Rb1—Hiii 57.1 (6) O1xvii—Fe2—Rb2xxii 121.23 (7)
H—Rb1—Hiii 82.7 (9) Rb2xix—Fe2—Rb2xxii 120.0
Hv—Rb1—Hiii 82.7 (9) Rb2xvii—Fe2—Rb2xxii 60.0
O3v—Rb2—O3iii 73.88 (7) Rb2xvi—Fe2—Rb2xxii 180.0
O3v—Rb2—O3 73.87 (8) Rb2—Fe2—Rb2xxii 60.0
O3iii—Rb2—O3 73.87 (7) O1vii—Fe2—Rb2xxiii 146.11 (6)
O3v—Rb2—O1vi 80.68 (5) O1xiv—Fe2—Rb2xxiii 58.77 (7)
O3iii—Rb2—O1vi 152.52 (6) O1xix—Fe2—Rb2xxiii 70.91 (7)
O3—Rb2—O1vi 89.39 (6) O1v—Fe2—Rb2xxiii 33.90 (6)
O3v—Rb2—O1vii 89.39 (6) O1xviii—Fe2—Rb2xxiii 121.23 (7)
O3iii—Rb2—O1vii 80.68 (6) O1xvii—Fe2—Rb2xxiii 109.09 (7)
O3—Rb2—O1vii 152.52 (6) Rb2xix—Fe2—Rb2xxiii 120.0
O1vi—Rb2—O1vii 109.62 (3) Rb2xvii—Fe2—Rb2xxiii 60.0
O3v—Rb2—O1viii 152.52 (6) Rb2xvi—Fe2—Rb2xxiii 60.0
O3iii—Rb2—O1viii 89.39 (6) Rb2—Fe2—Rb2xxiii 180.0
O3—Rb2—O1viii 80.68 (6) Rb2xxii—Fe2—Rb2xxiii 120.0
O1vi—Rb2—O1viii 109.62 (3) O1xx—As—O2 117.84 (10)
O1vii—Rb2—O1viii 109.62 (3) O1xx—As—O4ii 107.24 (10)
O3v—Rb2—O4ix 113.60 (6) O2—As—O4ii 114.38 (9)
O3iii—Rb2—O4ix 158.54 (6) O1xx—As—O3 106.07 (11)
O3—Rb2—O4ix 127.10 (5) O2—As—O3 104.17 (10)
O1vi—Rb2—O4ix 45.34 (4) O4ii—As—O3 106.18 (9)
O1vii—Rb2—O4ix 79.36 (4) O1xx—As—Rb2xii 63.12 (7)
O1viii—Rb2—O4ix 89.94 (5) O2—As—Rb2xii 175.24 (7)
O3v—Rb2—O4x 158.54 (5) O4ii—As—Rb2xii 68.86 (6)
O3iii—Rb2—O4x 127.10 (5) O3—As—Rb2xii 71.28 (8)
O3—Rb2—O4x 113.60 (6) O1xx—As—Rb1 140.53 (9)
O1vi—Rb2—O4x 79.36 (4) O2—As—Rb1 57.00 (6)
O1vii—Rb2—O4x 89.94 (5) O4ii—As—Rb1 109.61 (6)
O1viii—Rb2—O4x 45.34 (4) O3—As—Rb1 49.92 (8)
O4ix—Rb2—O4x 45.37 (5) Rb2xii—As—Rb1 119.004 (8)
O3v—Rb2—O4xi 127.10 (6) O1xx—As—Rb2 77.51 (9)
O3iii—Rb2—O4xi 113.60 (6) O2—As—Rb2 101.13 (6)
O3—Rb2—O4xi 158.54 (6) O4ii—As—Rb2 134.56 (6)
O1vi—Rb2—O4xi 89.94 (5) O3—As—Rb2 34.74 (7)
O1vii—Rb2—O4xi 45.34 (5) Rb2xii—As—Rb2 74.367 (9)
O1viii—Rb2—O4xi 79.36 (4) Rb1—As—Rb2 66.765 (14)
O4ix—Rb2—O4xi 45.37 (5) O1xx—As—Rb2xxiv 46.08 (8)
O4x—Rb2—O4xi 45.37 (5) O2—As—Rb2xxiv 125.75 (7)
O3v—Rb2—O3xii 122.48 (7) O4ii—As—Rb2xxiv 63.02 (6)
O3iii—Rb2—O3xii 149.37 (7) O3—As—Rb2xxiv 129.40 (8)
O3—Rb2—O3xii 85.69 (6) Rb2xii—As—Rb2xxiv 58.581 (6)
O1vi—Rb2—O3xii 45.24 (5) Rb1—As—Rb2xxiv 172.574 (7)
O1vii—Rb2—O3xii 121.79 (5) Rb2—As—Rb2xxiv 117.235 (17)
O1viii—Rb2—O3xii 64.52 (5) Asxxv—O1—Fe2xxvi 140.90 (12)
O4ix—Rb2—O3xii 44.65 (4) Asxxv—O1—Rb2vi 91.09 (8)
O4x—Rb2—O3xii 42.56 (5) Fe2xxvi—O1—Rb2vi 126.94 (8)
O4xi—Rb2—O3xii 78.68 (5) Asxxv—O1—Rb2xxv 79.81 (8)
O3v—Rb2—O3xiii 85.69 (6) Fe2xxvi—O1—Rb2xxv 97.18 (8)
O3iii—Rb2—O3xiii 122.48 (8) Rb2vi—O1—Rb2xxv 79.01 (4)
O3—Rb2—O3xiii 149.38 (7) Asxxv—O1—Rb2xxvi 118.94 (9)
O1vi—Rb2—O3xiii 64.52 (5) Fe2xxvi—O1—Rb2xxvi 84.94 (7)
O1vii—Rb2—O3xiii 45.24 (5) Rb2vi—O1—Rb2xxvi 73.02 (4)
O1viii—Rb2—O3xiii 121.79 (5) Rb2xxv—O1—Rb2xxvi 146.08 (5)
O4ix—Rb2—O3xiii 42.56 (5) As—O2—Fe1xxiv 122.52 (10)
O4x—Rb2—O3xiii 78.68 (5) As—O2—Rb1 98.39 (7)
O4xi—Rb2—O3xiii 44.65 (4) Fe1xxiv—O2—Rb1 128.56 (7)
O3xii—Rb2—O3xiii 86.44 (5) As—O2—Rb2 59.04 (5)
O3v—Rb2—O3xiv 149.37 (7) Fe1xxiv—O2—Rb2 163.04 (7)
O3iii—Rb2—O3xiv 85.69 (6) Rb1—O2—Rb2 63.89 (3)
O3—Rb2—O3xiv 122.48 (8) As—O3—Rb2 125.70 (10)
O1vi—Rb2—O3xiv 121.79 (5) As—O3—Rb1 105.01 (9)
O1vii—Rb2—O3xiv 64.52 (5) Rb2—O3—Rb1 95.22 (6)
O1viii—Rb2—O3xiv 45.24 (5) As—O3—Rb2xii 81.77 (8)
O4ix—Rb2—O3xiv 78.68 (5) Rb2—O3—Rb2xii 94.31 (6)
O4x—Rb2—O3xiv 44.65 (4) Rb1—O3—Rb2xii 161.69 (7)
O4xi—Rb2—O3xiv 42.56 (4) As—O3—H 107 (3)
O3xii—Rb2—O3xiv 86.44 (5) Rb2—O3—H 122 (3)
O3xiii—Rb2—O3xiv 86.44 (5) Rb1—O3—H 92 (3)
O3v—Rb2—Asxii 105.92 (5) Rb2xii—O3—H 69 (3)
O3iii—Rb2—Asxii 175.05 (5) Asii—O4—Fe1xxvi 129.96 (10)
O3—Rb2—Asxii 101.27 (5) Asii—O4—Rb2xxvii 85.04 (7)
O1vi—Rb2—Asxii 25.79 (3) Fe1xxvi—O4—Rb2xxvii 101.28 (7)
O1vii—Rb2—Asxii 104.27 (4) Asii—O4—Rb2xxviii 99.80 (7)
O1viii—Rb2—Asxii 88.88 (4) Fe1xxvi—O4—Rb2xxviii 128.35 (7)
O4ix—Rb2—Asxii 26.10 (3) Rb2xxvii—O4—Rb2xxviii 65.94 (3)
O4x—Rb2—Asxii 53.64 (3)

Symmetry codes: (i) xy, −y, −z+3/2; (ii) −x, −x+y, −z+3/2; (iii) −x+y, −x, z; (iv) y, x, −z+3/2; (v) −y, xy, z; (vi) −x+2/3, −y−2/3, −z+4/3; (vii) y+2/3, −x+y+4/3, −z+4/3; (viii) xy−4/3, x−2/3, −z+4/3; (ix) x−1/3, xy−2/3, z−1/6; (x) −y−1/3, −x+1/3, z−1/6; (xi) −x+y+2/3, y+1/3, z−1/6; (xii) −x−1/3, −y−2/3, −z+4/3; (xiii) y+2/3, −x+y+1/3, −z+4/3; (xiv) xy−1/3, x+1/3, −z+4/3; (xv) −y, xy+1, z; (xvi) x+1, y+1, z; (xvii) x, y+1, z; (xviii) −x+y+1, −x+1, z; (xix) −x+2/3, −y+1/3, −z+4/3; (xx) x−1, y, z; (xxi) −y+1/3, −x+2/3, z+1/6; (xxii) −x−1/3, −y+1/3, −z+4/3; (xxiii) −x+2/3, −y+4/3, −z+4/3; (xxiv) x−1, y−1, z; (xxv) x+1, y, z; (xxvi) x, y−1, z; (xxvii) −y+1/3, −x−1/3, z+1/6; (xxviii) y+1, x, −z+3/2.

Rubidium iron bis[hydrogen arsenate(V)] (RbFeHAsO42). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H···O4xxix 0.81 (3) 1.82 (3) 2.615 (3) 166 (4)

Symmetry code: (xxix) y, x−1, −z+3/2.

Thallium iron bis[hydrogen arsenate(V)] (TlFeHAsO42). Crystal data

TlFe(HAsO4)2 Z = 3
Mr = 540.08 F(000) = 717
Triclinic, P1 Dx = 4.995 Mg m3
a = 7.346 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.148 (2) Å Cell parameters from 3867 reflections
c = 9.662 (2) Å θ = 2.5–32.6°
α = 64.89 (3)° µ = 33.58 mm1
β = 70.51 (3)° T = 293 K
γ = 69.94 (3)° Short prismatic, colourless with red inclusions
V = 538.6 (3) Å3 0.10 × 0.05 × 0.04 mm

Thallium iron bis[hydrogen arsenate(V)] (TlFeHAsO42). Data collection

Nonius KappaCCD single-crystal four-circle diffractometer 3391 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.021
φ and ω scans θmax = 32.6°, θmin = 2.5°
Absorption correction: multi-scan (HKL SCALEPACK; Otwinowski et al., 2003) h = −11→11
Tmin = 0.134, Tmax = 0.347 k = −13→13
7723 measured reflections l = −14→14
3906 independent reflections

Thallium iron bis[hydrogen arsenate(V)] (TlFeHAsO42). Refinement

Refinement on F2 Secondary atom site location: difference Fourier map
Least-squares matrix: full Hydrogen site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.022 Only H-atom displacement parameters refined
wR(F2) = 0.051 w = 1/[σ2(Fo2) + (0.0193P)2 + 0.8062P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.005
3906 reflections Δρmax = 0.96 e Å3
208 parameters Δρmin = −1.13 e Å3
4 restraints Extinction correction: SHELXL2016 (Sheldrick, 2015), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
Primary atom site location: structure-invariant direct methods Extinction coefficient: 0.0068 (2)

Thallium iron bis[hydrogen arsenate(V)] (TlFeHAsO42). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Thallium iron bis[hydrogen arsenate(V)] (TlFeHAsO42). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Tl1A 0.500000 1.000000 0.000000 0.0401 (16) 0.631 (3)
Tl1B 0.4695 (15) 0.9990 (11) −0.0176 (13) 0.0299 (8) 0.1843 (14)
Tl2A 0.4052 (7) 0.8325 (4) 0.4667 (4) 0.0319 (6) 0.449 (3)
Tl2B 0.3531 (3) 0.8270 (4) 0.4840 (4) 0.0376 (3) 0.437 (3)
Tl2C 0.402 (3) 0.8510 (16) 0.4841 (15) 0.0286 (13) 0.114 (3)
Fe1 0.000000 0.500000 0.500000 0.00759 (10)
Fe2 0.20590 (6) 0.72309 (5) −0.05912 (5) 0.00754 (8)
As1 0.45203 (4) 0.56033 (3) 0.21662 (3) 0.00716 (6)
As2 −0.07841 (4) 0.87435 (3) 0.23460 (3) 0.00748 (6)
As3 0.09158 (4) 0.35105 (3) 0.21621 (3) 0.00721 (6)
O1 0.4101 (3) 0.7015 (2) 0.0441 (2) 0.0106 (4)
O2 0.5906 (4) 0.6397 (3) 0.2680 (3) 0.0194 (5)
O3 0.5713 (3) 0.3653 (2) 0.2221 (2) 0.0107 (4)
O4 0.2440 (3) 0.5521 (3) 0.3531 (3) 0.0190 (5)
O5 −0.0194 (3) 0.8151 (3) 0.0805 (2) 0.0130 (4)
O6 −0.1590 (3) 0.7306 (2) 0.4022 (2) 0.0118 (4)
O7 −0.2594 (3) 1.0506 (2) 0.2095 (2) 0.0108 (4)
O8 0.1223 (3) 0.9190 (3) 0.2530 (3) 0.0173 (4)
O9 −0.0703 (3) 0.4281 (3) 0.3527 (2) 0.0132 (4)
O10 −0.0155 (3) 0.2336 (2) 0.1890 (2) 0.0114 (4)
O11 0.1828 (3) 0.4911 (3) 0.0534 (2) 0.0135 (4)
O12 0.2880 (3) 0.2007 (3) 0.2888 (3) 0.0159 (4)
H2 0.694 (6) 0.570 (5) 0.295 (5) 0.033 (13)*
H8 0.073100 1.037300 0.239694 0.08 (2)*
H12 0.376 (7) 0.259 (6) 0.258 (6) 0.042 (14)*

Thallium iron bis[hydrogen arsenate(V)] (TlFeHAsO42). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Tl1A 0.060 (2) 0.0347 (7) 0.0312 (14) −0.0317 (10) −0.0034 (15) −0.0060 (7)
Tl1B 0.0417 (9) 0.0227 (11) 0.0314 (14) −0.0187 (13) −0.0130 (8) −0.0028 (9)
Tl2A 0.0396 (9) 0.0272 (9) 0.0211 (6) 0.0020 (7) −0.0087 (6) −0.0076 (4)
Tl2B 0.0433 (6) 0.0345 (5) 0.0234 (5) −0.0040 (6) −0.0136 (6) 0.0012 (3)
Tl2C 0.041 (4) 0.0191 (16) 0.019 (2) 0.0010 (14) −0.010 (2) −0.0056 (12)
Fe1 0.0087 (2) 0.0058 (2) 0.0072 (2) −0.00065 (19) −0.00228 (18) −0.00170 (19)
Fe2 0.00853 (17) 0.00551 (16) 0.00764 (17) −0.00077 (13) −0.00218 (13) −0.00183 (13)
As1 0.00724 (12) 0.00543 (12) 0.00788 (13) −0.00077 (9) −0.00187 (9) −0.00189 (9)
As2 0.00859 (12) 0.00441 (12) 0.00832 (13) −0.00028 (9) −0.00242 (9) −0.00177 (9)
As3 0.00828 (12) 0.00481 (12) 0.00847 (13) −0.00135 (9) −0.00238 (9) −0.00200 (9)
O1 0.0117 (9) 0.0089 (9) 0.0088 (9) −0.0023 (7) −0.0047 (7) 0.0008 (7)
O2 0.0203 (11) 0.0144 (10) 0.0324 (13) 0.0006 (9) −0.0162 (10) −0.0123 (10)
O3 0.0101 (9) 0.0061 (8) 0.0130 (10) 0.0016 (7) −0.0023 (7) −0.0035 (7)
O4 0.0163 (10) 0.0165 (11) 0.0156 (11) −0.0045 (9) 0.0068 (8) −0.0051 (9)
O5 0.0140 (9) 0.0130 (10) 0.0124 (10) −0.0009 (8) −0.0019 (7) −0.0074 (8)
O6 0.0138 (9) 0.0056 (8) 0.0092 (9) −0.0004 (7) −0.0024 (7) 0.0019 (7)
O7 0.0096 (9) 0.0060 (8) 0.0147 (10) 0.0008 (7) −0.0038 (7) −0.0028 (7)
O8 0.0149 (10) 0.0108 (10) 0.0307 (13) −0.0015 (8) −0.0125 (9) −0.0070 (9)
O9 0.0114 (9) 0.0159 (10) 0.0132 (10) 0.0013 (8) −0.0028 (7) −0.0093 (8)
O10 0.0146 (9) 0.0081 (9) 0.0161 (10) −0.0041 (7) −0.0080 (8) −0.0039 (8)
O11 0.0149 (10) 0.0080 (9) 0.0127 (10) −0.0039 (8) −0.0004 (7) −0.0003 (8)
O12 0.0121 (10) 0.0119 (10) 0.0212 (11) −0.0006 (8) −0.0083 (8) −0.0017 (9)

Thallium iron bis[hydrogen arsenate(V)] (TlFeHAsO42). Geometric parameters (Å, º)

Tl1A—Tl1Bi 0.327 (15) Tl2B—O6iii 3.283 (3)
Tl1A—O1 2.853 (2) Tl2B—O7vii 3.380 (6)
Tl1A—O1i 2.853 (2) Tl2B—O4 3.650 (6)
Tl1A—O8i 3.094 (3) Tl2B—As1vi 3.682 (3)
Tl1A—O8 3.094 (3) Tl2B—O7iii 3.698 (3)
Tl1A—O2 3.227 (3) Tl2B—O4vi 3.833 (4)
Tl1A—O2i 3.227 (3) Tl2B—O12vi 3.843 (4)
Tl1A—O7ii 3.344 (2) Tl2B—O2vi 3.861 (4)
Tl1A—O7iii 3.344 (2) Tl2B—As3viii 3.879 (2)
Tl1A—O5ii 3.543 (2) Tl2C—O3vi 2.711 (13)
Tl1A—O5iii 3.543 (2) Tl2C—O12v 2.931 (13)
Tl1A—O12iv 3.615 (3) Tl2C—O6iii 2.970 (18)
Tl1A—O12v 3.615 (3) Tl2C—O2 3.111 (12)
Tl1A—As1i 3.7440 (14) Tl2C—O7vii 3.197 (12)
Tl1A—As1 3.7440 (14) Tl2C—O8 3.258 (14)
Tl1B—Tl1Bi 0.65 (3) Tl2C—O7iii 3.339 (17)
Tl1B—O1 2.687 (12) Tl2C—O12vi 3.454 (14)
Tl1B—O8 3.014 (10) Tl2C—O10viii 3.478 (17)
Tl1B—O7ii 3.022 (15) Tl2C—O9viii 3.640 (16)
Tl1B—O1i 3.045 (14) Tl2C—Tl2Cix 3.64 (3)
Tl1B—O2i 3.146 (8) Tl2C—As1vi 3.706 (13)
Tl1B—O8i 3.205 (11) Tl2C—O4vi 3.749 (14)
Tl1B—O5ii 3.286 (10) Tl2C—As2iii 3.794 (18)
Tl1B—O2 3.338 (8) Fe1—O4viii 1.942 (2)
Tl1B—O12iv 3.477 (12) Fe1—O4 1.942 (2)
Tl1B—O7iii 3.666 (15) Fe1—O6viii 2.015 (2)
Tl1B—As2ii 3.697 (13) Fe1—O6 2.015 (2)
Tl1B—As1 3.701 (9) Fe1—O9 2.060 (2)
Tl1B—O12v 3.775 (13) Fe1—O9viii 2.060 (2)
Tl1B—O5iii 3.810 (11) Fe2—O5 1.946 (2)
Tl2A—O3vi 2.804 (4) Fe2—O11 1.970 (2)
Tl2A—O2 2.852 (4) Fe2—O1 1.978 (2)
Tl2A—O6iii 2.936 (5) Fe2—O10x 2.014 (2)
Tl2A—O12v 3.020 (4) Fe2—O7ii 2.044 (2)
Tl2A—O8 3.091 (5) Fe2—O3iv 2.065 (2)
Tl2A—O7iii 3.362 (5) As1—O4 1.652 (2)
Tl2A—O7vii 3.450 (4) As1—O1 1.668 (2)
Tl2A—O9viii 3.523 (5) As1—O3 1.683 (2)
Tl2A—O10viii 3.572 (5) As1—O2 1.720 (2)
Tl2A—O12vi 3.638 (5) As2—O6 1.670 (2)
Tl2A—As1vi 3.688 (4) As2—O5 1.671 (2)
Tl2A—O4vi 3.691 (4) As2—O7 1.684 (2)
Tl2A—As2iii 3.763 (5) As2—O8 1.738 (2)
Tl2A—O4 3.811 (5) As3—O11 1.655 (2)
Tl2B—O3vi 2.758 (4) As3—O10 1.6730 (19)
Tl2B—O8 2.919 (4) As3—O9 1.679 (2)
Tl2B—O2 2.982 (6) As3—O12 1.721 (2)
Tl2B—O12v 3.079 (4) O2—H2 0.85 (3)
Tl2B—O9viii 3.204 (4) O8—H8 0.982 (2)
Tl2B—O10viii 3.266 (4) O12—H12 0.88 (3)
Tl1Bi—Tl1A—O1 123.3 (15) O5—As2—Tl1B 76.3 (2)
Tl1Bi—Tl1A—O1i 56.7 (15) O7—As2—Tl1B 108.47 (12)
O1—Tl1A—O1i 180.0 O8—As2—Tl1B 37.3 (2)
Tl1Bi—Tl1A—O8i 72.9 (17) Tl1Bii—As2—Tl1B 118.22 (18)
O1—Tl1A—O8i 115.26 (7) Tl2Axi—As2—Tl1B 170.49 (16)
O1i—Tl1A—O8i 64.74 (7) Tl2Cxi—As2—Tl1B 166.8 (2)
Tl1Bi—Tl1A—O8 107.1 (17) Tl1Axi—As2—Tl1B 118.58 (16)
O1—Tl1A—O8 64.74 (7) Tl2Cvii—As2—Tl1B 112.2 (3)
O1i—Tl1A—O8 115.26 (7) Tl2Bxi—As2—Tl1B 170.96 (15)
O8i—Tl1A—O8 180.0 O6—As2—Tl2Bvii 81.06 (8)
Tl1Bi—Tl1A—O2 72.8 (15) O5—As2—Tl2Bvii 158.98 (8)
O1—Tl1A—O2 51.62 (6) O7—As2—Tl2Bvii 49.63 (8)
O1i—Tl1A—O2 128.38 (6) O8—As2—Tl2Bvii 77.26 (9)
O8i—Tl1A—O2 112.41 (7) Tl1Bii—As2—Tl2Bvii 99.31 (18)
O8—Tl1A—O2 67.59 (7) Tl2Axi—As2—Tl2Bvii 65.34 (6)
Tl1Bi—Tl1A—O2i 107.2 (15) Tl2Cxi—As2—Tl2Bvii 61.21 (17)
O1—Tl1A—O2i 128.39 (6) Tl1Axi—As2—Tl2Bvii 100.41 (4)
O1i—Tl1A—O2i 51.61 (6) Tl2Cvii—As2—Tl2Bvii 6.4 (2)
O8i—Tl1A—O2i 67.59 (7) Tl2Bxi—As2—Tl2Bvii 66.09 (10)
O8—Tl1A—O2i 112.41 (7) Tl1B—As2—Tl2Bvii 105.92 (19)
O2—Tl1A—O2i 180.0 O11—As3—O10 114.60 (11)
Tl1Bi—Tl1A—O7ii 169.8 (17) O11—As3—O9 114.77 (11)
O1—Tl1A—O7ii 52.66 (6) O10—As3—O9 107.46 (11)
O1i—Tl1A—O7ii 127.34 (6) O11—As3—O12 108.03 (11)
O8i—Tl1A—O7ii 99.91 (6) O10—As3—O12 99.57 (10)
O8—Tl1A—O7ii 80.09 (6) O9—As3—O12 111.41 (11)
O2—Tl1A—O7ii 104.24 (6) O11—As3—Tl2Bviii 151.04 (8)
O2i—Tl1A—O7ii 75.76 (6) O10—As3—Tl2Bviii 56.44 (11)
Tl1Bi—Tl1A—O7iii 10.2 (17) O9—As3—Tl2Bviii 54.30 (11)
O1—Tl1A—O7iii 127.34 (6) O12—As3—Tl2Bviii 100.81 (9)
O1i—Tl1A—O7iii 52.66 (6) O11—As3—Tl2Aviii 149.26 (9)
O8i—Tl1A—O7iii 80.09 (6) O10—As3—Tl2Aviii 55.87 (9)
O8—Tl1A—O7iii 99.91 (6) O9—As3—Tl2Aviii 54.20 (9)
O2—Tl1A—O7iii 75.76 (6) O12—As3—Tl2Aviii 102.56 (9)
O2i—Tl1A—O7iii 104.24 (6) Tl2Bviii—As3—Tl2Aviii 1.80 (6)
O7ii—Tl1A—O7iii 180.0 O11—As3—Tl2Cviii 148.9 (2)
Tl1Bi—Tl1A—O5ii 143.2 (16) O10—As3—Tl2Cviii 52.14 (17)
O1—Tl1A—O5ii 83.29 (6) O9—As3—Tl2Cviii 57.83 (17)
O1i—Tl1A—O5ii 96.71 (6) O12—As3—Tl2Cviii 102.3 (2)
O8i—Tl1A—O5ii 121.76 (6) Tl2Bviii—As3—Tl2Cviii 4.5 (2)
O8—Tl1A—O5ii 58.24 (6) Tl2Aviii—As3—Tl2Cviii 3.75 (14)
O2—Tl1A—O5ii 120.71 (6) O11—As3—Tl1Biv 84.07 (15)
O2i—Tl1A—O5ii 59.29 (6) O10—As3—Tl1Biv 69.2 (2)
O7ii—Tl1A—O5ii 46.78 (5) O9—As3—Tl1Biv 159.27 (14)
O7iii—Tl1A—O5ii 133.22 (5) O12—As3—Tl1Biv 51.33 (18)
Tl1Bi—Tl1A—O5iii 36.8 (16) Tl2Bviii—As3—Tl1Biv 113.00 (17)
O1—Tl1A—O5iii 96.71 (6) Tl2Aviii—As3—Tl1Biv 113.69 (16)
O1i—Tl1A—O5iii 83.29 (6) Tl2Cviii—As3—Tl1Biv 110.6 (2)
O8i—Tl1A—O5iii 58.24 (6) O11—As3—Tl1Axiii 84.12 (8)
O8—Tl1A—O5iii 121.76 (6) O10—As3—Tl1Axiii 65.45 (7)
O2—Tl1A—O5iii 59.29 (6) O9—As3—Tl1Axiii 160.59 (8)
O2i—Tl1A—O5iii 120.71 (6) O12—As3—Tl1Axiii 55.16 (8)
O7ii—Tl1A—O5iii 133.22 (5) Tl2Bviii—As3—Tl1Axiii 111.13 (8)
O7iii—Tl1A—O5iii 46.78 (5) Tl2Aviii—As3—Tl1Axiii 111.69 (6)
O5ii—Tl1A—O5iii 180.00 (3) Tl2Cviii—As3—Tl1Axiii 108.43 (16)
Tl1Bi—Tl1A—O12iv 117.2 (17) Tl1Biv—As3—Tl1Axiii 4.35 (19)
O1—Tl1A—O12iv 57.83 (6) O11—As3—Tl1Bxiii 84.20 (14)
O1i—Tl1A—O12iv 122.17 (6) O10—As3—Tl1Bxiii 61.76 (19)
O8i—Tl1A—O12iv 59.93 (6) O9—As3—Tl1Bxiii 161.02 (14)
O8—Tl1A—O12iv 120.07 (6) O12—As3—Tl1Bxiii 58.96 (17)
O2—Tl1A—O12iv 88.55 (6) Tl2Bviii—As3—Tl1Bxiii 109.19 (17)
O2i—Tl1A—O12iv 91.45 (6) Tl2Aviii—As3—Tl1Bxiii 109.63 (16)
O7ii—Tl1A—O12iv 52.68 (5) Tl2Cviii—As3—Tl1Bxiii 106.3 (2)
O7iii—Tl1A—O12iv 127.32 (5) Tl1Biv—As3—Tl1Bxiii 8.6 (4)
O5ii—Tl1A—O12iv 98.17 (5) Tl1Axiii—As3—Tl1Bxiii 4.27 (18)
O5iii—Tl1A—O12iv 81.83 (5) O11—As3—Tl2Cxiii 129.0 (2)
Tl1Bi—Tl1A—O12v 62.8 (17) O10—As3—Tl2Cxiii 80.0 (2)
O1—Tl1A—O12v 122.17 (6) O9—As3—Tl2Cxiii 104.96 (19)
O1i—Tl1A—O12v 57.83 (6) O12—As3—Tl2Cxiii 23.7 (2)
O8i—Tl1A—O12v 120.07 (6) Tl2Bviii—As3—Tl2Cxiii 78.9 (2)
O8—Tl1A—O12v 59.93 (6) Tl2Aviii—As3—Tl2Cxiii 80.5 (2)
O2—Tl1A—O12v 91.45 (6) Tl2Cviii—As3—Tl2Cxiii 79.8 (4)
O2i—Tl1A—O12v 88.55 (6) Tl1Biv—As3—Tl2Cxiii 54.5 (2)
O7ii—Tl1A—O12v 127.32 (5) Tl1Axiii—As3—Tl2Cxiii 56.81 (16)
O7iii—Tl1A—O12v 52.68 (5) Tl1Bxiii—As3—Tl2Cxiii 59.2 (2)
O5ii—Tl1A—O12v 81.83 (5) O11—As3—Tl2Bxiii 132.75 (8)
O5iii—Tl1A—O12v 98.17 (5) O10—As3—Tl2Bxiii 74.02 (9)
O12iv—Tl1A—O12v 180.00 (6) O9—As3—Tl2Bxiii 104.89 (10)
Tl1Bi—Tl1A—As1i 79.9 (15) O12—As3—Tl2Bxiii 29.66 (8)
O1—Tl1A—As1i 155.08 (4) Tl2Bviii—As3—Tl2Bxiii 74.28 (6)
O1i—Tl1A—As1i 24.92 (4) Tl2Aviii—As3—Tl2Bxiii 75.87 (6)
O8i—Tl1A—As1i 59.16 (5) Tl2Cviii—As3—Tl2Bxiii 74.87 (19)
O8—Tl1A—As1i 120.84 (5) Tl1Biv—As3—Tl2Bxiii 54.38 (13)
O2—Tl1A—As1i 152.70 (4) Tl1Axiii—As3—Tl2Bxiii 56.21 (6)
O2i—Tl1A—As1i 27.30 (4) Tl1Bxiii—As3—Tl2Bxiii 58.18 (13)
O7ii—Tl1A—As1i 102.87 (4) Tl2Cxiii—As3—Tl2Bxiii 6.2 (2)
O7iii—Tl1A—As1i 77.13 (4) As1—O1—Fe2 126.13 (11)
O5ii—Tl1A—As1i 81.04 (5) As1—O1—Tl1B 114.3 (3)
O5iii—Tl1A—As1i 98.96 (5) Fe2—O1—Tl1B 111.4 (3)
O12iv—Tl1A—As1i 105.49 (5) As1—O1—Tl1A 108.97 (9)
O12v—Tl1A—As1i 74.51 (5) Fe2—O1—Tl1A 117.26 (9)
Tl1Bi—Tl1A—As1 100.1 (15) Tl1B—O1—Tl1A 5.8 (2)
O1—Tl1A—As1 24.92 (4) As1—O1—Tl1Bi 104.2 (2)
O1i—Tl1A—As1 155.08 (4) Fe2—O1—Tl1Bi 122.4 (2)
O8i—Tl1A—As1 120.84 (5) Tl1B—O1—Tl1Bi 11.0 (4)
O8—Tl1A—As1 59.16 (5) Tl1A—O1—Tl1Bi 5.16 (19)
O2—Tl1A—As1 27.30 (4) As1—O1—Tl2A 55.90 (7)
O2i—Tl1A—As1 152.70 (4) Fe2—O1—Tl2A 135.14 (10)
O7ii—Tl1A—As1 77.13 (4) Tl1B—O1—Tl2A 61.8 (3)
O7iii—Tl1A—As1 102.87 (4) Tl1A—O1—Tl2A 57.72 (6)
O5ii—Tl1A—As1 98.96 (5) Tl1Bi—O1—Tl2A 54.3 (2)
O5iii—Tl1A—As1 81.04 (5) As1—O1—Tl2B 55.35 (7)
O12iv—Tl1A—As1 74.51 (5) Fe2—O1—Tl2B 131.07 (8)
O12v—Tl1A—As1 105.49 (5) Tl1B—O1—Tl2B 64.2 (3)
As1i—Tl1A—As1 180.0 Tl1A—O1—Tl2B 60.43 (5)
Tl1Bi—Tl1B—O1 117.4 (14) Tl1Bi—O1—Tl2B 57.3 (2)
Tl1Bi—Tl1B—O8 101.1 (18) Tl2A—O1—Tl2B 4.56 (6)
O1—Tl1B—O8 67.8 (3) As1—O1—Tl2C 56.97 (16)
Tl1Bi—Tl1B—O7ii 168.7 (18) Fe2—O1—Tl2C 134.8 (2)
O1—Tl1B—O7ii 58.0 (3) Tl1B—O1—Tl2C 60.8 (3)
O8—Tl1B—O7ii 86.8 (3) Tl1A—O1—Tl2C 56.75 (17)
Tl1Bi—Tl1B—O1i 51.6 (15) Tl1Bi—O1—Tl2C 53.4 (3)
O1—Tl1B—O1i 169.0 (4) Tl2A—O1—Tl2C 1.07 (18)
O8—Tl1B—O1i 112.0 (4) Tl2B—O1—Tl2C 4.9 (2)
O7ii—Tl1B—O1i 132.7 (3) As1—O1—Tl2Cxii 150.86 (17)
Tl1Bi—Tl1B—O2i 101.5 (16) Fe2—O1—Tl2Cxii 47.1 (2)
O1—Tl1B—O2i 139.6 (5) Tl1B—O1—Tl2Cxii 91.3 (3)
O8—Tl1B—O2i 117.0 (2) Tl1A—O1—Tl2Cxii 95.80 (16)
O7ii—Tl1B—O2i 81.7 (3) Tl1Bi—O1—Tl2Cxii 99.8 (3)
O1i—Tl1B—O2i 51.03 (17) Tl2A—O1—Tl2Cxii 152.55 (13)
Tl1Bi—Tl1B—O8i 67.3 (17) Tl2B—O1—Tl2Cxii 153.67 (13)
O1—Tl1B—O8i 116.7 (3) Tl2C—O1—Tl2Cxii 151.5 (3)
O8—Tl1B—O8i 168.4 (5) As1—O1—Tl2Ai 151.74 (10)
O7ii—Tl1B—O8i 104.7 (4) Fe2—O1—Tl2Ai 81.86 (8)
O1i—Tl1B—O8i 61.3 (2) Tl1B—O1—Tl2Ai 47.4 (3)
O2i—Tl1B—O8i 67.3 (2) Tl1A—O1—Tl2Ai 51.24 (6)
Tl1Bi—Tl1B—O5ii 139.8 (18) Tl1Bi—O1—Tl2Ai 54.8 (2)
O1—Tl1B—O5ii 91.0 (4) Tl2A—O1—Tl2Ai 108.96 (6)
O8—Tl1B—O5ii 62.0 (2) Tl2B—O1—Tl2Ai 111.56 (8)
O7ii—Tl1B—O5ii 51.3 (2) Tl2C—O1—Tl2Ai 107.99 (18)
O1i—Tl1B—O5ii 98.6 (2) Tl2Cxii—O1—Tl2Ai 45.12 (17)
O2i—Tl1B—O5ii 62.93 (16) As1—O1—Tl2Ci 153.1 (2)
O8i—Tl1B—O5ii 126.7 (3) Fe2—O1—Tl2Ci 80.01 (19)
Tl1Bi—Tl1B—O2 67.4 (14) Tl1B—O1—Tl2Ci 50.5 (3)
O1—Tl1B—O2 51.18 (14) Tl1A—O1—Tl2Ci 54.32 (13)
O8—Tl1B—O2 67.03 (19) Tl1Bi—O1—Tl2Ci 57.9 (3)
O7ii—Tl1B—O2 109.2 (4) Tl2A—O1—Tl2Ci 112.04 (15)
O1i—Tl1B—O2 118.1 (4) Tl2B—O1—Tl2Ci 114.66 (15)
O2i—Tl1B—O2 168.9 (5) Tl2C—O1—Tl2Ci 111.07 (16)
O8i—Tl1B—O2 106.8 (2) Tl2Cxii—O1—Tl2Ci 42.2 (3)
O5ii—Tl1B—O2 125.3 (3) Tl2Ai—O1—Tl2Ci 3.11 (12)
Tl1Bi—Tl1B—O12iv 112.4 (17) As1—O2—Tl2A 120.80 (15)
O1—Tl1B—O12iv 60.9 (3) As1—O2—Tl2B 114.06 (13)
O8—Tl1B—O12iv 127.2 (4) Tl2A—O2—Tl2B 6.91 (12)
O7ii—Tl1B—O12iv 56.4 (2) As1—O2—Tl2C 122.7 (3)
O1i—Tl1B—O12iv 120.7 (3) Tl2A—O2—Tl2C 1.9 (4)
O2i—Tl1B—O12iv 95.5 (3) Tl2B—O2—Tl2C 8.8 (3)
O8i—Tl1B—O12iv 60.63 (19) As1—O2—Tl1Bi 99.0 (3)
O5ii—Tl1B—O12iv 106.2 (4) Tl2A—O2—Tl1Bi 79.2 (2)
O2—Tl1B—O12iv 89.1 (2) Tl2B—O2—Tl1Bi 81.3 (2)
Tl1Bi—Tl1B—O7iii 9.3 (16) Tl2C—O2—Tl1Bi 79.2 (3)
O1—Tl1B—O7iii 121.3 (3) As1—O2—Tl1A 93.34 (9)
O8—Tl1B—O7iii 94.6 (3) Tl2A—O2—Tl1A 81.85 (9)
O7ii—Tl1B—O7iii 178.0 (3) Tl2B—O2—Tl1A 83.31 (8)
O1i—Tl1B—O7iii 47.9 (2) Tl2C—O2—Tl1A 81.9 (2)
O2i—Tl1B—O7iii 98.9 (4) Tl1Bi—O2—Tl1A 5.7 (3)
O8i—Tl1B—O7iii 73.9 (3) As1—O2—Tl1B 88.0 (3)
O5ii—Tl1B—O7iii 130.7 (3) Tl2A—O2—Tl1B 84.3 (2)
O2—Tl1B—O7iii 70.2 (2) Tl2B—O2—Tl1B 85.2 (2)
O12iv—Tl1B—O7iii 121.6 (3) Tl2C—O2—Tl1B 84.6 (3)
Tl1Bi—Tl1B—As2ii 162.4 (16) Tl1Bi—O2—Tl1B 11.1 (5)
O1—Tl1B—As2ii 79.5 (4) Tl1A—O2—Tl1B 5.4 (3)
O8—Tl1B—As2ii 80.1 (3) As1—O2—Tl2Bvi 71.06 (10)
O7ii—Tl1B—As2ii 26.69 (11) Tl2A—O2—Tl2Bvi 109.95 (13)
O1i—Tl1B—As2ii 111.5 (2) Tl2B—O2—Tl2Bvi 107.08 (11)
O2i—Tl1B—As2ii 63.25 (18) Tl2C—O2—Tl2Bvi 110.3 (3)
O8i—Tl1B—As2ii 110.9 (3) Tl1Bi—O2—Tl2Bvi 168.9 (3)
O5ii—Tl1B—As2ii 26.86 (11) Tl1A—O2—Tl2Bvi 163.67 (10)
O2—Tl1B—As2ii 127.7 (4) Tl1B—O2—Tl2Bvi 158.5 (3)
O12iv—Tl1B—As2ii 79.4 (3) As1—O2—Tl2Avi 67.86 (10)
O7iii—Tl1B—As2ii 155.0 (3) Tl2A—O2—Tl2Avi 107.71 (11)
Tl1Bi—Tl1B—As1 95.1 (14) Tl2B—O2—Tl2Avi 104.32 (10)
O1—Tl1B—As1 24.26 (9) Tl2C—O2—Tl2Avi 108.2 (3)
O8—Tl1B—As1 60.26 (18) Tl1Bi—O2—Tl2Avi 166.9 (3)
O7ii—Tl1B—As1 81.8 (3) Tl1A—O2—Tl2Avi 161.19 (9)
O1i—Tl1B—As1 145.5 (4) Tl1B—O2—Tl2Avi 155.8 (3)
O2i—Tl1B—As1 163.4 (5) Tl2Bvi—O2—Tl2Avi 5.22 (6)
O8i—Tl1B—As1 119.0 (2) As1—O2—Tl2Cvi 65.1 (2)
O5ii—Tl1B—As1 104.8 (3) Tl2A—O2—Tl2Cvi 111.0 (2)
O2—Tl1B—As1 27.68 (8) Tl2B—O2—Tl2Cvi 107.5 (2)
O12iv—Tl1B—As1 76.7 (2) Tl2C—O2—Tl2Cvi 111.5 (2)
O7iii—Tl1B—As1 97.7 (2) Tl1Bi—O2—Tl2Cvi 163.8 (3)
As2ii—Tl1B—As1 100.6 (3) Tl1A—O2—Tl2Cvi 158.2 (2)
Tl1Bi—Tl1B—O12v 58.4 (17) Tl1B—O2—Tl2Cvi 152.9 (3)
O1—Tl1B—O12v 121.9 (3) Tl2Bvi—O2—Tl2Cvi 6.2 (2)
O8—Tl1B—O12v 58.5 (2) Tl2Avi—O2—Tl2Cvi 3.62 (15)
O7ii—Tl1B—O12v 132.8 (3) As1—O2—H2 113 (3)
O1i—Tl1B—O12v 54.7 (2) Tl2A—O2—H2 111 (3)
O2i—Tl1B—O12v 87.0 (3) Tl2B—O2—H2 114 (3)
O8i—Tl1B—O12v 112.6 (4) Tl2C—O2—H2 109 (3)
O5ii—Tl1B—O12v 82.9 (2) Tl1Bi—O2—H2 131 (3)
O2—Tl1B—O12v 87.0 (3) Tl1A—O2—H2 135 (3)
O12iv—Tl1B—O12v 170.8 (4) Tl1B—O2—H2 139 (3)
O7iii—Tl1B—O12v 49.2 (2) Tl2Bvi—O2—H2 52 (3)
As2ii—Tl1B—O12v 109.6 (2) Tl2Avi—O2—H2 58 (3)
As1—Tl1B—O12v 103.2 (3) Tl2Cvi—O2—H2 58 (3)
Tl1Bi—Tl1B—O5iii 33.9 (14) As1—O3—Fe2iv 131.25 (12)
O1—Tl1B—O5iii 93.69 (19) As1—O3—Tl2Cvi 112.9 (3)
O8—Tl1B—O5iii 116.0 (3) Fe2iv—O3—Tl2Cvi 110.1 (3)
O7ii—Tl1B—O5iii 135.1 (3) As1—O3—Tl2Bvi 109.61 (14)
O1i—Tl1B—O5iii 76.4 (3) Fe2iv—O3—Tl2Bvi 108.65 (11)
O2i—Tl1B—O5iii 115.3 (3) Tl2Cvi—O3—Tl2Bvi 10.1 (4)
O8i—Tl1B—O5iii 54.44 (17) As1—O3—Tl2Avi 107.96 (12)
O5ii—Tl1B—O5iii 173.6 (5) Fe2iv—O3—Tl2Avi 113.66 (11)
O2—Tl1B—O5iii 55.60 (15) Tl2Cvi—O3—Tl2Avi 5.4 (2)
O12iv—Tl1B—O5iii 79.93 (17) Tl2Bvi—O3—Tl2Avi 7.66 (10)
O7iii—Tl1B—O5iii 42.95 (15) As1—O3—Tl1Biv 135.47 (14)
As2ii—Tl1B—O5iii 159.0 (4) Fe2iv—O3—Tl1Biv 55.10 (13)
As1—Tl1B—O5iii 78.19 (14) Tl2Cvi—O3—Tl1Biv 98.4 (3)
O12v—Tl1B—O5iii 91.0 (3) Tl2Bvi—O3—Tl1Biv 106.05 (16)
O3vi—Tl2A—O2 110.62 (13) Tl2Avi—O3—Tl1Biv 103.81 (15)
O3vi—Tl2A—O6iii 84.49 (12) As1—O3—Tl2Cxiii 134.1 (2)
O2—Tl2A—O6iii 63.62 (10) Fe2iv—O3—Tl2Cxiii 91.18 (19)
O3vi—Tl2A—O12v 135.34 (15) Tl2Cvi—O3—Tl2Cxiii 51.0 (4)
O2—Tl2A—O12v 113.29 (14) Tl2Bvi—O3—Tl2Cxiii 60.46 (16)
O6iii—Tl2A—O12v 107.85 (16) Tl2Avi—O3—Tl2Cxiii 55.88 (18)
O3vi—Tl2A—O8 136.34 (18) Tl1Biv—O3—Tl2Cxiii 50.50 (18)
O2—Tl2A—O8 72.45 (11) As1—O3—Tl2Axiii 135.71 (10)
O6iii—Tl2A—O8 129.21 (14) Fe2iv—O3—Tl2Axiii 88.82 (8)
O12v—Tl2A—O8 67.16 (10) Tl2Cvi—O3—Tl2Axiii 53.5 (3)
O3vi—Tl2A—O7iii 124.09 (17) Tl2Bvi—O3—Tl2Axiii 62.88 (9)
O2—Tl2A—O7iii 80.54 (12) Tl2Avi—O3—Tl2Axiii 58.48 (13)
O6iii—Tl2A—O7iii 50.58 (9) Tl1Biv—O3—Tl2Axiii 47.62 (12)
O12v—Tl2A—O7iii 57.75 (9) Tl2Cxiii—O3—Tl2Axiii 2.89 (14)
O8—Tl2A—O7iii 99.55 (11) As1—O3—Tl1Axiii 132.86 (9)
O3vi—Tl2A—O7vii 51.02 (8) Fe2iv—O3—Tl1Axiii 56.68 (5)
O2—Tl2A—O7vii 161.15 (13) Tl2Cvi—O3—Tl1Axiii 100.0 (3)
O6iii—Tl2A—O7vii 106.12 (14) Tl2Bvi—O3—Tl1Axiii 107.82 (12)
O12v—Tl2A—O7vii 84.49 (11) Tl2Avi—O3—Tl1Axiii 105.31 (10)
O8—Tl2A—O7vii 122.69 (13) Tl1Biv—O3—Tl1Axiii 2.65 (11)
O7iii—Tl2A—O7vii 105.65 (13) Tl2Cxiii—O3—Tl1Axiii 51.31 (14)
O3vi—Tl2A—O9viii 67.53 (10) Tl2Axiii—O3—Tl1Axiii 48.45 (5)
O2—Tl2A—O9viii 84.95 (13) As1—O3—Tl2Bxiii 132.28 (9)
O6iii—Tl2A—O9viii 127.21 (12) Fe2iv—O3—Tl2Bxiii 91.64 (8)
O12v—Tl2A—O9viii 123.73 (15) Tl2Cvi—O3—Tl2Bxiii 54.3 (3)
O8—Tl2A—O9viii 69.50 (12) Tl2Bvi—O3—Tl2Bxiii 63.88 (13)
O7iii—Tl2A—O9viii 164.03 (13) Tl2Avi—O3—Tl2Bxiii 59.06 (9)
O7vii—Tl2A—O9viii 90.22 (11) Tl1Biv—O3—Tl2Bxiii 48.44 (13)
O3vi—Tl2A—O10viii 50.72 (8) Tl2Cxiii—O3—Tl2Bxiii 3.8 (2)
O2—Tl2A—O10viii 129.09 (16) Tl2Axiii—O3—Tl2Bxiii 3.54 (5)
O6iii—Tl2A—O10viii 135.10 (13) Tl1Axiii—O3—Tl2Bxiii 49.07 (6)
O12v—Tl2A—O10viii 103.61 (12) As1—O3—Tl1B 26.48 (12)
O8—Tl2A—O10viii 92.25 (13) Fe2iv—O3—Tl1B 105.07 (14)
O7iii—Tl2A—O10viii 150.35 (13) Tl2Cvi—O3—Tl1B 131.6 (3)
O7vii—Tl2A—O10viii 46.17 (7) Tl2Bvi—O3—Tl1B 124.7 (2)
O9viii—Tl2A—O10viii 44.78 (7) Tl2Avi—O3—Tl1B 126.15 (18)
O3vi—Tl2A—O12vi 48.01 (9) Tl1Biv—O3—Tl1B 129.18 (12)
O2—Tl2A—O12vi 114.65 (14) Tl2Cxiii—O3—Tl1B 158.3 (2)
O6iii—Tl2A—O12vi 54.68 (9) Tl2Axiii—O3—Tl1B 158.75 (14)
O12v—Tl2A—O12vi 104.24 (13) Tl1Axiii—O3—Tl1B 127.28 (17)
O8—Tl2A—O12vi 171.01 (13) Tl2Bxiii—O3—Tl1B 155.26 (13)
O7iii—Tl2A—O12vi 76.97 (12) As1—O3—Tl1Bxiii 130.50 (12)
O7vii—Tl2A—O12vi 51.73 (8) Fe2iv—O3—Tl1Bxiii 58.15 (12)
O9viii—Tl2A—O12vi 115.55 (11) Tl2Cvi—O3—Tl1Bxiii 101.3 (3)
O10viii—Tl2A—O12vi 87.20 (9) Tl2Bvi—O3—Tl1Bxiii 109.41 (15)
O3vi—Tl2A—As1vi 25.72 (5) Tl2Avi—O3—Tl1Bxiii 106.65 (14)
O2—Tl2A—As1vi 84.90 (10) Tl1Biv—O3—Tl1Bxiii 5.04 (19)
O6iii—Tl2A—As1vi 72.19 (9) Tl2Cxiii—O3—Tl1Bxiii 52.12 (17)
O12v—Tl2A—As1vi 160.16 (14) Tl2Axiii—O3—Tl1Bxiii 49.29 (11)
O8—Tl2A—As1vi 128.92 (15) Tl1Axiii—O3—Tl1Bxiii 2.40 (9)
O7iii—Tl2A—As1vi 121.50 (13) Tl2Bxiii—O3—Tl1Bxiii 49.72 (12)
O7vii—Tl2A—As1vi 76.68 (8) Tl1B—O3—Tl1Bxiii 125.5 (2)
O9viii—Tl2A—As1vi 63.26 (8) As1—O4—Fe1 166.48 (15)
O10viii—Tl2A—As1vi 67.47 (8) As1—O4—Tl2B 89.90 (10)
O12vi—Tl2A—As1vi 58.90 (7) Fe1—O4—Tl2B 103.33 (9)
O3vi—Tl2A—O4vi 46.68 (8) As1—O4—Tl2Avi 76.96 (11)
O2—Tl2A—O4vi 68.41 (9) Fe1—O4—Tl2Avi 98.20 (11)
O6iii—Tl2A—O4vi 47.49 (8) Tl2B—O4—Tl2Avi 97.68 (9)
O12v—Tl2A—O4vi 153.38 (18) As1—O4—Tl2Cvi 75.8 (3)
O8—Tl2A—O4vi 133.41 (14) Fe1—O4—Tl2Cvi 98.5 (3)
O7iii—Tl2A—O4vi 97.99 (12) Tl2B—O4—Tl2Cvi 101.6 (2)
O7vii—Tl2A—O4vi 92.92 (10) Tl2Avi—O4—Tl2Cvi 4.18 (17)
O9viii—Tl2A—O4vi 82.69 (9) As1—O4—Tl2A 84.81 (11)
O10viii—Tl2A—O4vi 93.26 (10) Fe1—O4—Tl2A 108.35 (11)
O12vi—Tl2A—O4vi 55.57 (8) Tl2B—O4—Tl2A 5.20 (7)
As1vi—Tl2A—O4vi 25.87 (4) Tl2Avi—O4—Tl2A 95.45 (10)
O3vi—Tl2A—As2iii 107.80 (14) Tl2Cvi—O4—Tl2A 99.3 (2)
O2—Tl2A—As2iii 64.63 (10) As1—O4—Tl2Bvi 72.21 (9)
O6iii—Tl2A—As2iii 25.22 (6) Fe1—O4—Tl2Bvi 103.35 (9)
O12v—Tl2A—As2iii 84.29 (12) Tl2B—O4—Tl2Bvi 95.21 (11)
O8—Tl2A—As2iii 111.92 (11) Tl2Avi—O4—Tl2Bvi 5.28 (8)
O7iii—Tl2A—As2iii 26.59 (5) Tl2Cvi—O4—Tl2Bvi 7.2 (3)
O7vii—Tl2A—As2iii 113.46 (13) Tl2A—O4—Tl2Bvi 92.62 (11)
O9viii—Tl2A—As2iii 145.94 (11) As1—O4—Tl2C 86.4 (3)
O10viii—Tl2A—As2iii 155.68 (13) Fe1—O4—Tl2C 106.8 (2)
O12vi—Tl2A—As2iii 68.51 (9) Tl2B—O4—Tl2C 3.7 (3)
As1vi—Tl2A—As2iii 97.41 (10) Tl2Avi—O4—Tl2C 95.8 (2)
O4vi—Tl2A—As2iii 72.43 (9) Tl2Cvi—O4—Tl2C 99.6 (2)
O3vi—Tl2A—O4 100.56 (13) Tl2A—O4—Tl2C 1.6 (3)
O2—Tl2A—O4 44.83 (9) Tl2Bvi—O4—Tl2C 93.1 (2)
O6iii—Tl2A—O4 105.38 (11) As1—O4—Tl1B 50.23 (13)
O12v—Tl2A—O4 116.01 (13) Fe1—O4—Tl1B 139.29 (14)
O8—Tl2A—O4 49.45 (9) Tl2B—O4—Tl1B 62.09 (19)
O7iii—Tl2A—O4 120.12 (11) Tl2Avi—O4—Tl1B 120.48 (15)
O7vii—Tl2A—O4 134.10 (14) Tl2Cvi—O4—Tl1B 121.0 (3)
O9viii—Tl2A—O4 43.94 (7) Tl2A—O4—Tl1B 59.2 (2)
O10viii—Tl2A—O4 88.11 (12) Tl2Bvi—O4—Tl1B 115.20 (13)
O12vi—Tl2A—O4 139.43 (11) Tl2C—O4—Tl1B 60.4 (3)
As1vi—Tl2A—O4 82.21 (9) As1—O4—Tl1A 49.70 (7)
O4vi—Tl2A—O4 84.55 (10) Fe1—O4—Tl1A 140.71 (10)
As2iii—Tl2A—O4 109.33 (10) Tl2B—O4—Tl1A 58.81 (5)
O3vi—Tl2A—Tl1Bi 161.45 (17) Tl2Avi—O4—Tl1A 117.68 (9)
O2—Tl2A—Tl1Bi 53.76 (17) Tl2Cvi—O4—Tl1A 118.5 (3)
O6iii—Tl2A—Tl1Bi 79.28 (18) Tl2A—O4—Tl1A 55.77 (6)
O12v—Tl2A—Tl1Bi 59.60 (16) Tl2Bvi—O4—Tl1A 112.41 (7)
O8—Tl2A—Tl1Bi 53.9 (2) Tl2C—O4—Tl1A 56.96 (19)
O7iii—Tl2A—Tl1Bi 49.1 (2) Tl1B—O4—Tl1A 4.04 (18)
O7vii—Tl2A—Tl1Bi 143.0 (2) As1—O4—Tl1Bi 49.42 (13)
O9viii—Tl2A—Tl1Bi 116.1 (2) Fe1—O4—Tl1Bi 141.78 (14)
O10viii—Tl2A—Tl1Bi 145.3 (2) Tl2B—O4—Tl1Bi 55.70 (18)
O12vi—Tl2A—Tl1Bi 124.9 (2) Tl2Avi—O4—Tl1Bi 114.90 (14)
As1vi—Tl2A—Tl1Bi 137.33 (16) Tl2Cvi—O4—Tl1Bi 115.9 (3)
O4vi—Tl2A—Tl1Bi 114.80 (15) Tl2A—O4—Tl1Bi 52.46 (19)
As2iii—Tl2A—Tl1Bi 58.25 (19) Tl2Bvi—O4—Tl1Bi 109.66 (13)
O4—Tl2A—Tl1Bi 75.5 (2) Tl2C—O4—Tl1Bi 53.7 (3)
O3vi—Tl2B—O8 149.22 (12) Tl1B—O4—Tl1Bi 7.9 (3)
O3vi—Tl2B—O2 108.16 (12) Tl1A—O4—Tl1Bi 3.91 (17)
O8—Tl2B—O2 73.17 (13) As2—O5—Fe2 142.35 (13)
O3vi—Tl2B—O12v 134.7 (2) As2—O5—Tl1Bii 90.4 (3)
O8—Tl2B—O12v 68.56 (8) Fe2—O5—Tl1Bii 126.1 (2)
O2—Tl2B—O12v 108.07 (11) As2—O5—Tl1Axi 93.59 (9)
O3vi—Tl2B—O9viii 73.06 (8) Fe2—O5—Tl1Axi 123.14 (9)
O8—Tl2B—O9viii 76.24 (10) Tl1Bii—O5—Tl1Axi 3.4 (2)
O2—Tl2B—O9viii 88.85 (14) As2—O5—Tl1Bxi 96.3 (2)
O12v—Tl2B—O9viii 133.58 (9) Fe2—O5—Tl1Bxi 120.6 (2)
O3vi—Tl2B—O10viii 54.99 (8) Tl1Bii—O5—Tl1Bxi 6.4 (5)
O8—Tl2B—O10viii 102.08 (8) Tl1Axi—O5—Tl1Bxi 3.0 (2)
O2—Tl2B—O10viii 136.68 (14) As2—O5—Tl1B 80.61 (19)
O12v—Tl2B—O10viii 109.78 (14) Fe2—O5—Tl1B 68.44 (17)
O9viii—Tl2B—O10viii 49.37 (6) Tl1Bii—O5—Tl1B 131.69 (18)
O3vi—Tl2B—O6iii 78.90 (8) Tl1Axi—O5—Tl1B 133.51 (11)
O8—Tl2B—O6iii 122.70 (14) Tl1Bxi—O5—Tl1B 135.0 (2)
O2—Tl2B—O6iii 58.07 (8) As2—O5—Tl1A 78.54 (8)
O12v—Tl2B—O6iii 98.30 (9) Fe2—O5—Tl1A 69.75 (6)
O9viii—Tl2B—O6iii 126.44 (12) Tl1Bii—O5—Tl1A 133.1 (2)
O10viii—Tl2B—O6iii 133.58 (11) Tl1Axi—O5—Tl1A 135.05 (6)
O3vi—Tl2B—O7vii 52.16 (10) Tl1Bxi—O5—Tl1A 136.64 (17)
O8—Tl2B—O7vii 131.34 (12) Tl1B—O5—Tl1A 2.70 (16)
O2—Tl2B—O7vii 155.48 (9) As2—O5—Tl2Axi 49.78 (8)
O12v—Tl2B—O7vii 84.81 (13) Fe2—O5—Tl2Axi 157.69 (10)
O9viii—Tl2B—O7vii 97.20 (9) Tl1Bii—O5—Tl2Axi 54.9 (2)
O10viii—Tl2B—O7vii 48.95 (8) Tl1Axi—O5—Tl2Axi 56.74 (6)
O6iii—Tl2B—O7vii 100.23 (12) Tl1Bxi—O5—Tl2Axi 58.40 (17)
O3vi—Tl2B—O4 105.48 (12) Tl1B—O5—Tl2Axi 129.96 (19)
O8—Tl2B—O4 52.13 (10) Tl1A—O5—Tl2Axi 128.08 (7)
O2—Tl2B—O4 46.54 (9) As2—O5—Tl1Bi 76.70 (17)
O12v—Tl2B—O4 119.12 (12) Fe2—O5—Tl1Bi 70.94 (16)
O9viii—Tl2B—O4 46.87 (8) Tl1Bii—O5—Tl1Bi 134.2 (3)
O10viii—Tl2B—O4 95.76 (9) Tl1Axi—O5—Tl1Bi 136.33 (10)
O6iii—Tl2B—O4 101.98 (13) Tl1Bxi—O5—Tl1Bi 138.05 (15)
O7vii—Tl2B—O4 144.05 (8) Tl1B—O5—Tl1Bi 5.1 (3)
O3vi—Tl2B—As1vi 25.50 (5) Tl1A—O5—Tl1Bi 2.40 (13)
O8—Tl2B—As1vi 135.81 (15) Tl2Axi—O5—Tl1Bi 126.37 (17)
O2—Tl2B—As1vi 83.25 (10) As2—O5—Tl2Cxi 46.81 (17)
O12v—Tl2B—As1vi 155.60 (15) Fe2—O5—Tl2Cxi 160.19 (18)
O9viii—Tl2B—As1vi 66.26 (6) Tl1Bii—O5—Tl2Cxi 56.2 (3)
O10viii—Tl2B—As1vi 70.68 (6) Tl1Axi—O5—Tl2Cxi 58.14 (17)
O6iii—Tl2B—As1vi 68.82 (6) Tl1Bxi—O5—Tl2Cxi 59.9 (2)
O7vii—Tl2B—As1vi 77.62 (8) Tl1B—O5—Tl2Cxi 126.9 (2)
O4—Tl2B—As1vi 84.53 (9) Tl1A—O5—Tl2Cxi 125.04 (17)
O3vi—Tl2B—O7iii 114.48 (10) Tl2Axi—O5—Tl2Cxi 3.08 (18)
O8—Tl2B—O7iii 95.62 (9) Tl1Bi—O5—Tl2Cxi 123.3 (2)
O2—Tl2B—O7iii 73.45 (8) As2—O5—Tl2Bxi 51.91 (8)
O12v—Tl2B—O7iii 53.44 (7) Fe2—O5—Tl2Bxi 156.29 (10)
O9viii—Tl2B—O7iii 162.11 (18) Tl1Bii—O5—Tl2Bxi 53.55 (19)
O10viii—Tl2B—O7iii 148.46 (17) Tl1Axi—O5—Tl2Bxi 55.28 (5)
O6iii—Tl2B—O7iii 45.34 (6) Tl1Bxi—O5—Tl2Bxi 56.85 (17)
O7vii—Tl2B—O7iii 100.05 (12) Tl1B—O5—Tl2Bxi 132.05 (19)
O4—Tl2B—O7iii 115.66 (12) Tl1A—O5—Tl2Bxi 130.19 (7)
As1vi—Tl2B—O7iii 113.00 (6) Tl2Axi—O5—Tl2Bxi 2.14 (10)
O3vi—Tl2B—O4vi 44.76 (7) Tl1Bi—O5—Tl2Bxi 128.49 (17)
O8—Tl2B—O4vi 134.38 (18) Tl2Cxi—O5—Tl2Bxi 5.15 (19)
O2—Tl2B—O4vi 65.24 (9) As2—O6—Fe1 126.05 (12)
O12v—Tl2B—O4vi 141.63 (9) As2—O6—Tl2Axi 106.26 (12)
O9viii—Tl2B—O4vi 84.79 (8) Fe1—O6—Tl2Axi 124.82 (12)
O10viii—Tl2B—O4vi 95.78 (8) As2—O6—Tl2Cxi 106.3 (3)
O6iii—Tl2B—O4vi 44.76 (6) Fe1—O6—Tl2Cxi 126.3 (3)
O7vii—Tl2B—O4vi 91.56 (9) Tl2Axi—O6—Tl2Cxi 5.3 (2)
O4—Tl2B—O4vi 84.79 (11) As2—O6—Tl2Bxi 108.64 (10)
As1vi—Tl2B—O4vi 25.29 (4) Fe1—O6—Tl2Bxi 122.23 (10)
O7iii—Tl2B—O4vi 90.02 (7) Tl2Axi—O6—Tl2Bxi 2.60 (10)
O3vi—Tl2B—O12vi 45.24 (8) Tl2Cxi—O6—Tl2Bxi 6.8 (3)
O8—Tl2B—O12vi 165.47 (10) As2—O6—Tl2Cvii 78.7 (2)
O2—Tl2B—O12vi 106.12 (8) Fe1—O6—Tl2Cvii 135.73 (19)
O12v—Tl2B—O12vi 98.54 (12) Tl2Axi—O6—Tl2Cvii 64.8 (2)
O9viii—Tl2B—O12vi 118.27 (9) Tl2Cxi—O6—Tl2Cvii 59.8 (4)
O10viii—Tl2B—O12vi 88.37 (11) Tl2Bxi—O6—Tl2Cvii 66.6 (3)
O6iii—Tl2B—O12vi 50.52 (7) As2—O6—Tl2Bvii 76.31 (8)
O7vii—Tl2B—O12vi 50.28 (8) Fe1—O6—Tl2Bvii 133.00 (9)
O4—Tl2B—O12vi 137.64 (10) Tl2Axi—O6—Tl2Bvii 70.73 (9)
As1vi—Tl2B—O12vi 57.16 (6) Tl2Cxi—O6—Tl2Bvii 65.8 (2)
O7iii—Tl2B—O12vi 70.64 (7) Tl2Bxi—O6—Tl2Bvii 72.57 (11)
O4vi—Tl2B—O12vi 52.86 (6) Tl2Cvii—O6—Tl2Bvii 6.0 (3)
O3vi—Tl2B—O2vi 46.10 (7) As2—O6—Tl2Avii 79.49 (9)
O8—Tl2B—O2vi 109.73 (14) Fe1—O6—Tl2Avii 133.98 (9)
O2—Tl2B—O2vi 72.92 (11) Tl2Axi—O6—Tl2Avii 65.97 (14)
O12v—Tl2B—O2vi 177.42 (8) Tl2Cxi—O6—Tl2Avii 61.0 (2)
O9viii—Tl2B—O2vi 43.85 (7) Tl2Bxi—O6—Tl2Avii 67.76 (10)
O10viii—Tl2B—O2vi 68.46 (7) Tl2Cvii—O6—Tl2Avii 1.8 (2)
O6iii—Tl2B—O2vi 84.25 (9) Tl2Bvii—O6—Tl2Avii 4.97 (7)
O7vii—Tl2B—O2vi 95.15 (8) As2—O6—Tl1Bii 55.67 (16)
O4—Tl2B—O2vi 59.71 (8) Fe1—O6—Tl1Bii 138.50 (18)
As1vi—Tl2B—O2vi 26.23 (4) Tl2Axi—O6—Tl1Bii 59.44 (15)
O7iii—Tl2B—O2vi 129.04 (9) Tl2Cxi—O6—Tl1Bii 62.4 (3)
O4vi—Tl2B—O2vi 40.95 (6) Tl2Bxi—O6—Tl1Bii 60.96 (14)
O12vi—Tl2B—O2vi 83.38 (7) Tl2Cvii—O6—Tl1Bii 85.3 (2)
O3vi—Tl2B—As3viii 66.57 (6) Tl2Bvii—O6—Tl1Bii 88.46 (17)
O8—Tl2B—As3viii 84.53 (8) Tl2Avii—O6—Tl1Bii 87.14 (17)
O2—Tl2B—As3viii 114.04 (13) As2—O6—Tl2B 75.09 (8)
O12v—Tl2B—As3viii 119.79 (9) Fe1—O6—Tl2B 76.97 (8)
O9viii—Tl2B—As3viii 25.19 (4) Tl2Axi—O6—Tl2B 139.02 (8)
O10viii—Tl2B—As3viii 25.27 (4) Tl2Cxi—O6—Tl2B 133.7 (2)
O6iii—Tl2B—As3viii 140.22 (8) Tl2Bxi—O6—Tl2B 140.17 (16)
O7vii—Tl2B—As3viii 74.20 (7) Tl2Cvii—O6—Tl2B 75.8 (3)
O4—Tl2B—As3viii 70.61 (7) Tl2Bvii—O6—Tl2B 69.97 (6)
As1vi—Tl2B—As3viii 71.55 (5) Tl2Avii—O6—Tl2B 74.36 (11)
O7iii—Tl2B—As3viii 172.07 (14) Tl1Bii—O6—Tl2B 129.88 (17)
O4vi—Tl2B—As3viii 95.54 (7) As2—O6—Tl1Axi 57.71 (7)
O12vi—Tl2B—As3viii 108.40 (9) Fe1—O6—Tl1Axi 136.87 (8)
O2vi—Tl2B—As3viii 57.80 (6) Tl2Axi—O6—Tl1Axi 58.46 (8)
O3vi—Tl2C—O12v 145.5 (4) Tl2Cxi—O6—Tl1Axi 61.6 (2)
O3vi—Tl2C—O6iii 85.5 (4) Tl2Bxi—O6—Tl1Axi 59.90 (7)
O12v—Tl2C—O6iii 109.3 (5) Tl2Cvii—O6—Tl1Axi 86.74 (19)
O3vi—Tl2C—O2 105.8 (4) Tl2Bvii—O6—Tl1Axi 90.01 (6)
O12v—Tl2C—O2 108.6 (4) Tl2Avii—O6—Tl1Axi 88.54 (7)
O6iii—Tl2C—O2 60.2 (3) Tl1Bii—O6—Tl1Axi 2.28 (17)
O3vi—Tl2C—O7vii 54.9 (2) Tl2B—O6—Tl1Axi 132.08 (6)
O12v—Tl2C—O7vii 90.7 (3) As2—O6—Tl2A 73.27 (9)
O6iii—Tl2C—O7vii 112.0 (4) Fe1—O6—Tl2A 76.91 (8)
O2—Tl2C—O7vii 160.6 (5) Tl2Axi—O6—Tl2A 141.05 (13)
O3vi—Tl2C—O8 132.8 (6) Tl2Cxi—O6—Tl2A 135.7 (3)
O12v—Tl2C—O8 66.0 (3) Tl2Bxi—O6—Tl2A 142.30 (9)
O6iii—Tl2C—O8 121.8 (4) Tl2Cvii—O6—Tl2A 77.4 (2)
O2—Tl2C—O8 67.0 (2) Tl2Bvii—O6—Tl2A 71.48 (7)
O7vii—Tl2C—O8 125.7 (5) Tl2Avii—O6—Tl2A 75.96 (9)
O3vi—Tl2C—O7iii 128.4 (6) Tl1Bii—O6—Tl2A 128.38 (17)
O12v—Tl2C—O7iii 58.8 (3) Tl2B—O6—Tl2A 2.59 (8)
O6iii—Tl2C—O7iii 50.6 (3) Tl1Axi—O6—Tl2A 130.56 (6)
O2—Tl2C—O7iii 77.4 (3) As2—O7—Fe2ii 122.44 (11)
O7vii—Tl2C—O7iii 112.3 (4) As2—O7—Tl1Bii 99.60 (17)
O8—Tl2C—O7iii 96.7 (3) Fe2ii—O7—Tl1Bii 97.94 (18)
O3vi—Tl2C—O12vi 50.8 (2) As2—O7—Tl2Cvii 110.0 (3)
O12v—Tl2C—O12vi 111.0 (4) Fe2ii—O7—Tl2Cvii 94.7 (3)
O6iii—Tl2C—O12vi 56.8 (3) Tl1Bii—O7—Tl2Cvii 134.3 (4)
O2—Tl2C—O12vi 113.1 (5) As2—O7—Tl2Cxi 92.1 (3)
O7vii—Tl2C—O12vi 55.3 (2) Fe2ii—O7—Tl2Cxi 145.3 (3)
O8—Tl2C—O12vi 176.4 (5) Tl1Bii—O7—Tl2Cxi 77.4 (3)
O7iii—Tl2C—O12vi 79.9 (4) Tl2Cvii—O7—Tl2Cxi 67.7 (4)
O3vi—Tl2C—O10viii 52.4 (3) As2—O7—Tl1Axi 100.56 (9)
O12v—Tl2C—O10viii 107.9 (5) Fe2ii—O7—Tl1Axi 97.82 (8)
O6iii—Tl2C—O10viii 137.8 (4) Tl1Bii—O7—Tl1Axi 1.10 (17)
O2—Tl2C—O10viii 123.5 (5) Tl2Cvii—O7—Tl1Axi 133.2 (3)
O7vii—Tl2C—O10viii 48.5 (2) Tl2Cxi—O7—Tl1Axi 76.9 (2)
O8—Tl2C—O10viii 91.2 (4) As2—O7—Tl2Axi 90.08 (10)
O7iii—Tl2C—O10viii 159.0 (4) Fe2ii—O7—Tl2Axi 147.47 (11)
O12vi—Tl2C—O10viii 91.7 (3) Tl1Bii—O7—Tl2Axi 73.5 (2)
O3vi—Tl2C—O9viii 66.5 (3) Tl2Cvii—O7—Tl2Axi 72.4 (3)
O12v—Tl2C—O9viii 122.7 (5) Tl2Cxi—O7—Tl2Axi 4.73 (18)
O6iii—Tl2C—O9viii 122.0 (4) Tl1Axi—O7—Tl2Axi 73.06 (8)
O2—Tl2C—O9viii 79.4 (3) As2—O7—Tl2Bvii 108.05 (10)
O7vii—Tl2C—O9viii 92.3 (4) Fe2ii—O7—Tl2Bvii 89.65 (8)
O8—Tl2C—O9viii 66.3 (3) Tl1Bii—O7—Tl2Bvii 141.32 (19)
O7iii—Tl2C—O9viii 155.4 (4) Tl2Cvii—O7—Tl2Bvii 7.8 (3)
O12vi—Tl2C—O9viii 117.3 (4) Tl2Cxi—O7—Tl2Bvii 75.10 (18)
O10viii—Tl2C—O9viii 44.6 (2) Tl1Axi—O7—Tl2Bvii 140.26 (7)
O3vi—Tl2C—Tl2Cix 93.7 (5) Tl2Axi—O7—Tl2Bvii 79.80 (8)
O12v—Tl2C—Tl2Cix 62.3 (4) As2—O7—Tl2Avii 110.54 (11)
O6iii—Tl2C—Tl2Cix 75.3 (6) Fe2ii—O7—Tl2Avii 92.84 (10)
O2—Tl2C—Tl2Cix 128.9 (8) Tl1Bii—O7—Tl2Avii 135.4 (2)
O7vii—Tl2C—Tl2Cix 58.0 (3) Tl2Cvii—O7—Tl2Avii 2.0 (3)
O8—Tl2C—Tl2Cix 128.2 (6) Tl2Cxi—O7—Tl2Avii 69.6 (2)
O7iii—Tl2C—Tl2Cix 54.3 (4) Tl1Axi—O7—Tl2Avii 134.39 (10)
O12vi—Tl2C—Tl2Cix 48.7 (3) Tl2Axi—O7—Tl2Avii 74.35 (13)
O10viii—Tl2C—Tl2Cix 105.9 (5) Tl2Bvii—O7—Tl2Avii 6.18 (9)
O9viii—Tl2C—Tl2Cix 150.3 (6) As2—O7—Tl1Bxi 101.35 (15)
O3vi—Tl2C—As1vi 24.72 (13) Fe2ii—O7—Tl1Bxi 97.73 (15)
O12v—Tl2C—As1vi 169.5 (4) Tl1Bii—O7—Tl1Bxi 2.0 (3)
O6iii—Tl2C—As1vi 71.6 (3) Tl2Cvii—O7—Tl1Bxi 132.4 (4)
O2—Tl2C—As1vi 81.2 (3) Tl2Cxi—O7—Tl1Bxi 76.5 (3)
O7vii—Tl2C—As1vi 79.5 (3) Tl1Axi—O7—Tl1Bxi 0.90 (14)
O8—Tl2C—As1vi 122.9 (4) Tl2Axi—O7—Tl1Bxi 72.67 (17)
O7iii—Tl2C—As1vi 121.7 (5) Tl2Bvii—O7—Tl1Bxi 139.38 (16)
O12vi—Tl2C—As1vi 60.3 (2) Tl2Avii—O7—Tl1Bxi 133.53 (18)
O10viii—Tl2C—As1vi 68.2 (3) As2—O7—Tl2Bxi 92.59 (10)
O9viii—Tl2C—As1vi 62.0 (2) Fe2ii—O7—Tl2Bxi 144.92 (10)
Tl2Cix—Tl2C—As1vi 108.7 (5) Tl1Bii—O7—Tl2Bxi 72.2 (2)
O3vi—Tl2C—O4vi 46.0 (2) Tl2Cvii—O7—Tl2Bxi 72.5 (3)
O12v—Tl2C—O4vi 155.8 (6) Tl2Cxi—O7—Tl2Bxi 5.3 (2)
O6iii—Tl2C—O4vi 46.7 (2) Tl1Axi—O7—Tl2Bxi 71.63 (8)
O2—Tl2C—O4vi 65.4 (3) Tl2Axi—O7—Tl2Bxi 2.70 (7)
O7vii—Tl2C—O4vi 96.1 (3) Tl2Bvii—O7—Tl2Bxi 79.95 (12)
O8—Tl2C—O4vi 125.5 (3) Tl2Avii—O7—Tl2Bxi 74.37 (10)
O7iii—Tl2C—O4vi 97.3 (4) Tl1Bxi—O7—Tl2Bxi 71.21 (17)
O12vi—Tl2C—O4vi 56.5 (2) As2—O7—Tl1B 52.90 (12)
O10viii—Tl2C—O4vi 93.8 (3) Fe2ii—O7—Tl1B 69.77 (11)
O9viii—Tl2C—O4vi 80.4 (3) Tl1Bii—O7—Tl1B 113.2 (2)
Tl2Cix—Tl2C—O4vi 102.1 (6) Tl2Cvii—O7—Tl1B 112.4 (4)
As1vi—Tl2C—O4vi 25.60 (10) Tl2Cxi—O7—Tl1B 143.9 (3)
O3vi—Tl2C—As2iii 109.1 (5) Tl1Axi—O7—Tl1B 114.21 (18)
O12v—Tl2C—As2iii 84.9 (4) Tl2Axi—O7—Tl1B 142.66 (12)
O6iii—Tl2C—As2iii 25.01 (15) Tl2Bvii—O7—Tl1B 105.03 (18)
O2—Tl2C—As2iii 62.3 (3) Tl2Avii—O7—Tl1B 111.1 (2)
O7vii—Tl2C—As2iii 119.1 (4) Tl1Bxi—O7—Tl1B 115.0 (3)
O8—Tl2C—As2iii 107.4 (3) Tl2Bxi—O7—Tl1B 145.27 (11)
O7iii—Tl2C—As2iii 26.34 (14) As2—O8—Tl2B 140.00 (13)
O12vi—Tl2C—As2iii 70.0 (3) As2—O8—Tl1B 122.2 (3)
O10viii—Tl2C—As2iii 160.7 (4) Tl2B—O8—Tl1B 92.5 (3)
O9viii—Tl2C—As2iii 139.2 (4) As2—O8—Tl2A 145.64 (14)
Tl2Cix—Tl2C—As2iii 66.7 (5) Tl2B—O8—Tl2A 6.34 (9)
As1vi—Tl2C—As2iii 96.6 (4) Tl1B—O8—Tl2A 86.2 (3)
O4vi—Tl2C—As2iii 71.5 (3) As2—O8—Tl1A 128.10 (11)
O3vi—Tl2C—Tl2Aix 92.3 (3) Tl2B—O8—Tl1A 86.74 (7)
O12v—Tl2C—Tl2Aix 62.8 (2) Tl1B—O8—Tl1A 6.0 (3)
O6iii—Tl2C—Tl2Aix 77.0 (3) Tl2A—O8—Tl1A 80.39 (10)
O2—Tl2C—Tl2Aix 131.1 (5) As2—O8—Tl1Bi 133.6 (3)
O7vii—Tl2C—Tl2Aix 55.8 (2) Tl2B—O8—Tl1Bi 81.3 (2)
O8—Tl2C—Tl2Aix 128.8 (3) Tl1B—O8—Tl1Bi 11.6 (5)
O7iii—Tl2C—Tl2Aix 56.5 (2) Tl2A—O8—Tl1Bi 74.9 (3)
O12vi—Tl2C—Tl2Aix 48.24 (18) Tl1A—O8—Tl1Bi 5.6 (3)
O10viii—Tl2C—Tl2Aix 103.7 (3) As2—O8—Tl2C 146.3 (3)
O9viii—Tl2C—Tl2Aix 148.1 (4) Tl2B—O8—Tl2C 6.4 (3)
Tl2Cix—Tl2C—Tl2Aix 2.3 (3) Tl1B—O8—Tl2C 87.6 (4)
As1vi—Tl2C—Tl2Aix 108.0 (3) Tl2A—O8—Tl2C 4.0 (2)
O4vi—Tl2C—Tl2Aix 102.4 (3) Tl1A—O8—Tl2C 81.7 (3)
As2iii—Tl2C—Tl2Aix 68.9 (2) Tl1Bi—O8—Tl2C 76.2 (4)
O4viii—Fe1—O4 180.0 As2—O8—Tl2Bvii 78.89 (10)
O4viii—Fe1—O6viii 91.70 (10) Tl2B—O8—Tl2Bvii 88.66 (8)
O4—Fe1—O6viii 88.30 (10) Tl1B—O8—Tl2Bvii 137.2 (2)
O4viii—Fe1—O6 88.30 (10) Tl2A—O8—Tl2Bvii 93.12 (12)
O4—Fe1—O6 91.70 (10) Tl1A—O8—Tl2Bvii 135.59 (8)
O6viii—Fe1—O6 180.0 Tl1Bi—O8—Tl2Bvii 133.6 (2)
O4viii—Fe1—O9 87.04 (9) Tl2C—O8—Tl2Bvii 89.6 (3)
O4—Fe1—O9 92.96 (9) As2—O8—Tl2Cvii 72.5 (2)
O6viii—Fe1—O9 92.17 (9) Tl2B—O8—Tl2Cvii 93.0 (2)
O6—Fe1—O9 87.83 (9) Tl1B—O8—Tl2Cvii 141.7 (3)
O4viii—Fe1—O9viii 92.96 (9) Tl2A—O8—Tl2Cvii 97.78 (17)
O4—Fe1—O9viii 87.04 (9) Tl1A—O8—Tl2Cvii 140.7 (2)
O6viii—Fe1—O9viii 87.83 (9) Tl1Bi—O8—Tl2Cvii 139.2 (3)
O6—Fe1—O9viii 92.17 (9) Tl2C—O8—Tl2Cvii 94.4 (4)
O9—Fe1—O9viii 180.00 (12) Tl2Bvii—O8—Tl2Cvii 6.5 (2)
O4viii—Fe1—Tl2Avi 124.04 (9) As2—O8—Tl2Avii 75.34 (10)
O4—Fe1—Tl2Avi 55.96 (9) Tl2B—O8—Tl2Avii 90.71 (13)
O6viii—Fe1—Tl2Avi 33.14 (8) Tl1B—O8—Tl2Avii 140.2 (2)
O6—Fe1—Tl2Avi 146.86 (8) Tl2A—O8—Tl2Avii 95.41 (11)
O9—Fe1—Tl2Avi 99.80 (8) Tl1A—O8—Tl2Avii 138.90 (9)
O9viii—Fe1—Tl2Avi 80.20 (8) Tl1Bi—O8—Tl2Avii 137.1 (2)
O4viii—Fe1—Tl2Axi 55.96 (9) Tl2C—O8—Tl2Avii 92.0 (2)
O4—Fe1—Tl2Axi 124.04 (9) Tl2Bvii—O8—Tl2Avii 3.75 (10)
O6viii—Fe1—Tl2Axi 146.86 (8) Tl2Cvii—O8—Tl2Avii 2.8 (2)
O6—Fe1—Tl2Axi 33.14 (8) As2—O8—Tl2Cxi 32.11 (14)
O9—Fe1—Tl2Axi 80.20 (8) Tl2B—O8—Tl2Cxi 115.00 (14)
O9viii—Fe1—Tl2Axi 99.80 (8) Tl1B—O8—Tl2Cxi 152.4 (3)
Tl2Avi—Fe1—Tl2Axi 180.0 Tl2A—O8—Tl2Cxi 121.35 (16)
O4viii—Fe1—Tl2Cvi 123.9 (2) Tl1A—O8—Tl2Cxi 158.25 (14)
O4—Fe1—Tl2Cvi 56.1 (2) Tl1Bi—O8—Tl2Cxi 163.7 (3)
O6viii—Fe1—Tl2Cvi 32.4 (2) Tl2C—O8—Tl2Cxi 120.0 (4)
O6—Fe1—Tl2Cvi 147.6 (2) Tl2Bvii—O8—Tl2Cxi 50.72 (11)
O9—Fe1—Tl2Cvi 96.31 (16) Tl2Cvii—O8—Tl2Cxi 44.3 (3)
O9viii—Fe1—Tl2Cvi 83.69 (16) Tl2Avii—O8—Tl2Cxi 46.97 (15)
Tl2Avi—Fe1—Tl2Cvi 3.50 (15) As3—O9—Fe1 126.14 (11)
Tl2Axi—Fe1—Tl2Cvi 176.50 (15) As3—O9—Tl2Bviii 100.51 (12)
O4viii—Fe1—Tl2Cxi 56.1 (2) Fe1—O9—Tl2Bviii 116.35 (12)
O4—Fe1—Tl2Cxi 123.9 (2) As3—O9—Tl2Aviii 103.06 (11)
O6viii—Fe1—Tl2Cxi 147.6 (2) Fe1—O9—Tl2Aviii 115.76 (10)
O6—Fe1—Tl2Cxi 32.4 (2) Tl2Bviii—O9—Tl2Aviii 3.35 (9)
O9—Fe1—Tl2Cxi 83.69 (16) As3—O9—Tl2Cviii 99.2 (2)
O9viii—Fe1—Tl2Cxi 96.31 (16) Fe1—O9—Tl2Cviii 119.46 (19)
Tl2Avi—Fe1—Tl2Cxi 176.50 (15) Tl2Bviii—O9—Tl2Cviii 3.5 (2)
Tl2Axi—Fe1—Tl2Cxi 3.50 (15) Tl2Aviii—O9—Tl2Cviii 4.02 (19)
Tl2Cvi—Fe1—Tl2Cxi 180.0 As3—O9—Tl2Axi 148.12 (11)
O4viii—Fe1—Tl2Bviii 51.92 (9) Fe1—O9—Tl2Axi 73.23 (8)
O4—Fe1—Tl2Bviii 128.08 (9) Tl2Bviii—O9—Tl2Axi 89.41 (8)
O6viii—Fe1—Tl2Bviii 77.24 (7) Tl2Aviii—O9—Tl2Axi 86.11 (9)
O6—Fe1—Tl2Bviii 102.76 (7) Tl2Cviii—O9—Tl2Axi 88.9 (3)
O9—Fe1—Tl2Bviii 39.51 (8) As3—O9—Tl2Cxi 149.74 (18)
O9viii—Fe1—Tl2Bviii 140.49 (8) Fe1—O9—Tl2Cxi 70.55 (18)
Tl2Avi—Fe1—Tl2Bviii 103.44 (5) Tl2Bviii—O9—Tl2Cxi 90.8 (2)
Tl2Axi—Fe1—Tl2Bviii 76.56 (5) Tl2Aviii—O9—Tl2Cxi 87.6 (2)
Tl2Cvi—Fe1—Tl2Bviii 100.63 (18) Tl2Cviii—O9—Tl2Cxi 90.4 (2)
Tl2Cxi—Fe1—Tl2Bviii 79.37 (18) Tl2Axi—O9—Tl2Cxi 2.7 (2)
O4viii—Fe1—Tl2B 128.08 (9) As3—O9—Tl2Bxi 148.77 (10)
O4—Fe1—Tl2B 51.92 (9) Fe1—O9—Tl2Bxi 75.38 (8)
O6viii—Fe1—Tl2B 102.76 (7) Tl2Bviii—O9—Tl2Bxi 85.66 (11)
O6—Fe1—Tl2B 77.24 (7) Tl2Aviii—O9—Tl2Bxi 82.35 (7)
O9—Fe1—Tl2B 140.49 (8) Tl2Cviii—O9—Tl2Bxi 85.1 (2)
O9viii—Fe1—Tl2B 39.51 (8) Tl2Axi—O9—Tl2Bxi 3.77 (8)
Tl2Avi—Fe1—Tl2B 76.56 (5) Tl2Cxi—O9—Tl2Bxi 5.8 (2)
Tl2Axi—Fe1—Tl2B 103.44 (5) As3—O9—Tl2Cxiii 56.57 (16)
Tl2Cvi—Fe1—Tl2B 79.37 (18) Fe1—O9—Tl2Cxiii 95.39 (15)
Tl2Cxi—Fe1—Tl2B 100.63 (18) Tl2Bviii—O9—Tl2Cxiii 75.0 (2)
Tl2Bviii—Fe1—Tl2B 180.0 Tl2Aviii—O9—Tl2Cxiii 78.28 (18)
O5—Fe2—O11 95.79 (10) Tl2Cviii—O9—Tl2Cxiii 76.7 (4)
O5—Fe2—O1 95.83 (9) Tl2Axi—O9—Tl2Cxiii 154.43 (14)
O11—Fe2—O1 94.90 (9) Tl2Cxi—O9—Tl2Cxiii 153.4 (3)
O5—Fe2—O10x 87.53 (9) Tl2Bxi—O9—Tl2Cxiii 152.26 (17)
O11—Fe2—O10x 91.37 (9) As3—O9—Tl2Cvi 71.33 (15)
O1—Fe2—O10x 172.54 (9) Fe1—O9—Tl2Cvi 60.13 (14)
O5—Fe2—O7ii 94.10 (9) Tl2Bviii—O9—Tl2Cvi 110.09 (17)
O11—Fe2—O7ii 169.50 (9) Tl2Aviii—O9—Tl2Cvi 112.86 (18)
O1—Fe2—O7ii 87.58 (9) Tl2Cviii—O9—Tl2Cvi 112.9 (3)
O10x—Fe2—O7ii 85.53 (9) Tl2Axi—O9—Tl2Cvi 133.37 (12)
O5—Fe2—O3iv 174.72 (8) Tl2Cxi—O9—Tl2Cvi 130.68 (17)
O11—Fe2—O3iv 85.61 (9) Tl2Bxi—O9—Tl2Cvi 135.38 (17)
O1—Fe2—O3iv 89.11 (8) Tl2Cxiii—O9—Tl2Cvi 41.7 (3)
O10x—Fe2—O3iv 87.34 (8) As3—O9—Tl2Bxiii 56.73 (8)
O7ii—Fe2—O3iv 84.23 (9) Fe1—O9—Tl2Bxiii 99.49 (9)
O5—Fe2—Tl1B 83.71 (16) Tl2Bviii—O9—Tl2Bxiii 70.07 (7)
O11—Fe2—Tl1B 134.23 (14) Tl2Aviii—O9—Tl2Bxiii 73.39 (8)
O1—Fe2—Tl1B 40.21 (13) Tl2Cviii—O9—Tl2Bxiii 71.7 (2)
O10x—Fe2—Tl1B 134.14 (13) Tl2Axi—O9—Tl2Bxiii 152.83 (7)
O7ii—Fe2—Tl1B 50.57 (15) Tl2Cxi—O9—Tl2Bxiii 152.35 (17)
O3iv—Fe2—Tl1B 98.97 (16) Tl2Bxi—O9—Tl2Bxiii 150.11 (7)
O5—Fe2—Tl2Cxii 135.2 (2) Tl2Cxiii—O9—Tl2Bxiii 5.39 (19)
O11—Fe2—Tl2Cxii 115.68 (19) Tl2Cvi—O9—Tl2Bxiii 46.99 (13)
O1—Fe2—Tl2Cxii 111.3 (3) As3—O10—Fe2x 135.25 (12)
O10x—Fe2—Tl2Cxii 62.1 (3) As3—O10—Tl2Bviii 98.29 (12)
O7ii—Fe2—Tl2Cxii 54.13 (19) Fe2x—O10—Tl2Bviii 93.44 (9)
O3iv—Fe2—Tl2Cxii 40.4 (2) As3—O10—Tl2Cviii 105.5 (2)
Tl1B—Fe2—Tl2Cxii 94.5 (3) Fe2x—O10—Tl2Cviii 87.1 (2)
O5—Fe2—Tl2Bxii 133.55 (8) Tl2Bviii—O10—Tl2Cviii 7.4 (3)
O11—Fe2—Tl2Bxii 111.03 (9) As3—O10—Tl2Aviii 101.32 (11)
O1—Fe2—Tl2Bxii 117.77 (7) Fe2x—O10—Tl2Aviii 89.85 (10)
O10x—Fe2—Tl2Bxii 55.86 (7) Tl2Bviii—O10—Tl2Aviii 3.64 (12)
O7ii—Fe2—Tl2Bxii 59.09 (9) Tl2Cviii—O10—Tl2Aviii 4.2 (2)
O3iv—Fe2—Tl2Bxii 41.56 (7) As3—O10—Tl1Bxiii 95.8 (2)
Tl1B—Fe2—Tl2Bxii 101.28 (17) Fe2x—O10—Tl1Bxiii 101.6 (2)
Tl2Cxii—Fe2—Tl2Bxii 7.1 (2) Tl2Bviii—O10—Tl1Bxiii 140.98 (15)
O5—Fe2—Tl2Axii 136.51 (9) Tl2Cviii—O10—Tl1Bxiii 139.3 (3)
O11—Fe2—Tl2Axii 112.58 (9) Tl2Aviii—O10—Tl1Bxiii 141.70 (15)
O1—Fe2—Tl2Axii 112.92 (9) As3—O10—Tl1Axiii 91.72 (8)
O10x—Fe2—Tl2Axii 60.69 (9) Fe2x—O10—Tl1Axiii 106.28 (8)
O7ii—Fe2—Tl2Axii 57.26 (8) Tl2Bviii—O10—Tl1Axiii 139.97 (8)
O3iv—Fe2—Tl2Axii 38.83 (8) Tl2Cviii—O10—Tl1Axiii 139.3 (2)
Tl1B—Fe2—Tl2Axii 97.41 (17) Tl2Aviii—O10—Tl1Axiii 141.15 (8)
Tl2Cxii—Fe2—Tl2Axii 3.2 (2) Tl1Bxiii—O10—Tl1Axiii 4.7 (2)
Tl2Bxii—Fe2—Tl2Axii 4.85 (8) As3—O10—Tl1Biv 87.8 (2)
O5—Fe2—Tl1A 84.15 (7) Fe2x—O10—Tl1Biv 110.8 (2)
O11—Fe2—Tl1A 131.70 (7) Tl2Bviii—O10—Tl1Biv 138.59 (14)
O1—Fe2—Tl1A 37.68 (6) Tl2Cviii—O10—Tl1Biv 138.8 (3)
O10x—Fe2—Tl1A 136.69 (6) Tl2Aviii—O10—Tl1Biv 140.17 (14)
O7ii—Fe2—Tl1A 52.97 (6) Tl1Bxiii—O10—Tl1Biv 9.3 (4)
O3iv—Fe2—Tl1A 98.74 (6) Tl1Axiii—O10—Tl1Biv 4.6 (2)
Tl1B—Fe2—Tl1A 2.55 (12) As3—O10—Tl2Bxiii 84.04 (10)
Tl2Cxii—Fe2—Tl1A 95.9 (2) Fe2x—O10—Tl2Bxiii 140.47 (10)
Tl2Bxii—Fe2—Tl1A 102.81 (6) Tl2Bviii—O10—Tl2Bxiii 82.48 (8)
Tl2Axii—Fe2—Tl1A 98.84 (7) Tl2Cviii—O10—Tl2Bxiii 84.9 (2)
O5—Fe2—Tl1Bi 84.53 (14) Tl2Aviii—O10—Tl2Bxiii 84.87 (9)
O11—Fe2—Tl1Bi 129.48 (12) Tl1Bxiii—O10—Tl2Bxiii 63.04 (16)
O1—Fe2—Tl1Bi 35.47 (11) Tl1Axiii—O10—Tl2Bxiii 60.05 (6)
O10x—Fe2—Tl1Bi 138.92 (11) Tl1Biv—O10—Tl2Bxiii 57.31 (15)
O7ii—Fe2—Tl1Bi 55.08 (13) As3—O10—Tl2Axiii 81.21 (9)
O3iv—Fe2—Tl1Bi 98.53 (14) Fe2x—O10—Tl2Axiii 142.78 (10)
Tl1B—Fe2—Tl1Bi 4.8 (2) Tl2Bviii—O10—Tl2Axiii 86.56 (9)
Tl2Cxii—Fe2—Tl1Bi 97.2 (3) Tl2Cviii—O10—Tl2Axiii 89.2 (2)
Tl2Bxii—Fe2—Tl1Bi 104.14 (15) Tl2Aviii—O10—Tl2Axiii 89.05 (10)
Tl2Axii—Fe2—Tl1Bi 100.08 (15) Tl1Bxiii—O10—Tl2Axiii 59.95 (17)
Tl1A—Fe2—Tl1Bi 2.23 (10) Tl1Axiii—O10—Tl2Axiii 56.72 (6)
O4—As1—O1 111.35 (11) Tl1Biv—O10—Tl2Axiii 53.75 (16)
O4—As1—O3 108.09 (11) Tl2Bxiii—O10—Tl2Axiii 4.64 (6)
O1—As1—O3 117.28 (10) As3—O10—Tl2Cxiii 78.23 (19)
O4—As1—O2 105.89 (12) Fe2x—O10—Tl2Cxiii 146.03 (18)
O1—As1—O2 103.87 (11) Tl2Bviii—O10—Tl2Cxiii 85.1 (2)
O3—As1—O2 109.74 (11) Tl2Cviii—O10—Tl2Cxiii 88.2 (4)
O4—As1—Tl2Bvi 82.50 (10) Tl2Aviii—O10—Tl2Cxiii 87.7 (2)
O1—As1—Tl2Bvi 161.67 (10) Tl1Bxiii—O10—Tl2Cxiii 62.5 (2)
O3—As1—Tl2Bvi 44.89 (11) Tl1Axiii—O10—Tl2Cxiii 59.12 (19)
O2—As1—Tl2Bvi 82.71 (11) Tl1Biv—O10—Tl2Cxiii 55.9 (2)
O4—As1—Tl2Avi 77.17 (11) Tl2Bxiii—O10—Tl2Cxiii 6.0 (2)
O1—As1—Tl2Avi 163.46 (9) Tl2Axiii—O10—Tl2Cxiii 3.57 (13)
O3—As1—Tl2Avi 46.32 (9) As3—O11—Fe2 147.97 (13)
O2—As1—Tl2Avi 86.55 (11) As3—O11—Tl1Biv 74.11 (15)
Tl2Bvi—As1—Tl2Avi 5.82 (8) Fe2—O11—Tl1Biv 136.20 (15)
O4—As1—Tl1B 109.71 (17) As3—O11—Tl1Axiii 74.20 (8)
O1—As1—Tl1B 41.4 (2) Fe2—O11—Tl1Axiii 136.91 (9)
O3—As1—Tl1B 141.82 (17) Tl1Biv—O11—Tl1Axiii 4.21 (18)
O2—As1—Tl1B 64.3 (2) As3—O11—Tl1Bxiii 74.37 (14)
Tl2Bvi—As1—Tl1B 146.8 (2) Fe2—O11—Tl1Bxiii 137.28 (15)
Tl2Avi—As1—Tl1B 150.9 (2) Tl1Biv—O11—Tl1Bxiii 8.3 (4)
O4—As1—Tl2Cvi 78.6 (3) Tl1Axiii—O11—Tl1Bxiii 4.13 (17)
O1—As1—Tl2Cvi 159.27 (18) As3—O11—Tl2Bxii 159.69 (11)
O3—As1—Tl2Cvi 42.3 (2) Fe2—O11—Tl2Bxii 47.38 (8)
O2—As1—Tl2Cvi 90.0 (2) Tl1Biv—O11—Tl2Bxii 97.08 (15)
Tl2Bvi—As1—Tl2Cvi 7.5 (3) Tl1Axiii—O11—Tl2Bxii 95.68 (7)
Tl2Avi—As1—Tl2Cvi 4.29 (16) Tl1Bxiii—O11—Tl2Bxii 94.27 (15)
Tl1B—As1—Tl2Cvi 154.2 (3) As3—O11—Tl2Cxii 164.81 (18)
O4—As1—Tl1A 110.64 (9) Fe2—O11—Tl2Cxii 43.96 (14)
O1—As1—Tl1A 46.10 (7) Tl1Biv—O11—Tl2Cxii 98.2 (2)
O3—As1—Tl1A 141.27 (7) Tl1Axiii—O11—Tl2Cxii 97.17 (15)
O2—As1—Tl1A 59.36 (9) Tl1Bxiii—O11—Tl2Cxii 96.12 (19)
Tl2Bvi—As1—Tl1A 141.78 (6) Tl2Bxii—O11—Tl2Cxii 5.36 (18)
Tl2Avi—As1—Tl1A 145.90 (8) As3—O12—Tl2Cxiii 142.6 (4)
Tl1B—As1—Tl1A 5.0 (2) As3—O12—Tl2Axiii 140.85 (15)
Tl2Cvi—As1—Tl1A 149.2 (2) Tl2Cxiii—O12—Tl2Axiii 5.1 (2)
O4—As1—Tl1Bi 111.38 (17) As3—O12—Tl2Bxiii 134.29 (12)
O1—As1—Tl1Bi 50.7 (2) Tl2Cxiii—O12—Tl2Bxiii 8.8 (3)
O3—As1—Tl1Bi 140.23 (15) Tl2Axiii—O12—Tl2Bxiii 6.95 (9)
O2—As1—Tl1Bi 54.5 (2) As3—O12—Tl2Cvi 136.8 (2)
Tl2Bvi—As1—Tl1Bi 137.0 (2) Tl2Cxiii—O12—Tl2Cvi 69.0 (4)
Tl2Avi—As1—Tl1Bi 141.1 (2) Tl2Axiii—O12—Tl2Cvi 73.2 (2)
Tl1B—As1—Tl1Bi 9.8 (4) Tl2Bxiii—O12—Tl2Cvi 77.4 (2)
Tl2Cvi—As1—Tl1Bi 144.4 (3) As3—O12—Tl1Biv 105.94 (19)
Tl1A—As1—Tl1Bi 4.8 (2) Tl2Cxiii—O12—Tl1Biv 76.4 (3)
O4—As1—Tl2B 65.74 (9) Tl2Axiii—O12—Tl1Biv 71.88 (15)
O1—As1—Tl2B 104.61 (8) Tl2Bxiii—O12—Tl1Biv 74.80 (17)
O3—As1—Tl2B 135.82 (8) Tl2Cvi—O12—Tl1Biv 111.5 (3)
O2—As1—Tl2B 42.84 (9) As3—O12—Tl1Axiii 101.85 (10)
Tl2Bvi—As1—Tl2B 91.89 (9) Tl2Cxiii—O12—Tl1Axiii 78.1 (2)
Tl2Avi—As1—Tl2B 91.78 (7) Tl2Axiii—O12—Tl1Axiii 73.36 (9)
Tl1B—As1—Tl2B 67.5 (2) Tl2Bxiii—O12—Tl1Axiii 75.74 (10)
Tl2Cvi—As1—Tl2B 96.05 (17) Tl2Cvi—O12—Tl1Axiii 116.3 (2)
Tl1A—As1—Tl2B 64.33 (4) Tl1Biv—O12—Tl1Axiii 4.8 (2)
Tl1Bi—As1—Tl2B 61.4 (2) As3—O12—Tl2Avi 133.49 (12)
O4—As1—Tl2A 70.99 (11) Tl2Cxiii—O12—Tl2Avi 71.4 (3)
O1—As1—Tl2A 103.97 (9) Tl2Axiii—O12—Tl2Avi 75.76 (13)
O3—As1—Tl2A 134.43 (9) Tl2Bxiii—O12—Tl2Avi 79.68 (10)
O2—As1—Tl2A 37.60 (11) Tl2Cvi—O12—Tl2Avi 3.4 (2)
Tl2Bvi—As1—Tl2A 91.71 (10) Tl1Biv—O12—Tl2Avi 114.7 (2)
Tl2Avi—As1—Tl2A 92.14 (8) Tl1Axiii—O12—Tl2Avi 119.42 (8)
Tl1B—As1—Tl2A 65.3 (2) As3—O12—Tl1Bxiii 98.06 (16)
Tl2Cvi—As1—Tl2A 96.43 (18) Tl2Cxiii—O12—Tl1Bxiii 79.6 (3)
Tl1A—As1—Tl2A 61.81 (6) Tl2Axiii—O12—Tl1Bxiii 74.82 (14)
Tl1Bi—As1—Tl2A 58.5 (2) Tl2Bxiii—O12—Tl1Bxiii 76.69 (16)
Tl2B—As1—Tl2A 5.35 (7) Tl2Cvi—O12—Tl1Bxiii 120.6 (3)
O6—As2—O5 112.19 (11) Tl1Biv—O12—Tl1Bxiii 9.2 (4)
O6—As2—O7 108.23 (11) Tl1Axiii—O12—Tl1Bxiii 4.42 (17)
O5—As2—O7 109.50 (11) Tl2Avi—O12—Tl1Bxiii 123.78 (19)
O6—As2—O8 108.63 (11) As3—O12—Tl2Bvi 134.55 (12)
O5—As2—O8 111.53 (11) Tl2Cxiii—O12—Tl2Bvi 73.0 (3)
O7—As2—O8 106.56 (10) Tl2Axiii—O12—Tl2Bvi 77.09 (9)
O6—As2—Tl1Bii 102.43 (17) Tl2Bxiii—O12—Tl2Bvi 81.46 (12)
O5—As2—Tl1Bii 62.73 (19) Tl2Cvi—O12—Tl2Bvi 4.5 (2)
O7—As2—Tl1Bii 53.70 (19) Tl1Biv—O12—Tl2Bvi 111.1 (2)
O8—As2—Tl1Bii 147.66 (17) Tl1Axiii—O12—Tl2Bvi 115.93 (9)
O6—As2—Tl2Axi 48.51 (9) Tl2Avi—O12—Tl2Bvi 4.80 (8)
O5—As2—Tl2Axi 110.40 (10) Tl1Bxiii—O12—Tl2Bvi 120.33 (19)
O7—As2—Tl2Axi 63.33 (9) As3—O12—Tl2Bviii 57.27 (8)
O8—As2—Tl2Axi 137.72 (10) Tl2Cxiii—O12—Tl2Bviii 87.6 (4)
Tl1Bii—As2—Tl2Axi 61.81 (17) Tl2Axiii—O12—Tl2Bviii 87.72 (12)
O6—As2—Tl2Cxi 48.7 (2) Tl2Bxiii—O12—Tl2Bviii 80.79 (8)
O5—As2—Tl2Cxi 114.46 (19) Tl2Cvi—O12—Tl2Bviii 119.4 (3)
O7—As2—Tl2Cxi 61.6 (2) Tl1Biv—O12—Tl2Bviii 115.9 (2)
O8—As2—Tl2Cxi 133.80 (19) Tl1Axiii—O12—Tl2Bviii 111.69 (9)
Tl1Bii—As2—Tl2Cxi 64.3 (2) Tl2Avi—O12—Tl2Bviii 117.69 (10)
Tl2Axi—As2—Tl2Cxi 4.18 (17) Tl1Bxiii—O12—Tl2Bviii 107.8 (2)
O6—As2—Tl1Axi 101.68 (8) Tl2Bvi—O12—Tl2Bviii 122.47 (11)
O5—As2—Tl1Axi 61.84 (8) As3—O12—Tl2Aviii 57.41 (8)
O7—As2—Tl1Axi 55.05 (7) Tl2Cxiii—O12—Tl2Aviii 87.4 (4)
O8—As2—Tl1Axi 148.71 (8) Tl2Axiii—O12—Tl2Aviii 87.47 (11)
Tl1Bii—As2—Tl1Axi 1.42 (17) Tl2Bxiii—O12—Tl2Aviii 80.53 (8)
Tl2Axi—As2—Tl1Axi 61.71 (6) Tl2Cvi—O12—Tl2Aviii 119.6 (3)
Tl2Cxi—As2—Tl1Axi 64.28 (19) Tl1Biv—O12—Tl2Aviii 115.5 (2)
O6—As2—Tl2Cvii 77.7 (2) Tl1Axiii—O12—Tl2Aviii 111.30 (7)
O5—As2—Tl2Cvii 156.3 (2) Tl2Avi—O12—Tl2Aviii 117.93 (10)
O7—As2—Tl2Cvii 47.2 (2) Tl1Bxiii—O12—Tl2Aviii 107.4 (2)
O8—As2—Tl2Cvii 83.6 (3) Tl2Bvi—O12—Tl2Aviii 122.72 (7)
Tl1Bii—As2—Tl2Cvii 94.6 (3) Tl2Bviii—O12—Tl2Aviii 0.42 (11)
Tl2Axi—As2—Tl2Cvii 59.0 (2) As3—O12—H12 101 (3)
Tl2Cxi—As2—Tl2Cvii 54.9 (4) Tl2Cxiii—O12—H12 116 (3)
Tl1Axi—As2—Tl2Cvii 95.6 (2) Tl2Axiii—O12—H12 118 (3)
O6—As2—Tl2Bxi 48.84 (8) Tl2Bxiii—O12—H12 125 (3)
O5—As2—Tl2Bxi 109.53 (11) Tl2Cvi—O12—H12 56 (3)
O7—As2—Tl2Bxi 63.38 (9) Tl1Biv—O12—H12 95 (3)
O8—As2—Tl2Bxi 138.60 (11) Tl1Axiii—O12—H12 98 (3)
Tl1Bii—As2—Tl2Bxi 61.06 (16) Tl2Avi—O12—H12 56 (3)
Tl2Axi—As2—Tl2Bxi 0.88 (12) Tl1Bxiii—O12—H12 101 (3)
Tl2Cxi—As2—Tl2Bxi 5.0 (2) Tl2Bvi—O12—H12 52 (3)
Tl1Axi—As2—Tl2Bxi 60.95 (5) Tl2Bviii—O12—H12 146 (3)
Tl2Cvii—As2—Tl2Bxi 59.7 (2) Tl2Aviii—O12—H12 146 (3)
O6—As2—Tl1B 136.29 (14)

Symmetry codes: (i) −x+1, −y+2, −z; (ii) −x, −y+2, −z; (iii) x+1, y, z; (iv) −x+1, −y+1, −z; (v) x, y+1, z; (vi) −x+1, −y+1, −z+1; (vii) −x, −y+2, −z+1; (viii) −x, −y+1, −z+1; (ix) −x+1, −y+2, −z+1; (x) −x, −y+1, −z; (xi) x−1, y, z; (xii) x, y, z−1; (xiii) x, y−1, z.

Thallium iron bis[hydrogen arsenate(V)] (TlFeHAsO42). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O2—H2···O9iii 0.85 (3) 1.86 (3) 2.707 (3) 176 (5)
O8—H8···O10v 0.982 (2) 1.598 (2) 2.569 (3) 169.44 (15)
O12—H12···O3 0.88 (3) 1.86 (3) 2.729 (3) 172 (5)

Symmetry codes: (iii) x+1, y, z; (v) x, y+1, z.

Funding Statement

This work was funded by Doc fForte Fellowship of the Austrian Academy of Sciences to K. Schwendtner grant .

References

  1. Alfonso, B. F., Blanco, J. A., Fernández-Díaz, M. T., Trobajo, C., Khainakov, S. A. & García, J. R. (2010). Dalton Trans. 39, 1891–1796. [DOI] [PubMed]
  2. Alfonso, B. F., Piqué, C., Trobajo, C., García, J. R., Fernández, J. R., Fernández-Díaz, M. T. & Blanco, J. A. (2011). J. Phys. Conf. Ser. 325, 012014.
  3. Baur, W. H. (1981). Structure and Bonding in Crystals, edited by M. O’Keeffe & A. Navrotsky, pp. 31–52. New York: Academic Press.
  4. Bircsak, Z. & Harrison, W. T. A. (1998). Acta Cryst. C54, 1195–1197.
  5. Brandenburg, K. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  6. Cambon, O., Haines, J., Fraysse, G., Detaint, J., Capelle, B. & Van der Lee, A. (2005). J. Appl. Phys. 97, 074110074111-074110/074117.
  7. Cambon, O., Yot, P., Rul, S., Haines, J. & Philippot, E. (2003). Solid State Sci. 5, 469–472.
  8. Carvajal, J. J., Parreu, I., Solé, R., Solans, X., Díaz, F. & Aguiló, M. (2005). Chem. Mater 17, 6746–6754.
  9. Chang, R.-S., Wang, S.-L. & Lii, K.-H. (1997). Inorg. Chem. 36, 3410–3413. [DOI] [PubMed]
  10. Chouchene, S., Jaouadi, K., Mhiri, T. & Zouari, N. (2017). Solid State Ionics, 301, 78–85.
  11. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  12. Gagné, O. C. & Hawthorne, F. C. (2015). Acta Cryst. B71, 562–578. [DOI] [PMC free article] [PubMed]
  13. Gagné, O. C. & Hawthorne, F. C. (2016). Acta Cryst. B72, 602–625. [DOI] [PMC free article] [PubMed]
  14. Gagné, O. C. & Hawthorne, F. C. (2018). Acta Cryst. B74, 63–78.
  15. Garlea, O. V., Sanjeewa, L. D., McGuire, M. A., Kumar, P., Sulejmanovic, D., He, J. & Hwu, S.-J. (2014). Phys. Rev. B: Condens. Matter Mater. Phys. 89, 014426014421-014426/014429.
  16. Haushalter, R. C., Wang, Z., Thompson, M. E. & Zubieta, J. (1995). Inorg. Chim. Acta, 232, 83–89.
  17. Kato, K. (1975). Opt. Commun. 13, 93–95.
  18. Krempl, P. W. (2005). J. Phys. IV Fr. 126, 95–100.
  19. Lesage, J., Adam, L., Guesdon, A. & Raveau, B. (2007). J. Solid State Chem. 180, 1799–1808.
  20. Lii, K.-H. & Wu, L.-S. (1994). J. Chem. Soc. A, 10, 1577–1580.
  21. Masquelier, C., d’Yvoire, F. & Collin, G. (1994). Solid State Ionic Materials, Proceedings of the 4th Asian Conference on Solid State Ionics, Kuala Lumpur, Malaysia, 2–6 August 1994, edited by B. V. R. Chowdari, M. Yahaya, I. A. Talib & M. M. Salleh, pp. 167–172. Singapore: World Scientific.
  22. Masquelier, C., d’Yvoire, F. & Collin, G. (1995). J. Solid State Chem. 118, 33–42.
  23. Masquelier, C., d’Yvoire, F. & Rodier, N. (1990). Acta Cryst. C46, 1584–1587.
  24. Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S. & Goodenough, J. B. (1998). J. Solid State Chem. 135, 228–234.
  25. Masquelier, C., Padhi, A. K., Nanjundaswamy, K. S., Okada, S. & Goodenough, J. B. (1996). Proceedings of the 37th Power Sources Conference, June 17–20, 1996, pp. 188–191. Cherry Hill, New Jersey. Fort Monmouth, NJ: US Army Research Laboratory.
  26. Nonius (2003). COLLECT. Nonius, B. V., Delft, The Netherlands.
  27. Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228–234. [DOI] [PubMed]
  28. Ouerfelli, N., Guesmi, A., Mazza, D., Madani, A., Zid, M. F. & Driss, A. (2007a). J. Solid State Chem. 180, 1224–1229.
  29. Ouerfelli, N., Guesmi, A., Mazza, D., Zid, M. F. & Driss, A. (2008). Acta Cryst. C64, i41–i44. [DOI] [PubMed]
  30. Ouerfelli, N., Guesmi, A., Molinié, P., Mazza, D., Zid, M. F. & Driss, A. (2007b). J. Solid State Chem. 180, 2942–2949.
  31. Ouerfelli, N., Souilem, A., Zid, M. F. & Driss, A. (2014). Acta Cryst. E70, i21–i22. [DOI] [PMC free article] [PubMed]
  32. Pintard-Scrépel, M., d’Yvoire, F. & Bretey, E. (1983). Stud. Inorg. Chem. 3, 215–218.
  33. Prem, M., Lengauer, C. & Tillmanns, E. (2005a). University of Vienna, Austria. ICDD Grant-in-Aid.
  34. Prem, M., Lengauer, C. & Tillmanns, E. (2005b). University of Vienna, Austria. ICDD Grant-in-Aid.
  35. Ren, J., Ma, Z., He, C., Sa, R., Li, Q. & Wu, K. (2015). Comput. Mater. Sci. 106, 1–4.
  36. Schwendtner, K. (2008). PhD thesis, Universität Wien, Austria.
  37. Schwendtner, K. & Kolitsch, U. (2004). Acta Cryst. C60, i84–i88. [DOI] [PubMed]
  38. Schwendtner, K. & Kolitsch, U. (2017). Acta Cryst. E73, 1580–1586. [DOI] [PMC free article] [PubMed]
  39. Schwendtner, K. & Kolitsch, U. (2018). Acta Cryst. C. Submitted.
  40. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  41. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  42. Smith, J. P. & Brown, W. E. (1959). Am. Mineral. 44, 138–142.
  43. Stalder, S. M. & Wilkinson, A. P. (1998). J. Mater. Chem. 8, 261–263.
  44. Sun, Y., Yang, Z., Hou, D. & Pan, S. (2017). RSC Adv. 7, 2804–2809.
  45. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.
  46. Yakubovich, O. V. (1993). Kristallografiya, 38, 43–48.
  47. Yan, W., Yu, J., Shi, Z. & Xu, R. (2000). Chem. Commun. pp. 1431–1432.
  48. d’Yvoire, F., Bretey, E. & Collin, G. (1988). Solid State Ionics, 28–30, 1259–1264.
  49. d’Yvoire, F., Pintard-Scrépel, M. & Bretey, E. (1986). Solid State Ionics, 18–19, 502–506.
  50. d’Yvoire, F., Pintard-Scrépel, M., Bretey, E. & de la Rochère, M. (1983). Solid State Ionics, 9–10, 851–857.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) RbFeHAsO42, TlFeHAsO42. DOI: 10.1107/S2056989018006473/pj2051sup1.cif

e-74-00766-sup1.cif (529KB, cif)

Structure factors: contains datablock(s) RbFeHAsO42. DOI: 10.1107/S2056989018006473/pj2051RbFeHAsO42sup3.hkl

Structure factors: contains datablock(s) TlFeHAsO42. DOI: 10.1107/S2056989018006473/pj2051TlFeHAsO42sup2.hkl

CCDC references: 1839860, 1839859

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES