Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 May 1;74(Pt 6):772–775. doi: 10.1107/S2056989018006308

Crystal structure of bis­(1-ethyl-1H-imidazole-κN 3)(5,10,15,20-tetra­phenyl­porphyrinato-κ4 N)iron(II) tetra­hydro­furan monosolvate

Wei Ding a, Jianfeng Li a,*
PMCID: PMC6002823  PMID: 29951227

The title iron(II)–porphyrin complex possesses inversion symmetry with the metal atom located on a center of symmetry. The iron(II) atom is coordinated in a symmetric octa­hedral geometry by four pyrrole N atoms of the porphyrin ligand in the equatorial plane and two N atoms of 1-ethyl­imidazole ligands in the axial sites. The dihedral angle between the 1-ethyl­imidazole plane and the plane of the closest Fe—Np vector is 24.5(?)°.

Keywords: crystal structure, C—H⋯π inter­action, 1-ethyl­imidazole, iron(II)

Abstract

The title complex, [Fe(C44H28N4)(C5H8N2)2]·C4H8O, possesses inversion symmetry with the iron(II) atom located on a center of symmetry. The metal atom is coordinated in a symmetric octa­hedral geometry by four pyrrole N atoms of the porphyrin ligand in the equatorial plane and two N atoms of 1-ethyl­imidazole ligands in the axial sites; the complex crystallizes with a tetra­hydro­furan solvent mol­ecule. The average Fe—Np (Np is a porphyrin N atom) bond length is 1.995 (3) Å and the axial Fe—NIm (NIm is an imidazole N atom) bond length is 1.994 (2) Å. The two 1-ethyl­imidazole ligands are mutually parallel. The dihedral angle between the 1-ethyl­imidazole plane and the plane of the closest Fe—Np vector is 24.5°. In the crystal, the only significant inter­molecular inter­actions present are C—H⋯π inter­actions.

Chemical context  

Bis-histidine coordinated hemes are present in various cytochrome b complexes, and are known to be involved in electron-transfer processes (Xia et al., 1997). As models of these six-coordinate heme complexes, a number of single-crystal structures of [Fe(II,III)(Porph)(L)2]0,+ (Porph is a porphyrinato ligand and L is a N-donor imidazole ligand) have been reported (Walker, 2004). The first ferrous porphyrin crystal structure with two 1-ethyl­imidazole ligands is [FeII(TpivPP)(1-EtIm)2]·0.5C7H8 [TpivPP = α,α,α,α-tetra­kis­(o-pivalamido­phen­yl)porphyrinato; 1-EtIm = 1-ethyl­imidazole], which was reported by Li and co-workers (Li et al., 2008). Later, another analogue of [FeII(TFPPBr8)(1-EtIm)2] [TFPPBr8 = 2,3,7,8,12,13,17,18-octa­bromo-5,10,15,20-tetra­kis­(penta­fluoro­phen­yl)πorphyrinato] was reported (Hu et al., 2016). Herein, we report the structural properties of the iron(II)–porphyrin complex [FeII(TPP)(1-EtIm)2]·THF where the metal center is likewise octa­hedrally coordinated.

Structural commentary  

The asymmetric unit of the title compound (Fig. 1), contains half of an FeII porphyrin complex, with the iron(II) atom located on an inversion center, an 1-ethyl­imidazole ligand mol­ecule, and half of a THF solvent mol­ecule. The THF mol­ecule is disordered over two positions; the site occupancy factors (SOFs) of the two disordered moieties being 0.35 and 0.15. The two 1-ethyl­imidazole ligands of [FeII(TPP)(1-EtIm)2] are mutually parallel, as required by the crystal symmetry. Additional qu­anti­tative information about the structure is displayed in Fig. 2, which includes the displacement of each porphyrin core atom (in units of 0.01 Å) from the 24-atom mean plane. The orientation of the 1-ethyl­imidazole ligand including the value of the dihedral angles is also given. As can be seen in Fig. 2, the porphyrin core of [FeII(TPP)(1-EtIm)2] is near-planar and the iron(II) atom is in the 24-atom plane. The displacements of every porphyrin core atom is less than 0.06 Å.graphic file with name e-74-00772-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title complex, with displacement ellipsoids drawn at the 50% probability level. The disordered THF mol­ecule has been omitted for clarity, and unlabelled atoms are related to labelled atoms by the inversion symmetry code: (i) −x, −y + 1, −z + 1.

Figure 2.

Figure 2

Formal diagram of the porphyrinate core of [FeII(TPP)(1-EtIm)2]. Averaged values of the chemically unique bond distances (in Å) and angles (in °) are shown. The numbers in parentheses are the e.s.d.’s calculated on the assumption that the averaged values were all drawn from the same population. The perpendicular displacements (in units of 0.01 Å) of the porphyrin core atoms from the 24-atom mean plane are also displayed. Positive values of the displacement are towards the hindered porphyrin side, the solid line and dashed line indicate the plane of imidazole on the unhindered porphyrin side.

The average Fe—Np bond length of 1.995 (3) Å is similar to 1.993 (6) Å in [FeII(TpivPP)(1-EtIm)2] (Li et al., 2008) and 1.994 (10) Å in [FeII(TFPPBr8)(1-EtIm)2] (Hu et al., 2016), which are typical values for six-coordinated low-spin (porphinato)iron(II) derivatives (Scheidt et al., 1981). The axial Fe—NIm bond length is 1.994 (2) Å. The average Np—Fe—Np angle is ideal at 90.00 (6)°. The dihedral angle between the 1-ethyl­imidazole plane and the plane of the closest Fe—Np vector is 24.5°.

Supra­molecular features  

In the title compound, as shown in Fig. 3, the distance between the hydrogen atom H14B (C14) of the ethyl group of 1-EtIm and the pyrrole plane of the neighboring porphyrin is 2.66 Å, smaller than 2.9 Å, which is a limit suggested for the existence of a C—H⋯π inter­action (Takahashi et al., 2001). Details of this inter­action are given in Table 1. The mol­ecular packing is shown in Fig. 4.

Figure 3.

Figure 3

The C—H⋯π inter­actions in the title compound. Dashed lines show the distances between H atoms of 1-ethyl­imidazole and the pyrrole core planes. Solvent (THF) mol­ecules and other H atoms have been omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

Cg is the centroid of the N2/C7–C10 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C14—H14BCg i 0.99 (4) 2.69 (4) 3.437 (3) 133 (2)

Symmetry code: (i) Inline graphic.

Figure 4.

Figure 4

A view along the a axis of the mol­ecular packing of the title compound. H atoms have been omitted for clarity.

Synthesis and crystallization  

4.1 General information. All reactions were done using standard Schlenk techniques unless otherwise specified. All solvents were freeze/pump/thaw/degassed prior to use. Benzene and tetra­hydro­furan (THF) were refluxed in the presence of sodium and benzo­phenone under argon until the solution was blue. Hexanes was distilled from sodium/potassium alloy under argon. Ethane­thiol and 1-ethyl­imidazole were distilled under an argon atmosphere. (H2TPP), [Fe(TPP)Cl] and [Fe(TPP)]2O were prepared according to the literature method (Adler et al., 1967, 1970; Fleischer & Srivastava, 1969).

4.2 Synthesis of bis­(1-ethyl-1 H -imidazole-κ N 3)(5,10,15,20-tetra­phenyl­porphyrinato-κ4 N )iron(II) tetra­hydro­furan monosolvate

The purple powder [Fe(TPP)]2O (15.9 mg, 0.018 mmol) was dried in vacuum for 1 h in a Schlenk tube. Benzene (∼5 ml) was transferred into the Schlenk tube by cannula and ethane­thiol (2 ml, 0.028 mol) was added via syringe. The mixture was stirred under argon at ambient temperature. After 36 h, the reduction was complete and the solvent was evaporated by pump. THF (∼5 ml) was transferred into the Schlenk tube via a cannula, and 1-ethyl­imidazole (0.5 ml, 5.19 mmol) was added using a syringe. Hexanes were then allowed to diffuse slowly into the reaction solution. After several weeks purple block-shaped crystals of the title compound were obtained.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The hydrogen atoms (H14A, H14B) attached to atom C14 of the 1-ethyl­imidazole ligand were located in a difference-Fourier map and refined freely. All other hydrogen atoms were placed in calculated positions (C—H = 0.95, 0.98 and 0.99 Å for aryl, methyl and methlyene H atoms, respectively) and refined using a riding model with U iso(H) = 1.5U eq(C) for methyl H atoms or U iso(H) = 1.2Ueq(C) otherwise. The C—O, C—C, C⋯C distances in the disordered THF mol­ecule were constrained to 1.42 (1), 1.50 (1) and 1.55 (1) Å, respectively. Six atoms (C30A, C28B, C29B, C30B, C31B, O1B) of the THF solvent mol­ecule exhibited unusual thermal motion and were restrained by a SIMU command. Five outlier reflections were omitted in the final cycles of refinement.

Table 2. Experimental details.

Crystal data
Chemical formula [Fe(C44H28N4)(C5H8N2)2]·C4H8O
M r 932.92
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 100
a, b, c (Å) 9.2962 (3), 10.7051 (4), 13.4920 (5)
α, β, γ (°) 79.809 (1), 76.034 (1), 75.933 (1)
V3) 1253.90 (8)
Z 1
Radiation type Mo Kα
μ (mm−1) 0.35
Crystal size (mm) 0.26 × 0.17 × 0.08
 
Data collection
Diffractometer Bruker D8 QUEST System
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.931, 0.972
No. of measured, independent and observed [I > 2σ(I)] reflections 19292, 5147, 4542
R int 0.044
(sin θ/λ)max−1) 0.626
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.058, 0.167, 1.11
No. of reflections 5147
No. of parameters 386
No. of restraints 113
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 1.53, −0.47

Computer programs: APEX2 (Bruker, 2014), SHELXL2014 (Sheldrick, 2015b ), SAINT-Plus (Bruker, 2014) and XPREP (Bruker, 2014), SHELXT (Sheldrick, 2015a ), XP (Sheldrick, 2008) and Mercury (Macrae et al., 2008), XCIF (Sheldrick, 2008) and enCIFer (Allen et al., 2004).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018006308/qm2123sup1.cif

e-74-00772-sup1.cif (586.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006308/qm2123Isup2.hkl

e-74-00772-Isup2.hkl (409.5KB, hkl)

CCDC reference: 1839313

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the CAS Hundred Talent Program and the National Natural Science Foundation of China (grant No.21371167, to JL).

supplementary crystallographic information

Crystal data

[Fe(C44H28N4)(C5H8N2)2]·C4H8O Z = 1
Mr = 932.92 F(000) = 490
Triclinic, P1 Dx = 1.235 Mg m3
a = 9.2962 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.7051 (4) Å Cell parameters from 9016 reflections
c = 13.4920 (5) Å θ = 2.4–26.4°
α = 79.809 (1)° µ = 0.35 mm1
β = 76.034 (1)° T = 100 K
γ = 75.933 (1)° Block, purple
V = 1253.90 (8) Å3 0.26 × 0.17 × 0.08 mm

Data collection

Bruker D8 QUEST System diffractometer 4542 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.044
φ and ω scans θmax = 26.4°, θmin = 2.5°
Absorption correction: multi-scan (SADABS; Bruker, 2014) h = −11→11
Tmin = 0.931, Tmax = 0.972 k = −13→13
19292 measured reflections l = −16→16
5147 independent reflections

Refinement

Refinement on F2 113 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.058 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.167 w = 1/[σ2(Fo2) + (0.0784P)2 + 2.6414P] where P = (Fo2 + 2Fc2)/3
S = 1.11 (Δ/σ)max < 0.001
5147 reflections Δρmax = 1.53 e Å3
386 parameters Δρmin = −0.46 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
Fe1 0.0000 0.5000 0.5000 0.00924 (16)
N3 0.1978 (2) 0.5561 (2) 0.45844 (17) 0.0121 (4)
N4 0.3804 (2) 0.6544 (2) 0.45874 (17) 0.0138 (5)
N1 0.0234 (2) 0.4581 (2) 0.35771 (16) 0.0118 (4)
N2 0.1056 (2) 0.3198 (2) 0.54207 (16) 0.0108 (4)
C1 −0.1057 (3) 0.6676 (3) 0.2771 (2) 0.0130 (5)
C2 −0.0246 (3) 0.5395 (3) 0.2750 (2) 0.0141 (5)
C3 0.0205 (3) 0.4727 (3) 0.1849 (2) 0.0205 (6)
H3 0.0037 0.5084 0.1180 0.025*
C4 0.0910 (3) 0.3506 (3) 0.2132 (2) 0.0196 (6)
H4 0.1318 0.2835 0.1704 0.024*
C5 0.0927 (3) 0.3410 (3) 0.3208 (2) 0.0137 (5)
C6 0.1548 (3) 0.2286 (2) 0.3780 (2) 0.0127 (5)
C7 0.1616 (3) 0.2208 (2) 0.4811 (2) 0.0120 (5)
C8 0.2351 (3) 0.1062 (3) 0.5377 (2) 0.0147 (5)
H8 0.2822 0.0254 0.5126 0.018*
C9 0.2248 (3) 0.1346 (3) 0.6327 (2) 0.0144 (5)
H9 0.2643 0.0783 0.6871 0.017*
C10 0.1421 (3) 0.2673 (2) 0.6363 (2) 0.0114 (5)
C11 0.2390 (3) 0.6380 (3) 0.5032 (2) 0.0152 (5)
H11 0.1767 0.6800 0.5598 0.018*
C12 0.3189 (3) 0.5190 (3) 0.3805 (2) 0.0168 (5)
H12 0.3230 0.4604 0.3340 0.020*
C13 0.4321 (3) 0.5794 (3) 0.3804 (2) 0.0183 (6)
H13 0.5283 0.5710 0.3346 0.022*
C14 0.4615 (3) 0.7433 (3) 0.4831 (2) 0.0193 (6)
H14A 0.454 (4) 0.818 (3) 0.431 (3) 0.021 (8)*
H14B 0.570 (4) 0.701 (3) 0.468 (3) 0.024 (9)*
C15 0.4039 (3) 0.7774 (3) 0.5914 (2) 0.0204 (6)
H15A 0.2967 0.8210 0.6004 0.031*
H15B 0.4627 0.8354 0.6041 0.031*
H15C 0.4148 0.6980 0.6403 0.031*
C16 −0.1574 (3) 0.7373 (3) 0.1816 (2) 0.0153 (5)
C17 −0.1145 (4) 0.8526 (3) 0.1325 (2) 0.0235 (6)
H17 −0.0500 0.8880 0.1596 0.028*
C18 −0.1651 (4) 0.9162 (3) 0.0440 (2) 0.0304 (7)
H18 −0.1365 0.9956 0.0122 0.037*
C19 −0.2562 (4) 0.8655 (3) 0.0023 (2) 0.0307 (8)
H19 −0.2888 0.9087 −0.0588 0.037*
C20 −0.2998 (4) 0.7512 (3) 0.0498 (2) 0.0265 (7)
H20 −0.3630 0.7159 0.0214 0.032*
C21 −0.2516 (3) 0.6879 (3) 0.1388 (2) 0.0194 (6)
H21 −0.2830 0.6098 0.1711 0.023*
C22 0.2182 (3) 0.1072 (3) 0.3273 (2) 0.0138 (5)
C23 0.3640 (3) 0.0857 (3) 0.2667 (2) 0.0156 (5)
H23 0.4234 0.1495 0.2557 0.019*
C24 0.4230 (3) −0.0285 (3) 0.2222 (2) 0.0195 (6)
H24 0.5230 −0.0426 0.1815 0.023*
C25 0.3368 (3) −0.1223 (3) 0.2370 (2) 0.0210 (6)
H25 0.3771 −0.1998 0.2059 0.025*
C26 0.1915 (4) −0.1018 (3) 0.2975 (2) 0.0230 (6)
H26 0.1324 −0.1659 0.3084 0.028*
C27 0.1325 (3) 0.0123 (3) 0.3422 (2) 0.0201 (6)
H27 0.0329 0.0259 0.3834 0.024*
O1A 0.6922 (6) 0.1716 (5) 0.1646 (4) 0.0128 (6) 0.35
C29A 0.8416 (9) 0.3157 (7) 0.0625 (5) 0.0124 (7) 0.35
H29A 0.9472 0.3111 0.0233 0.015* 0.35
H29B 0.8013 0.4026 0.0856 0.015* 0.35
C28A 0.8331 (9) 0.2105 (7) 0.1517 (5) 0.0127 (7) 0.35
H28A 0.9189 0.1358 0.1379 0.015* 0.35
H28B 0.8380 0.2429 0.2148 0.015* 0.35
C30A 0.7387 (8) 0.2857 (7) −0.0043 (5) 0.0122 (7) 0.35
H30A 0.6901 0.3657 −0.0431 0.015* 0.35
H30B 0.7972 0.2230 −0.0528 0.015* 0.35
C31A 0.6257 (9) 0.2286 (7) 0.0775 (5) 0.0128 (7) 0.35
H31A 0.5353 0.2970 0.0981 0.015* 0.35
H31B 0.5932 0.1616 0.0511 0.015* 0.35
O1B 0.5583 (12) 0.4284 (11) −0.0007 (7) 0.0124 (7) 0.15
C28B 0.5266 (16) 0.4209 (16) 0.1079 (8) 0.0118 (8) 0.15
H28C 0.4395 0.3790 0.1392 0.014* 0.15
H28D 0.5040 0.5083 0.1299 0.014* 0.15
C29B 0.6701 (15) 0.3396 (16) 0.1373 (10) 0.0126 (6) 0.15
H29C 0.6608 0.2484 0.1609 0.015* 0.15
H29D 0.6966 0.3747 0.1921 0.015* 0.15
C30B 0.7903 (17) 0.3508 (18) 0.0340 (10) 0.0125 (7) 0.15
H30C 0.8286 0.4317 0.0238 0.015* 0.15
H30D 0.8767 0.2754 0.0320 0.015* 0.15
C31B 0.6999 (14) 0.3523 (16) −0.0446 (11) 0.0125 (7) 0.15
H31C 0.7441 0.3940 −0.1130 0.015* 0.15
H31D 0.6909 0.2638 −0.0506 0.015* 0.15

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Fe1 0.0091 (3) 0.0097 (3) 0.0089 (3) −0.00137 (18) −0.00237 (19) −0.00117 (18)
N3 0.0125 (11) 0.0108 (10) 0.0129 (10) −0.0014 (8) −0.0040 (8) −0.0004 (8)
N4 0.0117 (10) 0.0141 (11) 0.0160 (11) −0.0036 (8) −0.0033 (9) −0.0013 (9)
N1 0.0110 (10) 0.0118 (10) 0.0120 (10) −0.0012 (8) −0.0024 (8) −0.0013 (8)
N2 0.0109 (10) 0.0112 (10) 0.0107 (10) −0.0032 (8) −0.0024 (8) −0.0011 (8)
C1 0.0125 (12) 0.0152 (12) 0.0113 (12) −0.0038 (10) −0.0036 (10) 0.0006 (10)
C2 0.0138 (12) 0.0172 (13) 0.0111 (12) −0.0024 (10) −0.0029 (10) −0.0021 (10)
C3 0.0249 (15) 0.0221 (14) 0.0118 (13) 0.0036 (11) −0.0059 (11) −0.0041 (11)
C4 0.0225 (14) 0.0213 (14) 0.0126 (13) 0.0034 (11) −0.0040 (11) −0.0061 (11)
C5 0.0117 (12) 0.0162 (13) 0.0130 (12) −0.0015 (10) −0.0020 (10) −0.0043 (10)
C6 0.0111 (12) 0.0122 (12) 0.0152 (12) −0.0017 (9) −0.0020 (10) −0.0041 (10)
C7 0.0101 (12) 0.0105 (12) 0.0156 (12) −0.0031 (9) −0.0022 (10) −0.0018 (10)
C8 0.0168 (13) 0.0104 (12) 0.0176 (13) −0.0032 (10) −0.0052 (10) −0.0014 (10)
C9 0.0167 (13) 0.0115 (12) 0.0158 (13) −0.0037 (10) −0.0061 (10) 0.0009 (10)
C10 0.0106 (12) 0.0115 (12) 0.0129 (12) −0.0039 (9) −0.0040 (9) 0.0003 (9)
C11 0.0138 (12) 0.0177 (13) 0.0150 (12) −0.0043 (10) −0.0031 (10) −0.0031 (10)
C12 0.0148 (13) 0.0157 (13) 0.0183 (13) −0.0028 (10) 0.0000 (11) −0.0038 (10)
C13 0.0141 (13) 0.0183 (13) 0.0207 (14) −0.0034 (10) 0.0011 (11) −0.0043 (11)
C14 0.0171 (14) 0.0199 (14) 0.0242 (15) −0.0095 (11) −0.0066 (11) −0.0003 (12)
C15 0.0233 (15) 0.0176 (13) 0.0236 (15) −0.0058 (11) −0.0102 (12) −0.0018 (11)
C16 0.0144 (13) 0.0176 (13) 0.0110 (12) 0.0020 (10) −0.0027 (10) −0.0012 (10)
C17 0.0253 (15) 0.0252 (15) 0.0183 (14) −0.0060 (12) −0.0050 (12) 0.0027 (12)
C18 0.0369 (18) 0.0284 (17) 0.0189 (15) −0.0022 (14) −0.0047 (13) 0.0075 (12)
C19 0.0352 (18) 0.0357 (18) 0.0130 (14) 0.0101 (14) −0.0093 (13) 0.0001 (12)
C20 0.0250 (16) 0.0354 (18) 0.0175 (14) 0.0070 (13) −0.0088 (12) −0.0117 (13)
C21 0.0199 (14) 0.0203 (14) 0.0162 (13) 0.0026 (11) −0.0042 (11) −0.0066 (11)
C22 0.0162 (13) 0.0135 (12) 0.0126 (12) −0.0002 (10) −0.0070 (10) −0.0022 (10)
C23 0.0158 (13) 0.0179 (13) 0.0144 (13) −0.0022 (10) −0.0049 (10) −0.0046 (10)
C24 0.0199 (14) 0.0220 (14) 0.0145 (13) 0.0048 (11) −0.0053 (11) −0.0073 (11)
C25 0.0300 (16) 0.0152 (13) 0.0182 (14) 0.0046 (11) −0.0121 (12) −0.0064 (11)
C26 0.0298 (16) 0.0153 (14) 0.0279 (16) −0.0061 (12) −0.0111 (13) −0.0038 (12)
C27 0.0175 (14) 0.0193 (14) 0.0242 (14) −0.0042 (11) −0.0048 (11) −0.0038 (11)
O1A 0.0166 (15) 0.0189 (15) 0.0051 (13) −0.0094 (12) −0.0044 (12) 0.0030 (11)
C29A 0.0171 (15) 0.0180 (15) 0.0047 (13) −0.0091 (12) −0.0046 (12) 0.0024 (12)
C28A 0.0169 (15) 0.0187 (15) 0.0049 (14) −0.0093 (12) −0.0043 (12) 0.0028 (12)
C30A 0.0174 (15) 0.0176 (15) 0.0042 (13) −0.0090 (12) −0.0048 (12) 0.0025 (12)
C31A 0.0170 (15) 0.0185 (15) 0.0050 (13) −0.0088 (12) −0.0045 (12) 0.0030 (12)
O1B 0.0180 (16) 0.0178 (16) 0.0042 (14) −0.0089 (13) −0.0050 (13) 0.0023 (13)
C28B 0.0168 (16) 0.0179 (16) 0.0039 (15) −0.0093 (14) −0.0051 (13) 0.0024 (13)
C29B 0.0170 (15) 0.0185 (15) 0.0048 (13) −0.0092 (12) −0.0047 (12) 0.0030 (11)
C30B 0.0174 (15) 0.0181 (15) 0.0045 (14) −0.0090 (13) −0.0046 (12) 0.0025 (12)
C31B 0.0177 (16) 0.0182 (16) 0.0044 (15) −0.0090 (13) −0.0048 (13) 0.0022 (13)

Geometric parameters (Å, º)

Fe1—N2 1.992 (2) C18—C19 1.375 (5)
Fe1—N2i 1.992 (2) C18—H18 0.9500
Fe1—N3 1.994 (2) C19—C20 1.382 (5)
Fe1—N3i 1.994 (2) C19—H19 0.9500
Fe1—N1i 1.998 (2) C20—C21 1.388 (4)
Fe1—N1 1.998 (2) C20—H20 0.9500
N3—C11 1.320 (3) C21—H21 0.9500
N3—C12 1.375 (3) C22—C23 1.392 (4)
N4—C11 1.346 (3) C22—C27 1.396 (4)
N4—C13 1.364 (4) C23—C24 1.389 (4)
N4—C14 1.471 (3) C23—H23 0.9500
N1—C5 1.381 (3) C24—C25 1.390 (4)
N1—C2 1.383 (3) C24—H24 0.9500
N2—C7 1.379 (3) C25—C26 1.388 (4)
N2—C10 1.382 (3) C25—H25 0.9500
C1—C10i 1.396 (4) C26—C27 1.390 (4)
C1—C2 1.397 (4) C26—H26 0.9500
C1—C16 1.494 (3) C27—H27 0.9500
C2—C3 1.442 (4) O1A—C28A 1.431 (9)
C3—C4 1.346 (4) O1A—C31A 1.432 (8)
C3—H3 0.9500 C29A—C28A 1.497 (10)
C4—C5 1.440 (4) C29A—C30A 1.580 (10)
C4—H4 0.9500 C29A—H29A 0.9900
C5—C6 1.388 (4) C29A—H29B 0.9900
C6—C7 1.395 (4) C28A—H28A 0.9900
C6—C22 1.502 (3) C28A—H28B 0.9900
C7—C8 1.438 (4) C30A—C31A 1.486 (10)
C8—C9 1.346 (4) C30A—H30A 0.9900
C8—H8 0.9500 C30A—H30B 0.9900
C9—C10 1.444 (4) C31A—H31A 0.9900
C9—H9 0.9500 C31A—H31B 0.9900
C10—C1i 1.396 (4) O1B—C28B 1.415 (9)
C11—H11 0.9500 O1B—C31B 1.421 (9)
C12—C13 1.363 (4) O1B—O1Bii 1.65 (2)
C12—H12 0.9500 C28B—C29B 1.505 (10)
C13—H13 0.9500 C28B—H28C 0.9900
C14—C15 1.507 (4) C28B—H28D 0.9900
C14—H14A 0.97 (4) C29B—C30B 1.568 (9)
C14—H14B 0.99 (4) C29B—H29C 0.9900
C15—H15A 0.9800 C29B—H29D 0.9900
C15—H15B 0.9800 C30B—C31B 1.499 (9)
C15—H15C 0.9800 C30B—H30C 0.9900
C16—C17 1.394 (4) C30B—H30D 0.9900
C16—C21 1.398 (4) C31B—H31C 0.9900
C17—C18 1.392 (4) C31B—H31D 0.9900
C17—H17 0.9500
N2—Fe1—N2i 180.0 C16—C17—H17 119.7
N2—Fe1—N3 90.27 (9) C19—C18—C17 120.7 (3)
N2i—Fe1—N3 89.72 (9) C19—C18—H18 119.6
N2—Fe1—N3i 89.73 (9) C17—C18—H18 119.6
N2i—Fe1—N3i 90.28 (9) C18—C19—C20 119.5 (3)
N3—Fe1—N3i 180.0 C18—C19—H19 120.3
N2—Fe1—N1i 89.51 (9) C20—C19—H19 120.3
N2i—Fe1—N1i 90.49 (9) C19—C20—C21 120.2 (3)
N3—Fe1—N1i 89.95 (9) C19—C20—H20 119.9
N3i—Fe1—N1i 90.05 (9) C21—C20—H20 119.9
N2—Fe1—N1 90.49 (9) C20—C21—C16 121.0 (3)
N2i—Fe1—N1 89.51 (9) C20—C21—H21 119.5
N3—Fe1—N1 90.05 (9) C16—C21—H21 119.5
N3i—Fe1—N1 89.95 (9) C23—C22—C27 118.9 (2)
N1i—Fe1—N1 180.0 C23—C22—C6 120.9 (2)
C11—N3—C12 105.6 (2) C27—C22—C6 120.2 (2)
C11—N3—Fe1 125.62 (19) C24—C23—C22 120.4 (3)
C12—N3—Fe1 128.74 (18) C24—C23—H23 119.8
C11—N4—C13 107.0 (2) C22—C23—H23 119.8
C11—N4—C14 127.4 (2) C23—C24—C25 120.4 (3)
C13—N4—C14 125.5 (2) C23—C24—H24 119.8
C5—N1—C2 105.2 (2) C25—C24—H24 119.8
C5—N1—Fe1 127.09 (17) C26—C25—C24 119.6 (3)
C2—N1—Fe1 127.71 (18) C26—C25—H25 120.2
C7—N2—C10 105.1 (2) C24—C25—H25 120.2
C7—N2—Fe1 126.70 (17) C25—C26—C27 120.0 (3)
C10—N2—Fe1 128.22 (17) C25—C26—H26 120.0
C10i—C1—C2 123.5 (2) C27—C26—H26 120.0
C10i—C1—C16 118.7 (2) C26—C27—C22 120.7 (3)
C2—C1—C16 117.8 (2) C26—C27—H27 119.7
N1—C2—C1 125.7 (2) C22—C27—H27 119.7
N1—C2—C3 110.1 (2) C28A—O1A—C31A 109.1 (5)
C1—C2—C3 124.3 (2) C28A—C29A—C30A 102.9 (6)
C4—C3—C2 107.3 (2) C28A—C29A—H29A 111.2
C4—C3—H3 126.3 C30A—C29A—H29A 111.2
C2—C3—H3 126.3 C28A—C29A—H29B 111.2
C3—C4—C5 107.0 (2) C30A—C29A—H29B 111.2
C3—C4—H4 126.5 H29A—C29A—H29B 109.1
C5—C4—H4 126.5 O1A—C28A—C29A 107.4 (6)
N1—C5—C6 125.6 (2) O1A—C28A—H28A 110.2
N1—C5—C4 110.4 (2) C29A—C28A—H28A 110.2
C6—C5—C4 124.0 (2) O1A—C28A—H28B 110.2
C5—C6—C7 123.9 (2) C29A—C28A—H28B 110.2
C5—C6—C22 118.7 (2) H28A—C28A—H28B 108.5
C7—C6—C22 117.3 (2) C31A—C30A—C29A 100.8 (5)
N2—C7—C6 126.2 (2) C31A—C30A—H30A 111.6
N2—C7—C8 110.5 (2) C29A—C30A—H30A 111.6
C6—C7—C8 123.3 (2) C31A—C30A—H30B 111.6
C9—C8—C7 107.3 (2) C29A—C30A—H30B 111.6
C9—C8—H8 126.4 H30A—C30A—H30B 109.4
C7—C8—H8 126.4 O1A—C31A—C30A 109.3 (6)
C8—C9—C10 106.9 (2) O1A—C31A—H31A 109.8
C8—C9—H9 126.6 C30A—C31A—H31A 109.8
C10—C9—H9 126.6 O1A—C31A—H31B 109.8
N2—C10—C1i 125.3 (2) C30A—C31A—H31B 109.8
N2—C10—C9 110.3 (2) H31A—C31A—H31B 108.3
C1i—C10—C9 124.3 (2) C28B—O1B—C31B 115.1 (11)
N3—C11—N4 111.6 (2) C28B—O1B—O1Bii 86.3 (9)
N3—C11—H11 124.2 C31B—O1B—O1Bii 147.8 (13)
N4—C11—H11 124.2 O1B—C28B—C29B 103.8 (11)
C13—C12—N3 109.2 (2) O1B—C28B—H28C 111.0
C13—C12—H12 125.4 C29B—C28B—H28C 111.0
N3—C12—H12 125.4 O1B—C28B—H28D 111.0
C12—C13—N4 106.6 (2) C29B—C28B—H28D 111.0
C12—C13—H13 126.7 H28C—C28B—H28D 109.0
N4—C13—H13 126.7 C28B—C29B—C30B 102.7 (11)
N4—C14—C15 112.8 (2) C28B—C29B—H29C 111.2
N4—C14—H14A 106 (2) C30B—C29B—H29C 111.2
C15—C14—H14A 113 (2) C28B—C29B—H29D 111.2
N4—C14—H14B 106 (2) C30B—C29B—H29D 111.2
C15—C14—H14B 114 (2) H29C—C29B—H29D 109.1
H14A—C14—H14B 104 (3) C31B—C30B—C29B 102.1 (11)
C14—C15—H15A 109.5 C31B—C30B—H30C 111.4
C14—C15—H15B 109.5 C29B—C30B—H30C 111.4
H15A—C15—H15B 109.5 C31B—C30B—H30D 111.4
C14—C15—H15C 109.5 C29B—C30B—H30D 111.4
H15A—C15—H15C 109.5 H30C—C30B—H30D 109.2
H15B—C15—H15C 109.5 O1B—C31B—C30B 100.4 (11)
C17—C16—C21 117.9 (3) O1B—C31B—H31C 111.7
C17—C16—C1 121.7 (3) C30B—C31B—H31C 111.7
C21—C16—C1 120.4 (2) O1B—C31B—H31D 111.7
C18—C17—C16 120.6 (3) C30B—C31B—H31D 111.7
C18—C17—H17 119.7 H31C—C31B—H31D 109.5
C5—N1—C2—C1 177.7 (3) Fe1—N3—C12—C13 −178.97 (19)
Fe1—N1—C2—C1 −2.8 (4) N3—C12—C13—N4 −0.1 (3)
C5—N1—C2—C3 −2.0 (3) C11—N4—C13—C12 −0.3 (3)
Fe1—N1—C2—C3 177.45 (19) C14—N4—C13—C12 −176.0 (2)
C10i—C1—C2—N1 3.6 (4) C11—N4—C14—C15 24.6 (4)
C16—C1—C2—N1 −175.7 (2) C13—N4—C14—C15 −160.6 (3)
C10i—C1—C2—C3 −176.7 (3) C10i—C1—C16—C17 59.0 (4)
C16—C1—C2—C3 4.0 (4) C2—C1—C16—C17 −121.7 (3)
N1—C2—C3—C4 2.0 (3) C10i—C1—C16—C21 −120.9 (3)
C1—C2—C3—C4 −177.8 (3) C2—C1—C16—C21 58.4 (4)
C2—C3—C4—C5 −1.0 (3) C21—C16—C17—C18 0.4 (4)
C2—N1—C5—C6 −178.1 (3) C1—C16—C17—C18 −179.5 (3)
Fe1—N1—C5—C6 2.4 (4) C16—C17—C18—C19 −1.2 (5)
C2—N1—C5—C4 1.4 (3) C17—C18—C19—C20 1.1 (5)
Fe1—N1—C5—C4 −178.10 (18) C18—C19—C20—C21 −0.2 (5)
C3—C4—C5—N1 −0.2 (3) C19—C20—C21—C16 −0.6 (4)
C3—C4—C5—C6 179.3 (3) C17—C16—C21—C20 0.5 (4)
N1—C5—C6—C7 −3.2 (4) C1—C16—C21—C20 −179.6 (3)
C4—C5—C6—C7 177.4 (3) C5—C6—C22—C23 82.2 (3)
N1—C5—C6—C22 176.5 (2) C7—C6—C22—C23 −98.0 (3)
C4—C5—C6—C22 −2.8 (4) C5—C6—C22—C27 −99.3 (3)
C10—N2—C7—C6 −178.6 (2) C7—C6—C22—C27 80.5 (3)
Fe1—N2—C7—C6 0.0 (4) C27—C22—C23—C24 −0.2 (4)
C10—N2—C7—C8 −0.7 (3) C6—C22—C23—C24 178.3 (2)
Fe1—N2—C7—C8 177.96 (17) C22—C23—C24—C25 0.5 (4)
C5—C6—C7—N2 1.9 (4) C23—C24—C25—C26 −0.7 (4)
C22—C6—C7—N2 −177.8 (2) C24—C25—C26—C27 0.5 (4)
C5—C6—C7—C8 −175.8 (2) C25—C26—C27—C22 −0.2 (4)
C22—C6—C7—C8 4.5 (4) C23—C22—C27—C26 0.0 (4)
N2—C7—C8—C9 −0.2 (3) C6—C22—C27—C26 −178.5 (3)
C6—C7—C8—C9 177.8 (2) C31A—O1A—C28A—C29A 10.8 (8)
C7—C8—C9—C10 0.9 (3) C30A—C29A—C28A—O1A −26.6 (8)
C7—N2—C10—C1i −179.2 (2) C28A—C29A—C30A—C31A 31.6 (7)
Fe1—N2—C10—C1i 2.3 (4) C28A—O1A—C31A—C30A 11.1 (8)
C7—N2—C10—C9 1.2 (3) C29A—C30A—C31A—O1A −26.5 (8)
Fe1—N2—C10—C9 −177.34 (17) C31B—O1B—C28B—C29B 5.3 (17)
C8—C9—C10—N2 −1.4 (3) O1Bii—O1B—C28B—C29B −149.7 (13)
C8—C9—C10—C1i 179.0 (2) O1B—C28B—C29B—C30B 19.5 (16)
C12—N3—C11—N4 −0.5 (3) C28B—C29B—C30B—C31B −36.3 (16)
Fe1—N3—C11—N4 178.81 (17) C28B—O1B—C31B—C30B −28.6 (17)
C13—N4—C11—N3 0.5 (3) O1Bii—O1B—C31B—C30B 99 (2)
C14—N4—C11—N3 176.1 (2) C29B—C30B—C31B—O1B 38.1 (16)
C11—N3—C12—C13 0.4 (3)

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y+1, −z.

Hydrogen-bond geometry (Å, º)

Cg is the centroid of the N2/C7–C10 ring.

D—H···A D—H H···A D···A D—H···A
C14—H14B···Cgiii 0.99 (4) 2.69 (4) 3.437 (3) 133 (2)

Symmetry code: (iii) −x+1, −y+1, −z+1.

Funding Statement

This work was funded by the National Natural Science Foundation of China grant 21371167.

References

  1. Adler, A. D., Longo, F. R., Finarelli, J. D., Goldmacher, J., Assour, J. & Korsakoff, L. (1967). J. Org. Chem. 32, 476–476.
  2. Adler, A. D., Longo, F. R., Kampas, F. & Kim, J. (1970). J. Inorg. Nucl. Chem. 32, 2443–2445.
  3. Allen, F. H., Johnson, O., Shields, G. P., Smith, B. R. & Towler, M. (2004). J. Appl. Cryst. 37, 335–338.
  4. Bruker (2014). APEX2, SAINT-Plus, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Fleischer, E. B. & Srivastava, T. S. (1969). J. Am. Chem. Soc. 91, 2403–2405.
  6. Hu, B., He, M., Yao, Z., Schulz, C. E. & Li, J. (2016). Inorg. Chem. 55, 9632–9643. [DOI] [PubMed]
  7. Li, J., Nair, S. M., Noll, B. C., Schulz, C. E. & Scheidt, W. R. (2008). Inorg. Chem. 47, 3841–3850. [DOI] [PMC free article] [PubMed]
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Scheidt, W. R. & Reed, C. A. (1981). Chem. Rev. 81, 543–555.
  10. Sheldrick, G. M. (2008). XCIF and XP. University of Göttingen, Germany.
  11. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  12. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  13. Takahashi, O., Kohno, Y., Iwasaki, S., Saito, K., Iwaoka, M., Tomoda, S., Umezawa, Y., Tsuboyama, S. & Nishio, M. (2001). Bull. Chem. Soc. Jpn, 74, 2421–2430.
  14. Walker, F. A. (2004). Chem. Rev. 104, 589–615. [DOI] [PubMed]
  15. Xia, D., Yu, C.-A., Kim, H., Xia, J.-Z., Kachurin, A. M., Zhang, L., Yu, L. & Deisenhofer, J. (1997). Science, 277, 60–66. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018006308/qm2123sup1.cif

e-74-00772-sup1.cif (586.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006308/qm2123Isup2.hkl

e-74-00772-Isup2.hkl (409.5KB, hkl)

CCDC reference: 1839313

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES