Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 May 22;74(Pt 6):829–834. doi: 10.1107/S2056989018006977

Crystal structures of binary compounds of meldonium 3-(1,1,1-tri­methyl­hydrazin-1-ium-2-yl)prop­ano­ate with sodium bromide and sodium iodide

Alexander Y Nazarenko a,*
PMCID: PMC6002828  PMID: 29951240

3-(1,1,1-Tri­methyl­hydrazin-1-ium-2-yl)propano­ate (M, more commonly known under its commercial names Meldonium or Mildronate) co-crystalizes with sodium bromide and sodium iodide forming polymeric hydrates. Metal ions and M zwitterions are assembled into infinite layers via electrostatic inter­actions and hydrogen-bonded networks. These layers are connected via electrostatic attraction between halogenide ions and positive tri­methyl­hydrazinium groups into a three-dimensional structure.

Keywords: crystal structure; 3-(1,1,1-tri­methyl­ydrhazin-1-ium-2-yl)propano­ate; meldonium; sodium bromide; sodium iodide

Abstract

3-(1,1,1-Tri­methyl­hydrazin-1-ium-2-yl)propano­ate (C6H14N2O2, M, more commonly known under its commercial names Meldonium or Mildronate) co-crystalizes with sodium bromide and sodium iodide forming polymeric hydrates poly[[tetra-μ-aqua-di­aqua­bis­[3-(1,1,1-tri­methyl­hydrazin-1-ium-2-yl)propano­ate]disodium] dibromide tetra­hydrate], [Na2(C6H14N2O2)2(H2O)6]Br2·4H2O, and poly[[di-μ-aqua-di­aqua­[μ-3-(1,1,1-tri­methyl­hydrazin-1-ium-2-yl)propano­ate]disodium] diiodide], [Na2(C6H14N2O2)2(H2O)4]I2. The coordination numbers of the sodium ions are 6; the coordination polyhedra can be described as distorted octa­hedra. Metal ions and M zwitterions are assembled into infinite layers via electrostatic inter­actions and hydrogen-bonded networks. These layers are connected via electrostatic attraction between halogenide ions and positive tri­methyl­hydrazinium groups into a three-dimensional structure.

Chemical context  

3-(1,1,1-Tri­methyl­hydrazin-1-ium-2-yl)propano­ate (M), more commonly known under its commercial names such as Meldonium or Mildronate, was introduced by Grindeks (Latvia) as an anti-ischemic medication (Liepinsh et al., 2017). The synthesis of M was originally described by Giller et al. (1975) and was improved in a number of patents and papers (Kalvins & Stonans, 2009; Kalvins et al., 2014; Silva, 2013). Recently M achieved controversial publicity as a doping agent. As a result of its inclusion in the World Anti-Doping Agency List of Prohibited Substances, it attracted the attention of pharmaceutical and forensic chemists (Görgens et al., 2015).

Binary compounds of M with various inorganic salts have been described in numerous M-related synthetic procedures (see above); their high stability was a challenge that was necessary to overcome for the preparation of pharmaceutically pure forms of M. The stability of a sodium iodide binary compound was given as an example in Silva (2013). The crystal structures of two such binary compounds, with sodium bromide (I) and with sodium iodide (II), are presented here.

Structural commentary  

The labelling schemes for structures (I) and (II) are shown in Figs. 1 and 2. Mol­ecules of (I), which crystallize in an acentric space group, have a non-crystallographic inversion centre at 0.6238 (6) 0.744 (5) 0.5001 (2). This symmetry is visible in Fig. 1; it is also demonstrated by overlay of the two chemically equivalent moieties, after inversion of one of them (Fig. 3). Both Na ions have distorted octa­hedral environments (coordination number 6). The coordination sphere contains an anionic oxygen atom of a monodentate carb­oxy­lic group, two pairs of bridging O atoms of water mol­ecules (O5, O8, O9 and O10), and a terminal water mol­ecule (atoms O6 and O7 for Na1 and Na2 respectively). The shortest Na—O separations (Table 1) correspond to the anionic oxygens O1 and O3; the longest are opposite to the bridging atoms O5 and O8 (not shown in Fig. 1, but visible in Fig. 6).graphic file with name e-74-00829-scheme1.jpg

Figure 1.

Figure 1

Labelling scheme of the asymmetric unit of compound (I) with 50% probability displacement ellipsoids.

Figure 2.

Figure 2

Labelling scheme of the asymmetric unit of compound (II) with 50% probability displacement ellipsoids.

Figure 3.

Figure 3

Overlay of the two organic fragments in (I) after inversion. The average deviation is 0.04 Å.

Table 1. Selected bond lengths (Å) for (I) .

Na1—O1 2.367 (4) Na2—O8 2.364 (3)
Na1—O5 2.368 (3) Na2—O9 2.361 (3)
Na1—O6 2.369 (3) Na2—O10 2.449 (4)
Na1—O8i 2.517 (4) O1—C1 1.241 (5)
Na1—O9 2.442 (4) O2—C1 1.281 (5)
Na1—O10 2.361 (4) O3—C7 1.249 (5)
Na2—O3 2.359 (4) O4—C7 1.282 (5)
Na2—O5ii 2.543 (4) N1—N2 1.471 (6)
Na2—O7 2.368 (3) N3—N4 1.466 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 6.

Figure 6

The infinite chain of hydrated sodium ions along the [010] axis in (I).

The coordination polyhedra of the sodium ions in (II) are visibly different (Fig. 4, Table 2). Both have a distorted octa­hedral geometry and coordination number 6. The coordination polyhedron of Na1 contains an anionic oxygen atom O1 of a monodentate carb­oxy­lic group, atoms O3 and O4 of the bidentate carb­oxy­lic acid group, and three water mol­ecules O5, O6, and O8. The O8 atom, which forms three bridging contacts to three different sodium ions, shows a much longer separation from Na1 than any of the other coordinated oxygen atoms (Table 2).

Figure 4.

Figure 4

Coordination polyhedra of the sodium ions in (II).

Table 2. Selected bond lengths (Å) for (II) .

Na1—O1 2.462 (3) Na2—O7 2.372 (3)
Na1—O3 2.374 (3) Na2—O8iii 2.569 (4)
Na1—O4 2.552 (3) Na2—O8 2.510 (3)
Na1—O5 2.351 (3) O1—C1 1.274 (4)
Na1—O6 2.385 (4) O2—C1 1.247 (4)
Na1—O8i 2.857 (4) O3—C7 1.256 (5)
Na2—O3 2.315 (3) O4—C7 1.264 (5)
Na2—O4ii 2.431 (3) N1—N2 1.478 (4)
Na2—O5ii 2.373 (3) N3—N4 1.476 (4)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

The octa­hedral environment around Na2 in (II) (Fig. 4, Table 2) is less distorted: it consists of two bridging oxygen atoms O3 and O4 of two distinct carboxyl­ate groups and four water oxygen atoms. The shortest distance is Na2—O3 (involving carboxyl­ate group oxygens); the two longest again belong to the bridging O8 atoms (Table 2).

All zwitterions of M have approximately the same geometry (the two pseudo-inversion-symmetric zwitterions in the structure of (I) are nearly superimposable, Fig. 3). Both monodentate carboxyl­ates in (I) and that in (II) have slightly elongated C—O bonds for the oxygen atom bound to the corresponding Na ion (Tables 1 and 2). These bonds are slightly longer than the corresponding bonds in M monohydrate and dihydrate [1.258 (2) and 1.2618 (9) Å, respectively; CCDC entries CCDC 1822460 and 1822463; Naza­renko, 2018). This relatively small change could be inter­preted as a shift of of the anionic charge towards the sodium-bound oxygen atom. The carbon–oxygen bond lengths within the bidenate carboxyl­ate groups in (II) are essentially identical within two standard deviations.

All N—N bond distances are around 1.47 Å (Tables 1 and 2) and are within experimental error indistinguishable from the average value [1.468 (2) Å] for known low-temperature single-crystal structures of M (CCDC 1822460–1822463; Naza­renko, 2018), but significantly shorter than the value reported for room temperature (1.49 Å; Kemme et al., 1983).

The distribution of the Hirshfeld surface electrostatic potential of the zwitterion (Fig. 5) shows that only a small area around the carboxyl oxygen atoms is negatively charged: the remaining Hirshfeld surface has positive electrostatic potential. This makes this area attractive for anions, with the N—H group of the hydrazine fragment available as a donor of an electrostatically enhanced hydrogen bond. The lone-pair density of the same hydrazine nitro­gen atom is not sufficient to overcome the total positive charge of the tri­methyl­hydrazinium fragment and does not act as a hydrogen-bond acceptor.

Figure 5.

Figure 5

Hirshfeld surface of the zwitterion with electrostatic potential plotted using CrystalExplorer17 (Turner et al., 2017). Red – negative, blue – positive.

Supra­molecular features  

In the structure of (I), the coordination polyhedra of the sodium ions are connected by common edges (a pair of bridging water mol­ecules, O5 and O8, and O9 and O10), forming an infinite chain of ions along the [010] vector (Fig. 6). In addition to Na⋯O inter­actions, this chain is supported by six hydrogen bonds (Table 3): O6—H6B⋯O2, O5—H5A⋯O1, O8—H8B⋯O3, O7—H7B⋯O4, O9—H9A⋯O6 and O10—H10B⋯O7. The first four of them, connecting the anionic oxygen atoms of the carb­oxy­lic groups, are electrostatically enhanced.

Table 3. Hydrogen-bond geometry (Å, °) for (I) .

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5A⋯O1i 0.97 (6) 1.79 (6) 2.746 (4) 172 (6)
O5—H5B⋯O11iii 0.82 (6) 2.02 (6) 2.819 (5) 167 (6)
O6—H6A⋯O4iv 0.80 (3) 2.06 (3) 2.845 (5) 165 (6)
O6—H6B⋯O2i 0.82 (3) 1.91 (3) 2.732 (4) 175 (6)
O7—H7A⋯O2v 0.82 (3) 2.05 (3) 2.856 (5) 165 (6)
O7—H7B⋯O4ii 0.80 (3) 1.94 (3) 2.731 (4) 169 (6)
O8—H8A⋯O13ii 0.81 (3) 2.06 (3) 2.815 (5) 155 (5)
O8—H8B⋯O3ii 0.81 (3) 1.95 (3) 2.754 (4) 168 (7)
O9—H9A⋯O6ii 0.93 (6) 1.96 (6) 2.852 (4) 160 (5)
O9—H9B⋯O13 0.79 (6) 2.01 (6) 2.772 (5) 160 (6)
O10—H10A⋯O11v 0.78 (6) 2.00 (6) 2.771 (5) 167 (6)
O10—H10B⋯O7i 0.90 (6) 1.99 (6) 2.853 (4) 158 (5)
O11—H11D⋯O12 0.80 (3) 1.94 (3) 2.744 (6) 179 (7)
O11—H11E⋯O2 0.80 (3) 1.92 (3) 2.719 (5) 174 (9)
O13—H13A⋯O14 0.80 (3) 1.95 (3) 2.733 (6) 170 (6)
O13—H13B⋯O4iv 0.80 (3) 1.94 (3) 2.727 (5) 168 (9)
N1—H1⋯Br1i 0.83 (5) 2.57 (5) 3.379 (5) 167 (5)
N3—H3⋯Br2v 0.84 (5) 2.57 (5) 3.394 (5) 169 (5)
O12—H12D⋯Br1i 0.80 (5) 2.52 (6) 3.316 (4) 172 (6)
O12—H12E⋯Br1 0.80 (5) 2.49 (6) 3.289 (4) 177 (8)
O14—H14A⋯Br2i 0.87 (7) 2.47 (7) 3.323 (5) 168 (7)
O14—H14B⋯Br2 0.87 (6) 2.41 (6) 3.281 (5) 175 (6)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Each bromide ion forms a hydrogen bond with a hydrazine N—H group. In addition, each of them forms two hydrogen bonds with neighboring water mol­ecules (O12 and O14), thus forming two more infinite chains in the [010] direction. Water mol­ecules O11 and O13 form bridges between the cation chain and the ‘bromide’ chains as hydrogen-bond donors; they are also acceptors of four hydrogen bonds from the water mol­ecules O5 and O10, and O8 and O9 respectively. These hydrogen bonds connect chains into a two-dimensional network. Two more enhanced hydrogen bonds (Table 3), O7—H7A⋯O2 and O6—H6A⋯O4, also connect neighboring chains. The resulting network forms a layer in the (001) plane with the bromide ions and tri­methyl­ammonium groups forming each side (Fig. 7). These layers are bound together via electrostatic inter­action of the corresponding positive and negative ions; no short intra­layer contacts are visible.

Figure 7.

Figure 7

Packing of (I). View along the [010] axis. Sodium ions are green.

In the structure of (II), the coordination polyhedra of the sodium ions are bridged via the bidentate carboxyl­ate group to form an infinite chain along the [001] axis (Fig. 8). The water mol­ecule O5 provides an additional bridge, stabilizing the chain. These chains are inter­connected in the (100) plane with the help of weaker (and longer by almost 0.5 Å) Na⋯O8 contacts (Fig. 9). An array of hydrogen bonds (Table 4, Fig. 9) additionally stabilizes the resulting layer. As in compound (I), both iodide ions are connected to zwitterions M via N—H⋯I hydrogen bonds. In addition, ion I1 is an acceptor of two hydrogen bonds with water mol­ecules (O6—H6A⋯I1 and O7—H7A⋯I1, see Table 4). In absence of neighboring water mol­ecules, two CH groups of the tri­methyl­ammonium fragment form close contacts with the ion I2. As in structure (I), the layers are tied together by the electrostatic inter­action of the corresponding positive and negative ions; no short intra­layer contacts are visible (Fig. 10).

Figure 8.

Figure 8

The infinite chain of hydrated sodium ions along the [001] axis in (II).

Figure 9.

Figure 9

Chains in the structure of (II) are connected via atom O8 (in green) and a network of hydrogen bonds (dashed lines).

Table 4. Hydrogen-bond geometry (Å, °) for (II) .

D—H⋯A D—H H⋯A DA D—H⋯A
O5—H5B⋯O1i 0.85 (6) 1.89 (6) 2.741 (4) 175 (6)
O7—H7B⋯O2iv 0.91 1.73 2.629 (4) 169
O8—H8A⋯O1ii 0.85 (6) 2.05 (6) 2.815 (4) 149 (6)
N1—H1⋯I2 0.82 (6) 2.87 (6) 3.688 (4) 177 (5)
N3—H3⋯I1v 0.92 (6) 2.76 (6) 3.650 (3) 161 (5)
O5—H5A⋯O7v 0.86 (6) 2.00 (6) 2.846 (4) 172 (4)
O6—H6A⋯I1 0.89 2.64 3.518 (3) 166
O6—H6B⋯O4vi 0.89 1.95 2.825 (4) 168
O7—H7A⋯I1iii 0.91 2.78 3.548 (3) 143
O8—H8B⋯O6iii 0.86 (7) 2.13 (7) 2.989 (5) 175 (5)
C3—H3A⋯I1ii 0.99 3.01 3.920 (4) 154
C11—H11B⋯I2vii 0.98 3.02 3.975 (4) 165
C12—H12C⋯I1vi 0.98 2.99 3.952 (5) 167

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

Figure 10.

Figure 10

Packing of (II). View along the [001] axis. Sodium ions are green.

Database survey  

Prior to 2018, the only meldonium-related single-crystal structure in the Cambridge Structural Database (Groom et al., 2016, CSD Version 5.39) had been a crystal structure of the dihydrate form (refcode CABVOQ; Kemme et al., 1983)) measured at room temperature with no experimental positions for hydrogen atoms. Hydrates of M also were also studied using powder X-ray diffraction (Zvirgzdiņš et al., 2011; Bērziņš & Actiņš, 2014). Meldonium is closely related to betaines, a wide class of zwitterionic compounds with an onium atom that bears no hydrogen atoms and that is not adjacent to the anionic atom. The parent compound of the betaine class, N,N,N-tri­methyl­glycine (TMG), has a very rich crystal chemistry: the CSD (Version 5.39) contains 217 different structures of its compounds. There are several known crystal structures of TMG binary compounds with potassium iodide (HIPQIG; Andrade et al., 1999), rubidium iodide (NEMKIZ; Andrade et al., 2001), potassium bromide (WIQPUH01; Andrade et al., 2000) and sodium bromide (JAZNEE; Rodrigues et al., 2005). These compounds show features similar to those of their meldonium analogs: infinite chains of hydrated alkali metal cations and layers of tri­methyl­ammonium groups. The obvious differences are the absence of N—H⋯X hydrogen bonds and the much smaller size of the organic domain.

Synthesis and crystallization  

Preparation and properties of binary compounds of M with sodium halogenides are described in detail in Giller et al. (1975) and Silva (2013). Commercial M dihydrate was received from Grindeks (Latvia) and recrystallized from propanol-2. Equimolar amounts of it were mixed with sodium iodide and sodium bromide in aqueous ethanol; subsequent slow evaporation yielded crystals suitable for single–crystal X-ray experiments. IR spectra (FTIR–ATR, cm−1) are very similar to those of M dihydrate. (I): 3399 (H2O), 1571, 1483, 1402, 1320; (II): 3350, 3180 (H2O), 1568, 1480, 1405, 1317, 1088, 816; M dihydrate: 3201 (H2O), 1577, 1484, 1404, 1320, 1090, 816.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 5.

Table 5. Experimental details.

  (I) (II)
Crystal data
Chemical formula [Na2(C6H14N2O2)2(H2O)6]Br2·4H2O [Na2(C6H14N2O2)2(H2O)4]·I2
M r 678.34 664.23
Crystal system, space group Orthorhombic, P c a21 Monoclinic, P21/c
Temperature (K) 173 173
a, b, c (Å) 16.5181 (8), 5.5262 (3), 33.2605 (16) 19.7455 (11), 11.4530 (7), 10.9733 (7)
α, β, γ (°) 90, 90, 90 90, 92.382 (2), 90
V3) 3036.1 (3) 2479.4 (3)
Z 4 4
Radiation type Mo Kα Mo Kα
μ (mm−1) 2.76 2.61
Crystal size (mm) 0.65 × 0.13 × 0.09 0.3 × 0.2 × 0.07
 
Data collection
Diffractometer Bruker PHOTON-100 CMOS Bruker PHOTON-100 CMOS
Absorption correction Numerical (SADABS; Krause et al., 2015) Multi-scan (TWINABS; Krause et al., 2015)
T min, T max 0.217, 0.635 0.301, 0.431
No. of measured, independent and observed [I > 2σ(I)] reflections 117729, 6969, 6121 5475, 5475, 5012
R int 0.044 0.048
(sin θ/λ)max−1) 0.650 0.641
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.032, 0.078, 1.03 0.026, 0.057, 1.17
No. of reflections 6969 5475
No. of parameters 380 286
No. of restraints 33 0
H-atom treatment H atoms treated by a mixture of independent and constrained refinement H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.71, −0.38 0.70, −0.55
Absolute structure Refined as an inversion twin
Absolute structure parameter 0.250 (10)

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ), OLEX2 (Dolomanov et al., 2009) and CrystalExplorer17 (Turner et al., 2017).

Structure (I) was was solved and refined in an achiral space group; the large Flack parameter prompted twin refinement as a two-component inversion twin [0.75 (1):0.25 (1)] with twin matrix [Inline graphic 0 0, 0 Inline graphic 0, 0 0 Inline graphic]. Reflections in (II) were processed as a two-domain [0.668 (1):0.332 (1) ratio] non-merohedral twin with twin matrix [1.000 0.000 0.000, 0.000 −1.000 0.000, −0.146 0.000 −1.000]; domain 2 is rotated from the first domain by 180.0° about the reciprocal axis 1.000 −0.001 −0.073 or the real axis 1.000 0.000 0.002 (CELL_NOW; Sheldrick, 2008).

In the structure of (I) distances O6—H6A, O6—H6B, O7—H7A, O7—H7B, O8—H8A, and O8—H8B; O11—H11D, O11—H11E, O12—H12E, O12—H12D, O13—H13A, and O13—H13B; O14—H14A and O14—H14B were restrained to be equal with an effective standard deviation of 0.02 Å. Distances N1—H1 and N3—H3 were also restrained to be equal with an effective standard deviation of 0.02 Å; U iso(H) = 1.5U iso(N).

In the structure of (II), water mol­ecules O6 and O7 were refined as rotating groups (AFIX 7). The positions and isotropic displacement parameters of the hydrazinium hydrogen atoms were refined.

In both structures, methyl­ene hydrogen atoms were refined with riding coordinates and with U iso(H) = 1.2 U iso(C); methyl hydrogen atoms were refined as rotating idealized methyl groups and with U iso(H) = 1.5U iso(C). Hydrogen atoms of water mol­ecules were refined in an isotropic approximation with U iso(H) = 1.5U iso(O).

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989018006977/zl2729sup1.cif

e-74-00829-sup1.cif (4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006977/zl2729Isup2.hkl

e-74-00829-Isup2.hkl (553.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018006977/zl2729Isup4.cdx

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018006977/zl2729IIsup3.hkl

e-74-00829-IIsup3.hkl (435.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018006977/zl2729IIsup5.cdx

CCDC references: 1841872, 1841871

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Poly[[tetra-µ-aqua-diaquabis[3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] dibromide tetrahydrate] (I). Crystal data

[Na2(C6H14N2O2)2(H2O)6]Br2·4H2O Dx = 1.484 Mg m3
Mr = 678.34 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Pca21 Cell parameters from 9077 reflections
a = 16.5181 (8) Å θ = 3.1–27.4°
b = 5.5262 (3) Å µ = 2.76 mm1
c = 33.2605 (16) Å T = 173 K
V = 3036.1 (3) Å3 Needle, colourless
Z = 4 0.65 × 0.13 × 0.09 mm
F(000) = 1408

Poly[[tetra-µ-aqua-diaquabis[3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] dibromide tetrahydrate] (I). Data collection

Bruker PHOTON-100 CMOS diffractometer 6121 reflections with I > 2σ(I)
Radiation source: sealedtube Rint = 0.044
φ and ω scans θmax = 27.5°, θmin = 3.1°
Absorption correction: numerical (SADABS; Krause et al., 2015) h = −21→21
Tmin = 0.217, Tmax = 0.635 k = −7→7
117729 measured reflections l = −43→43
6969 independent reflections

Poly[[tetra-µ-aqua-diaquabis[3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] dibromide tetrahydrate] (I). Refinement

Refinement on F2 Hydrogen site location: mixed
Least-squares matrix: full H atoms treated by a mixture of independent and constrained refinement
R[F2 > 2σ(F2)] = 0.032 w = 1/[σ2(Fo2) + (0.0417P)2 + 2.0085P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.078 (Δ/σ)max = 0.001
S = 1.02 Δρmax = 0.71 e Å3
6969 reflections Δρmin = −0.38 e Å3
380 parameters Absolute structure: Refined as an inversion twin
33 restraints Absolute structure parameter: 0.250 (10)
Primary atom site location: dual

Poly[[tetra-µ-aqua-diaquabis[3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] dibromide tetrahydrate] (I). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component inversion twin

Poly[[tetra-µ-aqua-diaquabis[3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] dibromide tetrahydrate] (I). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.92047 (3) −0.03168 (8) 0.28604 (2) 0.03549 (13)
Br2 0.82608 (3) 0.44931 (9) 0.71406 (2) 0.04007 (14)
Na1 0.67706 (11) 0.9937 (3) 0.48342 (7) 0.0182 (5)
Na2 0.57098 (11) 0.4989 (3) 0.51722 (7) 0.0186 (5)
O1 0.73577 (16) 0.7342 (5) 0.43488 (9) 0.0229 (6)
O2 0.8552 (2) 0.5504 (5) 0.44213 (11) 0.0240 (7)
O3 0.51258 (17) 0.7566 (5) 0.56578 (9) 0.0243 (6)
O4 0.39361 (19) 0.9443 (5) 0.55827 (11) 0.0226 (6)
O5 0.63384 (19) 1.3548 (5) 0.45166 (9) 0.0237 (6)
H5A 0.671 (4) 1.481 (10) 0.444 (2) 0.036*
H5B 0.594 (3) 1.388 (11) 0.4385 (17) 0.036*
O6 0.78937 (18) 1.2455 (5) 0.49791 (10) 0.0249 (6)
H6A 0.825 (2) 1.210 (10) 0.5134 (14) 0.037*
H6B 0.809 (3) 1.330 (9) 0.4802 (14) 0.037*
O7 0.45879 (18) 0.2480 (5) 0.50216 (10) 0.0255 (6)
H7A 0.423 (3) 0.308 (9) 0.4882 (15) 0.038*
H7B 0.435 (3) 0.173 (10) 0.5193 (14) 0.038*
O8 0.61447 (17) 0.1366 (5) 0.54820 (9) 0.0222 (6)
H8A 0.651 (2) 0.124 (10) 0.5642 (13) 0.033*
H8B 0.584 (3) 0.022 (7) 0.550 (2) 0.033*
O9 0.70252 (18) 0.6523 (5) 0.52830 (10) 0.0240 (6)
H9A 0.729 (3) 0.506 (10) 0.5247 (19) 0.036*
H9B 0.717 (3) 0.707 (10) 0.5492 (19) 0.036*
O10 0.54562 (19) 0.8403 (5) 0.47200 (10) 0.0241 (6)
H10A 0.530 (3) 0.776 (10) 0.4526 (18) 0.036*
H10B 0.507 (4) 0.945 (10) 0.480 (2) 0.036*
N1 0.7581 (3) 0.9463 (7) 0.34771 (14) 0.0243 (9)
H1 0.792 (3) 0.949 (10) 0.3293 (16) 0.037*
N2 0.6865 (3) 1.0657 (6) 0.33042 (12) 0.0308 (9)
N3 0.4899 (3) 0.5316 (7) 0.65254 (15) 0.0254 (9)
H3 0.454 (3) 0.544 (10) 0.6701 (16) 0.038*
N4 0.5581 (3) 0.3991 (7) 0.67014 (13) 0.0398 (10)
C1 0.8094 (2) 0.7177 (7) 0.42815 (12) 0.0180 (8)
C2 0.8516 (3) 0.9122 (8) 0.40294 (14) 0.0266 (9)
H2A 0.886964 1.009290 0.420772 0.032*
H2B 0.886701 0.831769 0.382845 0.032*
C3 0.7943 (3) 1.0812 (7) 0.38121 (13) 0.0240 (9)
H3A 0.751492 1.138148 0.399790 0.029*
H3B 0.824043 1.223813 0.370938 0.029*
C4 0.6963 (4) 1.3329 (8) 0.32444 (18) 0.0457 (14)
H4A 0.697253 1.413826 0.350657 0.069*
H4B 0.650888 1.394886 0.308527 0.069*
H4C 0.747182 1.364707 0.310239 0.069*
C5 0.6719 (4) 0.9498 (8) 0.2904 (2) 0.0416 (14)
H5C 0.719071 0.975629 0.273010 0.062*
H5D 0.623950 1.022298 0.277842 0.062*
H5E 0.663080 0.775844 0.293987 0.062*
C6 0.6167 (4) 1.0165 (10) 0.3575 (2) 0.0382 (14)
H6C 0.607611 0.841579 0.359257 0.057*
H6D 0.568050 1.095072 0.346802 0.057*
H6E 0.628344 1.080630 0.384387 0.057*
C7 0.4383 (2) 0.7743 (7) 0.57220 (12) 0.0190 (8)
C8 0.3960 (3) 0.5814 (8) 0.59707 (14) 0.0270 (9)
H8C 0.361903 0.662841 0.617476 0.032*
H8D 0.359465 0.488736 0.579189 0.032*
C9 0.4512 (3) 0.4059 (7) 0.61824 (13) 0.0244 (9)
H9C 0.419698 0.265265 0.628036 0.029*
H9D 0.493099 0.346329 0.599409 0.029*
C10 0.5447 (5) 0.1391 (10) 0.6751 (2) 0.073 (2)
H10C 0.495470 0.112758 0.691030 0.110*
H10D 0.591059 0.067082 0.689066 0.110*
H10E 0.538397 0.063338 0.648684 0.110*
C11 0.5722 (5) 0.5108 (9) 0.7105 (2) 0.052 (2)
H11A 0.584574 0.683111 0.707269 0.078*
H11B 0.617855 0.429848 0.723737 0.078*
H11C 0.523504 0.492499 0.727074 0.078*
C12 0.6308 (5) 0.4501 (13) 0.6429 (3) 0.0527 (18)
H12A 0.621070 0.379778 0.616269 0.079*
H12B 0.679559 0.377958 0.654625 0.079*
H12C 0.638291 0.625353 0.640292 0.079*
O11 1.0017 (2) 0.4552 (7) 0.40834 (13) 0.0284 (8)
H11D 0.999 (4) 0.458 (11) 0.3843 (8) 0.043*
H11E 0.957 (3) 0.488 (11) 0.417 (3) 0.043*
O12 0.9948 (3) 0.4654 (7) 0.32594 (15) 0.0441 (10)
H12D 0.973 (4) 0.586 (9) 0.318 (2) 0.066*
H12E 0.975 (4) 0.348 (9) 0.316 (2) 0.066*
O13 0.7469 (2) 0.9506 (6) 0.59158 (13) 0.0272 (8)
H13A 0.752 (4) 0.933 (11) 0.6152 (8) 0.041*
H13B 0.793 (2) 0.976 (11) 0.585 (3) 0.041*
O14 0.7528 (3) 0.9447 (8) 0.67369 (14) 0.0489 (11)
H14A 0.777 (5) 1.077 (10) 0.681 (3) 0.073*
H14B 0.771 (4) 0.817 (10) 0.686 (2) 0.073*

Poly[[tetra-µ-aqua-diaquabis[3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] dibromide tetrahydrate] (I). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0441 (3) 0.0355 (2) 0.0268 (3) −0.0014 (2) 0.0046 (2) −0.0016 (3)
Br2 0.0516 (3) 0.0410 (2) 0.0277 (3) 0.0037 (2) 0.0026 (3) 0.0051 (3)
Na1 0.0180 (10) 0.0155 (7) 0.0211 (14) 0.0004 (5) 0.0014 (8) 0.0006 (6)
Na2 0.0197 (11) 0.0147 (7) 0.0213 (14) −0.0003 (6) −0.0004 (8) 0.0001 (5)
O1 0.0191 (14) 0.0220 (14) 0.0276 (15) −0.0005 (11) 0.0029 (12) 0.0007 (11)
O2 0.0220 (16) 0.0263 (14) 0.0235 (18) 0.0009 (13) −0.0005 (13) 0.0040 (13)
O3 0.0198 (15) 0.0244 (14) 0.0287 (16) 0.0009 (12) 0.0051 (11) 0.0023 (12)
O4 0.0200 (16) 0.0248 (14) 0.0230 (17) 0.0007 (12) −0.0010 (13) 0.0050 (13)
O5 0.0232 (15) 0.0182 (13) 0.0297 (16) 0.0008 (12) −0.0024 (13) 0.0033 (12)
O6 0.0224 (16) 0.0239 (14) 0.0285 (17) −0.0023 (12) −0.0057 (12) 0.0067 (12)
O7 0.0233 (16) 0.0245 (15) 0.0288 (16) −0.0024 (12) −0.0030 (12) 0.0071 (12)
O8 0.0227 (15) 0.0179 (13) 0.0261 (16) −0.0018 (11) −0.0028 (12) 0.0017 (12)
O9 0.0267 (15) 0.0192 (14) 0.0262 (16) 0.0017 (12) −0.0042 (13) −0.0026 (12)
O10 0.0273 (16) 0.0183 (14) 0.0267 (16) 0.0013 (12) −0.0041 (12) −0.0031 (11)
N1 0.030 (2) 0.0216 (17) 0.021 (2) 0.0059 (16) −0.0010 (17) 0.0027 (15)
N2 0.046 (2) 0.0195 (17) 0.027 (2) 0.0025 (16) −0.0092 (17) 0.0028 (15)
N3 0.031 (2) 0.0231 (17) 0.022 (2) 0.0029 (16) −0.0017 (18) −0.0007 (15)
N4 0.061 (3) 0.028 (2) 0.031 (2) 0.012 (2) −0.021 (2) −0.0027 (17)
C1 0.022 (2) 0.0159 (17) 0.0157 (19) −0.0030 (14) −0.0003 (15) −0.0020 (14)
C2 0.025 (2) 0.027 (2) 0.028 (2) −0.0044 (18) −0.0001 (19) 0.0064 (18)
C3 0.029 (2) 0.0203 (19) 0.023 (2) 0.0013 (17) −0.0015 (17) 0.0030 (17)
C4 0.066 (4) 0.018 (2) 0.053 (3) 0.002 (2) −0.019 (3) 0.009 (2)
C5 0.066 (4) 0.032 (2) 0.027 (3) −0.004 (2) −0.016 (3) −0.001 (2)
C6 0.026 (3) 0.049 (3) 0.039 (4) 0.004 (2) −0.004 (3) −0.002 (2)
C7 0.024 (2) 0.0187 (18) 0.0142 (19) −0.0032 (15) −0.0014 (15) −0.0030 (14)
C8 0.021 (2) 0.030 (2) 0.030 (2) −0.0014 (18) 0.0002 (18) 0.0111 (19)
C9 0.028 (2) 0.0211 (19) 0.024 (2) −0.0028 (17) −0.0043 (18) 0.0001 (16)
C10 0.116 (6) 0.025 (3) 0.078 (5) 0.003 (3) −0.056 (4) 0.009 (3)
C11 0.089 (5) 0.039 (3) 0.027 (3) 0.004 (2) −0.029 (3) −0.001 (2)
C12 0.040 (4) 0.065 (4) 0.053 (5) 0.017 (3) −0.008 (3) −0.015 (3)
O11 0.0229 (18) 0.0383 (17) 0.024 (2) 0.0050 (15) −0.0012 (15) 0.0031 (16)
O12 0.062 (3) 0.036 (2) 0.034 (2) −0.0029 (19) −0.015 (2) −0.0038 (17)
O13 0.0214 (17) 0.0368 (17) 0.023 (2) −0.0041 (15) −0.0035 (15) 0.0007 (15)
O14 0.069 (3) 0.044 (2) 0.033 (3) 0.008 (2) −0.011 (2) −0.0001 (19)

Poly[[tetra-µ-aqua-diaquabis[3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] dibromide tetrahydrate] (I). Geometric parameters (Å, º)

Na1—O1 2.367 (4) N4—C12 1.530 (10)
Na1—O5 2.368 (3) C1—C2 1.531 (6)
Na1—O6 2.369 (3) C2—H2A 0.9900
Na1—O8i 2.517 (4) C2—H2B 0.9900
Na1—O9 2.442 (4) C2—C3 1.514 (6)
Na1—O10 2.361 (4) C3—H3A 0.9900
Na2—O3 2.359 (4) C3—H3B 0.9900
Na2—O5ii 2.543 (4) C4—H4A 0.9800
Na2—O7 2.368 (3) C4—H4B 0.9800
Na2—O8 2.364 (3) C4—H4C 0.9800
Na2—O9 2.361 (3) C5—H5C 0.9800
Na2—O10 2.449 (4) C5—H5D 0.9800
O1—C1 1.241 (5) C5—H5E 0.9800
O2—C1 1.281 (5) C6—H6C 0.9800
O3—C7 1.249 (5) C6—H6D 0.9800
O4—C7 1.282 (5) C6—H6E 0.9800
O5—H5A 0.97 (6) C7—C8 1.519 (6)
O5—H5B 0.82 (6) C8—H8C 0.9900
O6—H6A 0.80 (3) C8—H8D 0.9900
O6—H6B 0.82 (3) C8—C9 1.506 (6)
O7—H7A 0.82 (3) C9—H9C 0.9900
O7—H7B 0.80 (3) C9—H9D 0.9900
O8—H8A 0.81 (3) C10—H10C 0.9800
O8—H8B 0.81 (3) C10—H10D 0.9800
O9—H9A 0.93 (6) C10—H10E 0.9800
O9—H9B 0.79 (6) C11—H11A 0.9800
O10—H10A 0.78 (6) C11—H11B 0.9800
O10—H10B 0.90 (6) C11—H11C 0.9800
N1—H1 0.83 (4) C12—H12A 0.9800
N1—N2 1.471 (6) C12—H12B 0.9800
N1—C3 1.468 (6) C12—H12C 0.9800
N2—C4 1.499 (6) O11—H11D 0.80 (3)
N2—C5 1.498 (8) O11—H11E 0.80 (3)
N2—C6 1.489 (8) O12—H12D 0.80 (3)
N3—H3 0.84 (4) O12—H12E 0.80 (3)
N3—N4 1.466 (6) O13—H13A 0.80 (3)
N3—C9 1.481 (6) O13—H13B 0.80 (3)
N4—C10 1.463 (7) O14—H14A 0.87 (5)
N4—C11 1.497 (8) O14—H14B 0.87 (5)
O1—Na1—O5 109.25 (14) N3—N4—C11 105.8 (4)
O1—Na1—O6 100.00 (12) N3—N4—C12 105.9 (4)
O1—Na1—O8i 160.43 (13) C10—N4—N3 114.7 (4)
O1—Na1—O9 83.01 (11) C10—N4—C11 109.1 (5)
O5—Na1—O6 80.32 (12) C10—N4—C12 111.6 (5)
O5—Na1—O8i 89.64 (11) C11—N4—C12 109.5 (5)
O5—Na1—O9 167.30 (15) O1—C1—O2 124.5 (4)
O6—Na1—O8i 87.89 (13) O1—C1—C2 119.6 (4)
O6—Na1—O9 101.22 (13) O2—C1—C2 115.9 (4)
O9—Na1—O8i 77.87 (13) C1—C2—H2A 108.7
O10—Na1—O1 92.84 (12) C1—C2—H2B 108.7
O10—Na1—O5 87.35 (12) H2A—C2—H2B 107.6
O10—Na1—O6 164.52 (13) C3—C2—C1 114.2 (4)
O10—Na1—O8i 82.69 (12) C3—C2—H2A 108.7
O10—Na1—O9 88.81 (11) C3—C2—H2B 108.7
O3—Na2—O5ii 160.55 (13) N1—C3—C2 107.7 (3)
O3—Na2—O7 100.26 (12) N1—C3—H3A 110.2
O3—Na2—O8 109.70 (14) N1—C3—H3B 110.2
O3—Na2—O9 93.04 (13) C2—C3—H3A 110.2
O3—Na2—O10 83.44 (11) C2—C3—H3B 110.2
O5ii—Na2—H9A 71.3 (14) H3A—C3—H3B 108.5
O7—Na2—O5ii 87.40 (13) N2—C4—H4A 109.5
O7—Na2—H9A 143.9 (13) N2—C4—H4B 109.5
O7—Na2—O10 100.79 (13) N2—C4—H4C 109.5
O8—Na2—O5ii 89.11 (11) H4A—C4—H4B 109.5
O8—Na2—O7 80.45 (11) H4A—C4—H4C 109.5
O8—Na2—O10 166.49 (15) H4B—C4—H4C 109.5
O9—Na2—O5ii 82.56 (12) N2—C5—H5C 109.5
O9—Na2—O7 164.42 (13) N2—C5—H5D 109.5
O9—Na2—O8 87.49 (12) N2—C5—H5E 109.5
O9—Na2—O10 88.67 (11) H5C—C5—H5D 109.5
O10—Na2—O5ii 77.55 (12) H5C—C5—H5E 109.5
C1—O1—Na1 124.7 (2) H5D—C5—H5E 109.5
C7—O3—Na2 124.5 (3) N2—C6—H6C 109.5
Na1—O5—Na2i 90.26 (13) N2—C6—H6D 109.5
Na1—O5—H5A 123 (3) N2—C6—H6E 109.5
Na1—O5—H5B 132 (4) H6C—C6—H6D 109.5
Na2i—O5—H5A 106 (4) H6C—C6—H6E 109.5
Na2i—O5—H5B 93 (4) H6D—C6—H6E 109.5
H5A—O5—H5B 102 (5) O3—C7—O4 124.2 (4)
Na1—O6—H6A 124 (4) O3—C7—C8 119.3 (4)
Na1—O6—H6B 120 (4) O4—C7—C8 116.5 (4)
H6A—O6—H6B 108 (6) C7—C8—H8C 108.4
Na2—O7—H7A 117 (4) C7—C8—H8D 108.4
Na2—O7—H7B 122 (4) H8C—C8—H8D 107.5
H7A—O7—H7B 105 (5) C9—C8—C7 115.3 (4)
Na1ii—O8—H8A 103 (4) C9—C8—H8C 108.4
Na1ii—O8—H8B 94 (5) C9—C8—H8D 108.4
Na2—O8—Na1ii 91.00 (13) N3—C9—C8 108.6 (4)
Na2—O8—H8A 126 (4) N3—C9—H9C 110.0
Na2—O8—H8B 120 (4) N3—C9—H9D 110.0
H8A—O8—H8B 111 (6) C8—C9—H9C 110.0
Na1—O9—H9A 132 (4) C8—C9—H9D 110.0
Na1—O9—H9B 107 (4) H9C—C9—H9D 108.3
Na2—O9—Na1 91.34 (13) N4—C10—H10C 109.5
Na2—O9—H9A 96 (4) N4—C10—H10D 109.5
Na2—O9—H9B 123 (4) N4—C10—H10E 109.5
H9A—O9—H9B 108 (5) H10C—C10—H10D 109.5
Na1—O10—Na2 91.18 (13) H10C—C10—H10E 109.5
Na1—O10—H10A 127 (4) H10D—C10—H10E 109.5
Na1—O10—H10B 112 (4) N4—C11—H11A 109.5
Na2—O10—H10A 102 (4) N4—C11—H11B 109.5
Na2—O10—H10B 115 (4) N4—C11—H11C 109.5
H10A—O10—H10B 108 (6) H11A—C11—H11B 109.5
N2—N1—H1 104 (5) H11A—C11—H11C 109.5
C3—N1—H1 106 (5) H11B—C11—H11C 109.5
C3—N1—N2 113.3 (3) N4—C12—H12A 109.5
N1—N2—C4 114.0 (4) N4—C12—H12B 109.5
N1—N2—C5 106.6 (4) N4—C12—H12C 109.5
N1—N2—C6 107.7 (4) H12A—C12—H12B 109.5
C5—N2—C4 108.7 (4) H12A—C12—H12C 109.5
C6—N2—C4 110.1 (4) H12B—C12—H12C 109.5
C6—N2—C5 109.6 (4) H11D—O11—H11E 107 (8)
N4—N3—H3 108 (4) H12D—O12—H12E 111 (9)
N4—N3—C9 113.9 (3) H13A—O13—H13B 102 (8)
C9—N3—H3 106 (5) H14A—O14—H14B 113 (8)
Na1—O1—C1—O2 99.2 (4) N4—N3—C9—C8 −167.1 (4)
Na1—O1—C1—C2 −78.2 (4) C1—C2—C3—N1 −73.2 (5)
Na2—O3—C7—O4 −99.5 (4) C3—N1—N2—C4 43.8 (6)
Na2—O3—C7—C8 78.8 (4) C3—N1—N2—C5 163.8 (4)
O1—C1—C2—C3 −12.3 (5) C3—N1—N2—C6 −78.6 (5)
O2—C1—C2—C3 170.1 (4) C7—C8—C9—N3 73.4 (5)
O3—C7—C8—C9 10.5 (6) C9—N3—N4—C10 −42.9 (7)
O4—C7—C8—C9 −171.1 (4) C9—N3—N4—C11 −163.1 (5)
N2—N1—C3—C2 165.2 (4) C9—N3—N4—C12 80.7 (5)

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z.

Poly[[tetra-µ-aqua-diaquabis[3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] dibromide tetrahydrate] (I). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5A···O1i 0.97 (6) 1.79 (6) 2.746 (4) 172 (6)
O5—H5B···O11iii 0.82 (6) 2.02 (6) 2.819 (5) 167 (6)
O6—H6A···O4iv 0.80 (3) 2.06 (3) 2.845 (5) 165 (6)
O6—H6B···O2i 0.82 (3) 1.91 (3) 2.732 (4) 175 (6)
O7—H7A···O2v 0.82 (3) 2.05 (3) 2.856 (5) 165 (6)
O7—H7B···O4ii 0.80 (3) 1.94 (3) 2.731 (4) 169 (6)
O8—H8A···O13ii 0.81 (3) 2.06 (3) 2.815 (5) 155 (5)
O8—H8B···O3ii 0.81 (3) 1.95 (3) 2.754 (4) 168 (7)
O9—H9A···O6ii 0.93 (6) 1.96 (6) 2.852 (4) 160 (5)
O9—H9B···O13 0.79 (6) 2.01 (6) 2.772 (5) 160 (6)
O10—H10A···O11v 0.78 (6) 2.00 (6) 2.771 (5) 167 (6)
O10—H10B···O7i 0.90 (6) 1.99 (6) 2.853 (4) 158 (5)
O11—H11D···O12 0.80 (3) 1.94 (3) 2.744 (6) 179 (7)
O11—H11E···O2 0.80 (3) 1.92 (3) 2.719 (5) 174 (9)
O13—H13A···O14 0.80 (3) 1.95 (3) 2.733 (6) 170 (6)
O13—H13B···O4iv 0.80 (3) 1.94 (3) 2.727 (5) 168 (9)
N1—H1···Br1i 0.83 (5) 2.57 (5) 3.379 (5) 167 (5)
N3—H3···Br2v 0.84 (5) 2.57 (5) 3.394 (5) 169 (5)
O12—H12D···Br1i 0.80 (5) 2.52 (6) 3.316 (4) 172 (6)
O12—H12E···Br1 0.80 (5) 2.49 (6) 3.289 (4) 177 (8)
O14—H14A···Br2i 0.87 (7) 2.47 (7) 3.323 (5) 168 (7)
O14—H14B···Br2 0.87 (6) 2.41 (6) 3.281 (5) 175 (6)

Symmetry codes: (i) x, y+1, z; (ii) x, y−1, z; (iii) x−1/2, −y+2, z; (iv) x+1/2, −y+2, z; (v) x−1/2, −y+1, z.

Poly[[di-µ-aqua-diaquabis[µ-3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] diiodide] (II). Crystal data

[Na2(C6H14N2O2)2(H2O)4]·I2 F(000) = 1312
Mr = 664.23 Dx = 1.779 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 19.7455 (11) Å Cell parameters from 9932 reflections
b = 11.4530 (7) Å θ = 3.1–27.9°
c = 10.9733 (7) Å µ = 2.61 mm1
β = 92.382 (2)° T = 173 K
V = 2479.4 (3) Å3 Plate, colourless
Z = 4 0.3 × 0.2 × 0.07 mm

Poly[[di-µ-aqua-diaquabis[µ-3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] diiodide] (II). Data collection

Bruker PHOTON-100 CMOS diffractometer 5012 reflections with I > 2σ(I)
Radiation source: sealedtube Rint = 0.048
φ and ω scans θmax = 27.1°, θmin = 2.7°
Absorption correction: multi-scan (TWINABS; Krause et al., 2015) h = −25→25
Tmin = 0.301, Tmax = 0.431 k = 0→14
5475 measured reflections l = 0→14
5475 independent reflections

Poly[[di-µ-aqua-diaquabis[µ-3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] diiodide] (II). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.026 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.057 w = 1/[σ2(Fo2) + (0.0177P)2 + 4.3911P] where P = (Fo2 + 2Fc2)/3
S = 1.17 (Δ/σ)max = 0.001
5475 reflections Δρmax = 0.70 e Å3
286 parameters Δρmin = −0.55 e Å3

Poly[[di-µ-aqua-diaquabis[µ-3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] diiodide] (II). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refined as a 2-component twin.

Poly[[di-µ-aqua-diaquabis[µ-3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] diiodide] (II). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
I1 0.25574 (2) 0.48014 (2) 0.74401 (2) 0.01967 (6)
I2 0.02717 (2) 0.01593 (2) 0.75216 (2) 0.02095 (7)
Na1 0.45889 (8) 0.30771 (15) 0.87401 (15) 0.0228 (4)
Na2 0.54574 (8) 0.37173 (13) 0.56036 (14) 0.0177 (3)
H5A 0.412 (3) 0.150 (5) 1.034 (5) 0.048 (18)*
O1 0.38099 (12) 0.1816 (2) 0.7525 (3) 0.0205 (5)
O2 0.29207 (14) 0.0789 (3) 0.8118 (2) 0.0219 (6)
O3 0.55979 (13) 0.3377 (3) 0.7678 (3) 0.0252 (6)
O4 0.57944 (14) 0.3107 (3) 0.9672 (2) 0.0193 (6)
O5 0.43527 (15) 0.2101 (3) 1.0559 (3) 0.0212 (6)
H5B 0.418 (3) 0.246 (5) 1.113 (5) 0.038 (15)*
O6 0.42378 (16) 0.5067 (3) 0.8601 (3) 0.0273 (7)
H6A 0.382266 0.512961 0.824831 0.041*
H6B 0.428059 0.568362 0.908724 0.041*
O7 0.63392 (14) 0.4980 (2) 0.5020 (3) 0.0225 (6)
H7A 0.659951 0.465242 0.444491 0.034*
H7B 0.662743 0.517998 0.565473 0.034*
O8 0.49586 (16) 0.4327 (3) 0.3560 (3) 0.0225 (6)
H8A 0.459 (3) 0.425 (5) 0.314 (6) 0.049 (17)*
H8B 0.517 (3) 0.453 (5) 0.292 (7) 0.06 (2)*
N1 0.16954 (18) 0.1758 (3) 0.6228 (3) 0.0167 (7)
H1 0.137 (3) 0.143 (5) 0.651 (5) 0.044 (17)*
N2 0.13426 (15) 0.2379 (3) 0.5206 (3) 0.0142 (7)
N3 0.78736 (16) 0.2584 (3) 0.9016 (3) 0.0180 (7)
H3 0.783 (3) 0.195 (5) 0.850 (5) 0.049 (17)*
N4 0.83846 (16) 0.2233 (3) 0.9966 (3) 0.0183 (8)
C1 0.32344 (17) 0.1332 (3) 0.7334 (4) 0.0155 (7)
C2 0.29341 (19) 0.1380 (4) 0.6039 (4) 0.0202 (8)
H2A 0.323168 0.092864 0.550794 0.024*
H2B 0.294100 0.220190 0.576042 0.024*
C3 0.22141 (19) 0.0918 (3) 0.5852 (4) 0.0186 (8)
H3A 0.213016 0.072622 0.497921 0.022*
H3B 0.216958 0.018875 0.632569 0.022*
C4 0.0888 (2) 0.3230 (4) 0.5808 (4) 0.0227 (9)
H4A 0.055992 0.280383 0.628483 0.034*
H4B 0.064620 0.370023 0.518335 0.034*
H4C 0.116052 0.374288 0.634871 0.034*
C5 0.0924 (2) 0.1603 (4) 0.4372 (4) 0.0204 (9)
H5C 0.122247 0.106328 0.395452 0.031*
H5D 0.067248 0.208076 0.376722 0.031*
H5E 0.060508 0.115656 0.484926 0.031*
C6 0.1844 (2) 0.3039 (4) 0.4481 (4) 0.0197 (8)
H6C 0.212631 0.352880 0.503036 0.029*
H6D 0.160127 0.353351 0.387941 0.029*
H6E 0.213223 0.248583 0.406033 0.029*
C7 0.59886 (19) 0.3209 (3) 0.8594 (3) 0.0149 (8)
C8 0.67425 (19) 0.3096 (3) 0.8349 (3) 0.0176 (8)
H8C 0.680210 0.244686 0.776752 0.021*
H8D 0.689360 0.382222 0.795342 0.021*
C9 0.71953 (19) 0.2876 (3) 0.9479 (4) 0.0185 (8)
H9A 0.722229 0.358018 1.000169 0.022*
H9B 0.701879 0.221932 0.996013 0.022*
C10 0.8943 (2) 0.1664 (4) 0.9296 (4) 0.0270 (10)
H10A 0.876446 0.097529 0.885963 0.040*
H10B 0.930579 0.142601 0.987910 0.040*
H10C 0.912211 0.221802 0.871014 0.040*
C11 0.8123 (2) 0.1393 (4) 1.0886 (4) 0.0309 (10)
H11A 0.779170 0.178956 1.138310 0.046*
H11B 0.850060 0.111068 1.141379 0.046*
H11C 0.790487 0.073026 1.046252 0.046*
C12 0.8657 (2) 0.3300 (4) 1.0583 (5) 0.0290 (10)
H12A 0.883202 0.383425 0.997423 0.044*
H12B 0.902343 0.308279 1.116894 0.044*
H12C 0.829389 0.368612 1.101424 0.044*

Poly[[di-µ-aqua-diaquabis[µ-3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] diiodide] (II). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
I1 0.02077 (12) 0.02229 (12) 0.01602 (12) −0.00185 (10) 0.00150 (12) 0.00076 (10)
I2 0.01730 (12) 0.02514 (12) 0.02035 (14) −0.00498 (9) −0.00011 (13) 0.00198 (10)
Na1 0.0199 (8) 0.0258 (9) 0.0226 (8) −0.0008 (7) −0.0001 (7) 0.0014 (7)
Na2 0.0173 (7) 0.0207 (8) 0.0151 (7) −0.0017 (6) 0.0004 (6) −0.0007 (6)
O1 0.0172 (13) 0.0235 (13) 0.0206 (13) −0.0024 (10) −0.0028 (11) 0.0040 (11)
O2 0.0199 (14) 0.0282 (16) 0.0178 (14) −0.0012 (12) 0.0016 (11) 0.0040 (12)
O3 0.0190 (14) 0.0382 (16) 0.0181 (15) 0.0030 (11) −0.0012 (12) 0.0042 (13)
O4 0.0182 (14) 0.0237 (15) 0.0160 (14) −0.0010 (12) 0.0017 (11) 0.0015 (11)
O5 0.0166 (15) 0.0250 (16) 0.0223 (16) −0.0002 (12) 0.0036 (12) −0.0047 (13)
O6 0.0216 (16) 0.0324 (18) 0.0276 (16) 0.0020 (13) −0.0013 (12) −0.0066 (13)
O7 0.0194 (15) 0.0321 (17) 0.0162 (13) −0.0044 (13) 0.0040 (11) −0.0036 (12)
O8 0.0207 (17) 0.0298 (17) 0.0168 (15) −0.0035 (13) −0.0013 (13) 0.0015 (12)
N1 0.0169 (18) 0.0223 (18) 0.0107 (15) −0.0012 (15) −0.0017 (13) 0.0015 (13)
N2 0.0138 (14) 0.0175 (18) 0.0112 (17) 0.0014 (14) −0.0011 (13) −0.0009 (11)
N3 0.0145 (17) 0.0221 (18) 0.0173 (17) 0.0033 (14) −0.0005 (13) −0.0014 (13)
N4 0.0143 (15) 0.020 (2) 0.0202 (18) 0.0029 (12) −0.0018 (14) −0.0014 (14)
C1 0.0142 (17) 0.0135 (16) 0.0188 (18) 0.0056 (13) 0.0015 (15) −0.0011 (14)
C2 0.014 (2) 0.027 (2) 0.019 (2) −0.0001 (17) 0.0005 (16) 0.0008 (17)
C3 0.0186 (19) 0.018 (2) 0.0184 (19) −0.0011 (16) −0.0020 (16) 0.0012 (15)
C4 0.024 (2) 0.021 (2) 0.022 (2) 0.0074 (18) 0.0002 (18) −0.0036 (17)
C5 0.021 (2) 0.024 (2) 0.0159 (19) −0.0038 (18) −0.0056 (16) −0.0041 (16)
C6 0.018 (2) 0.022 (2) 0.019 (2) −0.0033 (16) −0.0001 (16) 0.0030 (16)
C7 0.0135 (19) 0.0137 (19) 0.0176 (18) −0.0011 (15) 0.0006 (15) 0.0009 (14)
C8 0.019 (2) 0.0152 (19) 0.0182 (18) 0.0030 (15) 0.0011 (15) 0.0014 (14)
C9 0.0172 (19) 0.019 (2) 0.0194 (19) 0.0007 (15) 0.0032 (15) 0.0012 (15)
C10 0.015 (2) 0.034 (3) 0.032 (2) 0.0107 (19) 0.0003 (18) −0.006 (2)
C11 0.027 (2) 0.042 (3) 0.023 (2) 0.006 (2) −0.0025 (19) 0.013 (2)
C12 0.022 (2) 0.028 (3) 0.037 (3) 0.0025 (19) −0.005 (2) −0.011 (2)

Poly[[di-µ-aqua-diaquabis[µ-3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] diiodide] (II). Geometric parameters (Å, º)

Na1—Na2i 3.325 (2) N3—N4 1.476 (4)
Na1—Na2 3.977 (2) N3—C9 1.490 (5)
Na1—O1 2.462 (3) N4—C10 1.499 (5)
Na1—O3 2.374 (3) N4—C11 1.502 (5)
Na1—O4 2.552 (3) N4—C12 1.487 (6)
Na1—O5 2.351 (3) C1—C2 1.518 (5)
Na1—O6 2.385 (4) C2—H2A 0.9900
Na1—O8i 2.857 (4) C2—H2B 0.9900
Na1—C7 2.779 (4) C2—C3 1.522 (5)
Na2—Na2ii 3.668 (3) C3—H3A 0.9900
Na2—O3 2.315 (3) C3—H3B 0.9900
Na2—O4iii 2.431 (3) C4—H4A 0.9800
Na2—O5iii 2.373 (3) C4—H4B 0.9800
Na2—O7 2.372 (3) C4—H4C 0.9800
Na2—O8ii 2.569 (4) C5—H5C 0.9800
Na2—O8 2.510 (3) C5—H5D 0.9800
O1—C1 1.274 (4) C5—H5E 0.9800
O2—C1 1.247 (4) C6—H6C 0.9800
O3—C7 1.256 (5) C6—H6D 0.9800
O4—C7 1.264 (5) C6—H6E 0.9800
O5—H5A 0.86 (6) C7—C8 1.529 (5)
O5—H5B 0.84 (6) C8—H8C 0.9900
O6—H6A 0.8946 C8—H8D 0.9900
O6—H6B 0.8873 C8—C9 1.520 (5)
O7—H7A 0.9110 C9—H9A 0.9900
O7—H7B 0.9103 C9—H9B 0.9900
O8—H8A 0.85 (6) C10—H10A 0.9800
O8—H8B 0.86 (7) C10—H10B 0.9800
N1—H1 0.83 (6) C10—H10C 0.9800
N1—N2 1.478 (4) C11—H11A 0.9800
N1—C3 1.476 (5) C11—H11B 0.9800
N2—C4 1.496 (5) C11—H11C 0.9800
N2—C5 1.499 (5) C12—H12A 0.9800
N2—C6 1.500 (5) C12—H12B 0.9800
N3—H3 0.92 (6) C12—H12C 0.9800
O1—Na1—O4 140.94 (12) N3—N4—C10 105.5 (3)
O1—Na1—O8i 63.43 (9) N3—N4—C11 113.9 (3)
O1—Na1—C7 126.95 (12) N3—N4—C12 108.8 (3)
O3—Na1—O1 109.70 (11) C10—N4—C11 109.4 (3)
O3—Na1—O4 53.63 (9) C12—N4—C10 108.8 (3)
O3—Na1—O6 94.48 (12) C12—N4—C11 110.3 (4)
O3—Na1—O8i 83.30 (11) O1—C1—C2 116.7 (3)
O3—Na1—C7 26.77 (10) O2—C1—O1 124.6 (4)
O4—Na1—O8i 78.70 (10) O2—C1—C2 118.6 (3)
O4—Na1—C7 27.00 (10) C1—C2—H2A 108.3
O5—Na1—O1 92.25 (11) C1—C2—H2B 108.3
O5—Na1—O3 133.27 (12) C1—C2—C3 116.1 (3)
O5—Na1—O4 83.16 (11) H2A—C2—H2B 107.4
O5—Na1—O6 116.18 (13) C3—C2—H2A 108.3
O5—Na1—O8i 70.18 (11) C3—C2—H2B 108.3
O5—Na1—C7 107.91 (12) N1—C3—C2 113.0 (3)
O6—Na1—O1 110.65 (11) N1—C3—H3A 109.0
O6—Na1—O4 106.06 (12) N1—C3—H3B 109.0
O6—Na1—O8i 172.17 (12) C2—C3—H3A 109.0
O6—Na1—C7 103.39 (12) C2—C3—H3B 109.0
C7—Na1—O8i 77.92 (11) H3A—C3—H3B 107.8
O3—Na2—O4iii 104.18 (11) N2—C4—H4A 109.5
O3—Na2—O5iii 91.51 (11) N2—C4—H4B 109.5
O3—Na2—O7 108.00 (12) N2—C4—H4C 109.5
O3—Na2—O8 162.13 (12) H4A—C4—H4B 109.5
O3—Na2—O8ii 79.78 (11) H4A—C4—H4C 109.5
O4iii—Na2—O8ii 175.55 (12) H4B—C4—H4C 109.5
O4iii—Na2—O8 88.14 (11) N2—C5—H5C 109.5
O5iii—Na2—O4iii 85.36 (11) N2—C5—H5D 109.5
O5iii—Na2—O8ii 92.56 (12) N2—C5—H5E 109.5
O5iii—Na2—O8 76.41 (11) H5C—C5—H5D 109.5
O7—Na2—O4iii 101.17 (11) H5C—C5—H5E 109.5
O7—Na2—O5iii 156.89 (13) H5D—C5—H5E 109.5
O7—Na2—O8 81.63 (11) N2—C6—H6C 109.5
O7—Na2—O8ii 79.28 (11) N2—C6—H6D 109.5
O8—Na2—O8ii 87.55 (11) N2—C6—H6E 109.5
C1—O1—Na1 151.3 (3) H6C—C6—H6D 109.5
C7—O3—Na1 94.9 (2) H6C—C6—H6E 109.5
C7—O3—Na2 149.0 (2) H6D—C6—H6E 109.5
Na2i—O4—Na1 83.67 (10) O3—C7—Na1 58.34 (19)
C7—O4—Na1 86.6 (2) O3—C7—O4 124.2 (3)
C7—O4—Na2i 124.9 (3) O3—C7—C8 116.2 (3)
Na1—O5—Na2i 89.48 (11) O4—C7—Na1 66.4 (2)
Na1—O5—H5A 105 (4) O4—C7—C8 119.5 (3)
Na1—O5—H5B 120 (4) C8—C7—Na1 169.5 (3)
Na2i—O5—H5A 99 (4) C7—C8—H8C 108.6
Na2i—O5—H5B 126 (4) C7—C8—H8D 108.6
H5A—O5—H5B 112 (5) H8C—C8—H8D 107.6
Na1—O6—H6A 111.3 C9—C8—C7 114.5 (3)
Na1—O6—H6B 134.6 C9—C8—H8C 108.6
H6A—O6—H6B 105.0 C9—C8—H8D 108.6
Na2—O7—H7A 112.2 N3—C9—C8 105.4 (3)
Na2—O7—H7B 112.9 N3—C9—H9A 110.7
H7A—O7—H7B 106.3 N3—C9—H9B 110.7
Na1iii—O8—H8A 74 (4) C8—C9—H9A 110.7
Na1iii—O8—H8B 117 (4) C8—C9—H9B 110.7
Na2—O8—Na1iii 76.24 (10) H9A—C9—H9B 108.8
Na2ii—O8—Na1iii 136.82 (13) N4—C10—H10A 109.5
Na2—O8—Na2ii 92.45 (11) N4—C10—H10B 109.5
Na2—O8—H8A 139 (4) N4—C10—H10C 109.5
Na2ii—O8—H8A 90 (4) H10A—C10—H10B 109.5
Na2—O8—H8B 129 (4) H10A—C10—H10C 109.5
Na2ii—O8—H8B 103 (4) H10B—C10—H10C 109.5
H8A—O8—H8B 90 (5) N4—C11—H11A 109.5
N2—N1—H1 99 (4) N4—C11—H11B 109.5
C3—N1—H1 112 (4) N4—C11—H11C 109.5
C3—N1—N2 114.3 (3) H11A—C11—H11B 109.5
N1—N2—C4 104.6 (3) H11A—C11—H11C 109.5
N1—N2—C5 114.1 (3) H11B—C11—H11C 109.5
N1—N2—C6 110.1 (3) N4—C12—H12A 109.5
C4—N2—C5 109.3 (3) N4—C12—H12B 109.5
C4—N2—C6 109.1 (3) N4—C12—H12C 109.5
C5—N2—C6 109.5 (3) H12A—C12—H12B 109.5
N4—N3—H3 105 (4) H12A—C12—H12C 109.5
N4—N3—C9 114.7 (3) H12B—C12—H12C 109.5
C9—N3—H3 109 (4)
Na1—O1—C1—O2 −48.2 (7) O2—C1—C2—C3 9.4 (5)
Na1—O1—C1—C2 134.9 (4) O3—C7—C8—C9 −179.1 (3)
Na1—O3—C7—O4 −8.8 (4) O4—C7—C8—C9 −0.5 (5)
Na1—O3—C7—C8 169.7 (3) N2—N1—C3—C2 102.5 (4)
Na1—O4—C7—O3 8.2 (4) N4—N3—C9—C8 −174.9 (3)
Na1—O4—C7—C8 −170.3 (3) C1—C2—C3—N1 78.7 (4)
Na1—C7—C8—C9 −122.6 (14) C3—N1—N2—C4 −175.9 (3)
Na2—O3—C7—Na1 −175.0 (6) C3—N1—N2—C5 64.8 (4)
Na2—O3—C7—O4 176.2 (3) C3—N1—N2—C6 −58.8 (4)
Na2—O3—C7—C8 −5.3 (7) C7—C8—C9—N3 170.1 (3)
Na2i—O4—C7—Na1 79.9 (2) C9—N3—N4—C10 164.3 (3)
Na2i—O4—C7—O3 88.0 (5) C9—N3—N4—C11 44.3 (4)
Na2i—O4—C7—C8 −90.4 (4) C9—N3—N4—C12 −79.2 (4)
O1—C1—C2—C3 −173.5 (3)

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1/2, z−1/2.

Poly[[di-µ-aqua-diaquabis[µ-3-(1,1,1-trimethylhydrazin-1-ium-2-yl)\ propanoate]disodium] diiodide] (II). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O5—H5B···O1i 0.85 (6) 1.89 (6) 2.741 (4) 175 (6)
O7—H7B···O2iv 0.91 1.73 2.629 (4) 169
O8—H8A···O1iii 0.85 (6) 2.05 (6) 2.815 (4) 149 (6)
N1—H1···I2 0.82 (6) 2.87 (6) 3.688 (4) 177 (5)
N3—H3···I1v 0.92 (6) 2.76 (6) 3.650 (3) 161 (5)
O5—H5A···O7v 0.86 (6) 2.00 (6) 2.846 (4) 172 (4)
O6—H6A···I1 0.89 2.64 3.518 (3) 166
O6—H6B···O4vi 0.89 1.95 2.825 (4) 168
O7—H7A···I1ii 0.91 2.78 3.548 (3) 143
O8—H8B···O6ii 0.86 (7) 2.13 (7) 2.989 (5) 175 (5)
C3—H3A···I1iii 0.99 3.01 3.920 (4) 154
C11—H11B···I2vii 0.98 3.02 3.975 (4) 165
C12—H12C···I1vi 0.98 2.99 3.952 (5) 167

Symmetry codes: (i) x, −y+1/2, z+1/2; (ii) −x+1, −y+1, −z+1; (iii) x, −y+1/2, z−1/2; (iv) −x+1, y+1/2, −z+3/2; (v) −x+1, y−1/2, −z+3/2; (vi) −x+1, −y+1, −z+2; (vii) −x+1, −y, −z+2.

Funding Statement

This work was funded by State University of New York grant .

References

  1. Andrade, L. C. R., Costa, M. M. R., Paixao, J., Agostinho Moreira, J., Almeida, A., Chaves, M. R. & Klopperpieper, A. (1999). Z. Kristallogr. New Cryst. Struct. 214, 83–84.
  2. Andrade, L. C. R., Costa, M. M. R., Pinto, F., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2000). Z. Kristallogr. New Cryst. Struct. 215, 537–538.
  3. Andrade, L. C. R., Costa, M. M. R., Pinto, F., Rodrigues, V. H., Paixao, J. A., Almeida, A., Chaves, M. R. & Klopperpieper, A. (2001). Z. Kristallogr. New Cryst. Struct. 216, 227–228.
  4. Bērziņš, A. & Actiņš, A. (2014). CrystEngComm, 16, 3926–3934.
  5. Bruker (2016). APEX3 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  6. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  7. Giller, S. A., Eremeev, A. V., Kalvin’sh, I. Y., Liepin’sh, É. É., & Semenikhina, V. G. (1975). Chem. Heterocycl. Compd. 11, 1378–1382.
  8. Görgens, C., Guddat, S., Dib, J., Geyer, H., Schänzer, W. & Thevis, M. (2015). Drug Test. Anal. 7, 973–979. [DOI] [PMC free article] [PubMed]
  9. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  10. Kalvins, I., Liepins, E., Loza, E., Dambrova, M., Stonans, L., Lola, D., Kuka, J., Pugovics, O., Vilskersts, R. & Grinberga, S. (2014). US Patent, US 20140088125 A1. [DOI] [PMC free article] [PubMed]
  11. Kalvins, I. & Stonans, I. (2009). WO Patent, WO/2009/071586.
  12. Kemme, A., Bleidelis, J., Kalvinsh, I. & Eremeev, A. (1983). Latv. PSR Zinat. Akad. Vestis, 2, 215–218.
  13. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  14. Liepinsh, E., Makarova, E., Sevostjanovs, E., Hartmane, D., Cirule, H., Zharkova-Malkova, O., Grinberga, S. & Dambrova, M. (2017). Basic & Clinical Pharmacology & Toxicology 120, 450-456. [DOI] [PubMed]
  15. Nazarenko, A. Y. (2018). Private communication (refcodes CCDC 1822460–1822463. CCDC, Cambridge, England.
  16. Rodrigues, V. H., Costa, M. M. R., Klopperpieper, A., Chaves, M. R., Almeida, A. & Agostinho Moreira, J. (2005). Z. Kristallogr. New Cryst. Struct. 220, 363–364.
  17. Sheldrick, G. M. (2008). CELL_NOW. Version 2008/4. University of Göttingen, Germany.
  18. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  19. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  20. Silva, J. (2013). Patent CA 2661357 C, 2013.
  21. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer17. University of Western Australia. http://hirshfeldsurface.net
  22. Zvirgzdiņš, A., Veldre, K. & Actiņš, A. (2011). Latvian J. Chem. 50, 64–72.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989018006977/zl2729sup1.cif

e-74-00829-sup1.cif (4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006977/zl2729Isup2.hkl

e-74-00829-Isup2.hkl (553.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018006977/zl2729Isup4.cdx

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018006977/zl2729IIsup3.hkl

e-74-00829-IIsup3.hkl (435.6KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018006977/zl2729IIsup5.cdx

CCDC references: 1841872, 1841871

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES