Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 May 4;74(Pt 6):780–785. doi: 10.1107/S2056989018006527

Mol­ecular structure, DFT studies and Hirshfeld analysis of anthracenyl chalcone derivatives

Dian Alwani Zainuri a, Ibrahim Abdul Razak a, Suhana Arshad a,*
PMCID: PMC6002829  PMID: 29951229

The structures of two new chalcone derivatives have been determined and are investigated using Hirshfeld surface analysis and mol­ecular electrostatic potential techniques.

Keywords: chalcone, crystal Structure, DFT, mol­ecular electrostatic potential, Hirshfeld surface

Abstract

The mol­ecular and crystal structure of two new chalcone derivatives, (E)-1-(anthracen-9-yl)-3-[4-(piperidin-1-yl)phen­yl]prop-2-en-1-one, C28H25NO, (I), and (E)-1-(anthracen-9-yl)-3-[4-(di­phenyl­amino)­phen­yl]prop-2-en-1-one, C35H25NO, (II), with the fused-ring system at the same position are described. In the crystals of (I) and (II), the mol­ecules are linked via C—H⋯O hydrogen bonds into inversion dimers, forming R 2 2(22) and R 2 2(14) ring motifs, respectively. Weak inter­molecular C—H⋯π inter­actions further help to stabilize the crystal structure, forming a two-dimensional architecture. The mol­ecular structures are optimized using density functional theory (DFT) at B3LYP/6–311 G++(d,p) level and compared with the experimental results. The smallest HOMO–LUMO energy gaps of (I) (exp . 2.76 eV and DFT 3.40 eV) and (II) (exp . 2.70 eV and DFT 3.28 eV) indicates the suitability of these crystals in optoelectronic applications. All inter­molecular contacts and weaker contributions involved in the supra­molecular stabilization are investigated using Hirshfeld surface analysis. The mol­ecular electrostatic potential (MEP) further identifies the positive, negative and neutral electrostatic potential regions of the mol­ecules.

Chemical context  

Chalcone derivatives have attracted significant attention in the past few decades mainly because of their availability of high optical non-linearities resulting from the significant delocalization of the electron clouds throughout the chalcone system (D’silva et al., 2011). A chalcone mol­ecule with a π-conjugated system provides a large charge-transfer axis with appropriate substituent groups on the two aromatic terminal rings. Furthermore, π-conjugated mol­ecular materials with fused rings are the focus of considerable inter­est in the emerging area of organic electronics, since the combination of excellent charge-carrier mobility and a high stability structure leads to potential optoelectronic applications (Wu et al., 2010). As part of our studies in this area, the chalcone compounds (E)-1-(anthracen-9-yl)-3-[4-(piperidin-1-yl)phen­yl]prop-2-en-1-one, (I), and (E)-1-(anthracen-9-yl)-3-[4-(di­phenyl­amino)­phen­yl]prop-2-en-1-one, (II), were successfully synthesized and their crystal structures are reported herein.

Structural commentary  

The title compounds (I) and (II) (Fig. 1) crystallize in he triclinic and monoclinic space groups P Inline graphic and C2/c, respectively. The bond lengths and angles are in normal ranges. The calculated values of compounds (I) and (II) determined from B3LYP/6-311G(d,p) calculations (given in the Supporting information) may provide information about the geometry of the mol­ecules. From the results, it can be concluded that this basis set is comparable in its approach to the experimental data. The slight deviations from the experimental values are due to the fact that the optimization is performed in an isolated condition, whereas the crystal environment and hydrogen-bonding inter­actions affect the results of the X-ray structure (Zainuri et al., 2017).graphic file with name e-74-00780-scheme1.jpg

Figure 1.

Figure 1

(a) The molecular structure of compounds (I) and (II) with 50% probability displacement ellipsoids. (b) The optimized structures of compounds (I) and (II) at the DFT/B3LYP 6–311++G(d,p) level.

Compounds (I) and (II) contain an anthracene fused ring system and a 1-phenyl­piperidine or tri­phenyl­amine substituent, representing a D–π–D inter­molecular charge-transfer system. The piperidine ring (N1/C24–C28) in (I) adopts a chair conformation with puckering parameters Q = 0.521 (4), Θ = 3.1 (3)° and φ = 221 (6)°. The enone moiety (O1/C15–C17) in compounds (I) and (II) adopts an s-trans configuration with respect to the C15=O1 and C16=C17 bonds. Both compounds (I) and (II) are twisted at the C14—C15 bonds with C1—C14—C15—C16 torsion angles of 101.5 (3) and 93.66 (18)°, respectively. The corresponding torsion angles from the DFT study are 88.68 and 90.29°. In addition, the C17—C18 bond is also twisted slightly in (I) and (II) with the C16—C17—C18—C19 torsion angles being 171.5 (3)° (Exp) and 179.22° (DFT) in (I) and −164.77 (16)° (Exp) and 175.94° (DFT) in (II). The torsion angle difference between the experimental and DFT studies are due to the formation of inter­molecular inter­actions involving the anthracene fused-ring system and the terminal substituent of the 1-phenyl­piperidine and tri­phenyl­amine units. The observed inter­molecular inter­actions in the crystal packing are the main cause of the angle deviation between the experimental and the theoretical results.

The enone moiety for (I) [O1/C15–C17, maximum deviation of 0.052 (3) Å at C16] forms dihedral angles of 82.9 (3), 12.0 (3) and 8.1 (3)° with the anthracene ring system (C1–C14), the benzene ring (C18-C23) and the piperidine ring (N1/C24–C28), respectively. The anthracene ring system forms dihedral angles of 86.74 (10) and 85.55 (12)° with the 1-phenyl­piperidine rings C18–C23 and N1/C24–C28, respectively. Meanwhile, in compound (II), the enone moiety [O1/ C15–C17, maximum deviation of 0.0287 (15) Å at C16] forms dihedral angles of 87.30 (16), 17.13 (16), 72.55 (17) and 79.16 (16)° with the anthracene ring system (C1–C14) and the benzene rings C18–C23, C24–C29 and C30–C35, respectively. The dihedral angle between the anthracene ring system and the tri­phenyl­amine benzene rings C18–C23, C24–C29 and C30–C35 are 75.86 (6), 79.81 (8) and 12.84 (8)°, respectively. The large dihedral-angle deviation indicates that the possibility for electronic effects between the anthracene units through the enone moiety has decreased (Jung et al., 2008). Furthermore, the bulkiness of the anthracene ring system gives rise to a highly twisted structure for both compounds (Zainuri et al., 2018a ,b ).

Supra­molecular features  

In the crystal packing of compound (I), the mol­ecules are connected via inter­molecular C28—H28B⋯O1i inter­actions (Table 1), forming inversion dimers with Inline graphic(22) ring motifs. These ring motifs further link into one-dimensional columns along the b-axis direction (Fig. 2). The crystal packing is stabilized by weak C28—H28ACg1ii inter­actions (Table 1). Together, these inter­actions connect the mol­ecules into sheets parallel to the ac plane.

Table 1. Hydrogen-bond geometry (Å, °) for (I) .

Cg1 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C28—H28B⋯O1i 0.97 2.36 3.262 (4) 154
C28—H28ACg1ii 0.97 2.95 3.861 (4) 157

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

The crystal packing of (I) showing weak C—H⋯O and C—H⋯π inter­actions.

Similary, in compound (II), C23—H23A⋯ O1i (Table 1 and Fig. 3) hydrogen bonds connect the mol­ecules into centrosymmetric dimers, forming Inline graphic(14) ring motifs. These dimers are further linked into infinite columns along the c-axis direction. C29—H29ACg1ii inter­actions (Table 2) are also observed. As in (I), the crystal structure comprises sheets parallel to the ac plane.

Figure 3.

Figure 3

The weak C—H⋯ O and C—H⋯π inter­actions in compound (II).

Table 2. Hydrogen-bond geometry (Å, °) for (II) .

Cg1 is the centroid of the C18–C23 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C23—H23A⋯O1i 0.93 2.40 3.221 (2) 147
C29—H29ACg1ii 0.93 2.96 3.739 (19) 142

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

UV–Vis absorption analysis  

The strongest absorption and smaller energy gap, particularly in the visible region, is important feature in the suitability for optoelectronic application. The electronic absorption and excitation properties of (I) and (II) were estimated theoretically by applying the time-dependent DFT approach at the B3LYP level of theory with the 6-311++G(d,p) basis set. The experimental absorptions (Fig. 4) of (I) and (II) are reported at 396 and 406 nm, while simulated values are observed at 397 and 415 nm, respectively. The theoretical wavelengths are shifted to higher wavelengths because the calculations are confined to the gaseous equivalent whereas the observations are from the solution state.

Figure 4.

Figure 4

UV–Vis absorption spectra for compounds (I) and (II).

The experimental energy band gaps for (I) and (II) are 2.76 and 2.70 eV, respectively, through an extrapolation of the linear trend. The calculations of the mol­ecular orbital geometry show that the absorption maxima of the mol­ecules correspond to the electron transition between the frontier orbitals highest occupied mol­ecular orbital (HOMO) to the lowest unoccupied mol­ecular orbital (LUMO) (Fig. 5). The predicted energy gaps for compounds (I) and (II) are 3.40 and 3.28 eV, respectively. The small HOMO–LUMO energy gap in these compounds shows the chemical reactivity is stronger and the kinetic stability is weaker, which in turn increase the polarizability and NLO activity (Maidur et al., 2018).

Figure 5.

Figure 5

The electron distribution of the HOMO and LUMO energy levels of (I) and (II).

Hirshfeld surface analysis  

Hirshfeld surface analysis assigns inter­molecular inter­actions inside the unit-cell packing. The dnorm, shape-index and de (Wolff et al., 2012) surfaces are presented in Fig. 6 a, b and c, respectively. All C—H⋯ O and C—H⋯π contacts are recognized in the dnorm mapped surface as deep-red depression areas in Fig. 6 a. The C—H⋯ O contacts are observed in both compounds (I) and (II). The presence of C—H⋯π inter­actions is indicated through the combination of pale-orange and bright-red spots, which are present on the shape-index surface, identified with black arrows (Fig. 6 b).

Figure 6.

Figure 6

View of the Hirshfeld Surfaces, showing (a) d norm with the red spot showing the involvement of the C—H⋯O inter­actions, (b) mapped over shape-index and (c) mapped over d e with the pale-orange spot inside the black arrows indicating the C—H⋯π inter­actions.

Two-dimensional fingerprint plots as shown in Fig. 7. These illustrate the difference between the inter­molecular inter­action patterns and the major inter­molecular contacts associated in both compounds. The H⋯H contacts appear to be the major contributor to the Hirshfeld surface; these are shown in Fig. 7 b as one distinct spike with a minimum value de + di that is approximately less than the sum of van der Waals radii (2.4 Å). Furthermore, the inter­molecular C—H⋯π inter­actions for compounds (I) and (II) are characterized by the short inter­atomic C⋯H/H⋯C contacts with percentage contributions of 21.7% (I) and 30.6% (II), showing two distinct spikes with de + di ∼2.8 Å (I) and 2.7 Å (II). Additionally, the O⋯H/H⋯O contacts indicate the presence of inter­molecular C—H⋯ O inter­actions with percentage contributions of 8.0% (I) and 6.5% (II) and are indicated by a pair of wings at de + di ∼2.3 Å (Fig. 7 c).

Figure 7.

Figure 7

Fingerprint plots of inter­actions, listing the percentage of contacts (a) full two-dimensional fingerprint plots; (b) H⋯H (c) O⋯H/H⋯O and (d) C⋯H/H⋯C contributions to the total Hirshfeld surface. The outline of the full fingerprint plots is shown in grey.

Mol­ecular Electrostatic Potential  

The mol­ecular electrostatic potential (MEP) has become firmly established as an effective guide to mol­ecular inter­actions. The importance of MEPs lies in the fact that it simultaneously displays mol­ecular size and shape, as well as positive, negative and neutral electrostatic potential regions, in terms of colour grading and is useful in suties of the mol­ecular structure and its physicochemical property relationship (Murray & Sen, 1996; Scrocco & Tomasi, 1978). The MEP maps of (I) and (II) mol­ecules were calculated theoretically at the B3LYP/6-311G++(d,p) level of theory and the obtained plots are shown in Fig. 8. The red-coloured region is nucleophile and electron rich, whereas the blue colour indicates the electrophile region with poor electrons in the vicinity, and the remaining white region shows the neutrality of atoms. These sites given information about the region from where the mol­ecule can have inter­molecular inter­actions (Gunasekaran & Srinivasan, 2008).

Figure 8.

Figure 8

The total electron density three-dimensional surface mapped for (a) compound (I) and (b) compound (II) with the electrostatic potential calculated at the B3LYP/6–311 G++ (d,p) level.

In (I) and (II), the reactive sites are near the C=O group; this is the region having the most negative potential spots (red colour), all over the oxygen atom due to the C—H⋯ O inter­actions in the crystal structure. The negative potential values of compounds (I) and (II) of −0.06268 and −0.06453 a.u. indicate the strongest repulsion (electrophilic attack). Meanwhile, the most positive regions for (I) and (II) are localized on the hydrogen atoms and show the strongest attraction (nucleophilic attack) sites involving the anthrancene group and its subtsituent groups of the 1-phenyl­piperidine (I) and tri­phenyl­amine (II) moieties.

Database survey  

A survey of Cambridge Structural Database (CSD, Version 5.38, last update Nov 2016; Groom et al., 2016) revealed fused-ring substituted chalcones similar to (I) and (II). There are four compounds that have ananthracene–ketone substituent on the chalcone: 9-anthryl styryl ketone and 9,10-anthryl bis­(styryl ketone) (Harlow et al., 1975), (2E)-1-(anthracen-9-yl)-3-[4-(propan-2-yl)phen­yl]prop-2-en-1-one (Girisha et al., 2016) and (E)-1-(anthracen-9-yl)-3-(2-chloro-6-fluoro­phen­yl)prop-2-en- 1-one (Abdullah et al., 2016). Zainuri et al., 20182018a ,b ) reported two anthracene substituents on the chalcone (E)-1,3-bis­(anthracen-9-yl)prop-2-en-1-one. Other related compounds include 1-(anthracen-9-yl)-2-methyl­prop-2-en-1-one (Agrahari et al., 2015) and 9-anthroylacetone (Cicogna et al., 2004).

Synthesis and crystallization  

A mixture of 9-acetyl­anthrancene (0.5 mmol) and 4-(piperidin-1-yl)benzaldehyde (0.5 mmol) and 4-(di­phenyl­amino)­benzaldehyde (0.5 mmol) for compound (I) and (II), respectively, was dissolved in methanol (20 ml). A catalytic amount of NaOH (5 ml, 20%) was added to the solution dropwise with vigorous stirring. The reaction mixture was stirred for about 5–6 h at room temperature. After stirring, the contents of the flask were poured into ice-cold water (50 ml). The resultant crude products were filtered, washed successively with distilled water and recrystallized to get the corresponding chalcones. Crystals suitable for X-ray diffraction were obtained by the slow evaporation technique from acetone.

Refinement  

Crystal data collection and structure refinement details are summarized in Table 3. All H atoms were positioned geometrically [C—H = 0.93 and 0.97 Å (in (I)) and 0.93 Å (in (II))] and refined using riding model with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

  (I) (II)
Crystal data
Chemical formula C28H25NO C35H25NO
M r 391.49 475.56
Crystal system, space group Triclinic, P Inline graphic Monoclinic, C2/c
Temperature (K) 296 296
a, b, c (Å) 8.0535 (15), 9.0457 (17), 15.352 (3) 31.2875 (16), 9.0470 (4), 18.3643 (8)
α, β, γ (°) 106.553 (4), 101.572 (4), 94.385 (4) 90, 99.388 (3), 90
V3) 1039.6 (3) 5128.5 (4)
Z 2 8
Radiation type Mo Kα Mo Kα
μ (mm−1) 0.08 0.07
Crystal size (mm) 0.64 × 0.23 × 0.10 0.96 × 0.23 × 0.17
 
Data collection
Diffractometer Bruker SMART APEXII DUO CCD area-detector Bruker SMART APEXII DUO CCD area-detector
Absorption correction Multi-scan (SADABS; Bruker, 2009) Multi-scan (SADABS; Bruker, 2009)
T min, T max 0.724, 0.972 0.645, 0.957
No. of measured, independent and observed [I > 2σ(I)] reflections 27976, 4812, 2122 98729, 7726, 4183
R int 0.079 0.076
(sin θ/λ)max−1) 0.652 0.712
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.068, 0.246, 1.01 0.057, 0.144, 1.02
No. of reflections 4812 7726
No. of parameters 271 334
H-atom treatment H-atom parameters constrained H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.26, −0.19 0.13, −0.14

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXL2014 and SHELXL2013 (Sheldrick, 2015), SHELXTL (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989018006527/lh5873sup1.cif

e-74-00780-sup1.cif (5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006527/lh5873Isup2.hkl

e-74-00780-Isup2.hkl (263.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018006527/lh5873IIsup3.hkl

e-74-00780-IIsup3.hkl (423.3KB, hkl)

Comparison between selected calculated (DFT) and experimental geometrical data. DOI: 10.1107/S2056989018006527/lh5873sup4.pdf

e-74-00780-sup4.pdf (53.9KB, pdf)

CCDC references: 1824550, 1817218

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

(E)-1-(Anthracen-9-yl)-3-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one (I) . Crystal data

C28H25NO Z = 2
Mr = 391.49 F(000) = 416
Triclinic, P1 Dx = 1.251 Mg m3
a = 8.0535 (15) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.0457 (17) Å Cell parameters from 1764 reflections
c = 15.352 (3) Å θ = 2.4–19.6°
α = 106.553 (4)° µ = 0.08 mm1
β = 101.572 (4)° T = 296 K
γ = 94.385 (4)° Plate, yellow
V = 1039.6 (3) Å3 0.64 × 0.23 × 0.10 mm

(E)-1-(Anthracen-9-yl)-3-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one (I) . Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 2122 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.079
φ and ω scans θmax = 27.6°, θmin = 1.4°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −10→10
Tmin = 0.724, Tmax = 0.972 k = −11→11
27976 measured reflections l = −19→19
4812 independent reflections

(E)-1-(Anthracen-9-yl)-3-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one (I) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.068 H-atom parameters constrained
wR(F2) = 0.246 w = 1/[σ2(Fo2) + (0.115P)2 + 0.0669P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max < 0.001
4812 reflections Δρmax = 0.26 e Å3
271 parameters Δρmin = −0.19 e Å3

(E)-1-(Anthracen-9-yl)-3-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one (I) . Special details

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71134 9.070 15.379 16.135 101.576 94.356 106.571
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-1-(Anthracen-9-yl)-3-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one (I) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 −0.3955 (3) 0.4115 (3) 0.73584 (14) 0.0949 (8)
N1 0.6347 (3) 0.8072 (2) 1.09764 (14) 0.0575 (6)
C1 −0.2379 (3) 0.4582 (3) 0.57411 (17) 0.0542 (6)
C2 −0.1842 (3) 0.3116 (3) 0.5702 (2) 0.0694 (8)
H1 −0.1747 0.2771 0.6224 0.083*
C3 −0.1466 (4) 0.2206 (4) 0.4920 (2) 0.0848 (9)
H2 −0.1098 0.1253 0.4912 0.102*
C4 −0.1627 (4) 0.2695 (4) 0.4119 (2) 0.0884 (10)
H3 −0.1375 0.2059 0.3583 0.106*
C5 −0.2139 (4) 0.4060 (4) 0.4123 (2) 0.0788 (9)
H4 −0.2249 0.4360 0.3585 0.095*
C6 −0.2517 (3) 0.5066 (3) 0.49269 (16) 0.0575 (7)
C7 −0.3004 (3) 0.6497 (3) 0.49477 (18) 0.0632 (7)
H5 −0.3109 0.6799 0.4411 0.076*
C8 −0.3343 (3) 0.7503 (3) 0.57345 (18) 0.0579 (7)
C9 −0.3802 (3) 0.8996 (4) 0.5773 (2) 0.0726 (8)
H6 −0.3851 0.9339 0.5253 0.087*
C10 −0.4167 (4) 0.9924 (4) 0.6537 (3) 0.0812 (9)
H10 −0.4481 1.0895 0.6542 0.097*
C11 −0.4080 (4) 0.9442 (4) 0.7330 (2) 0.0791 (9)
H11 −0.4349 1.0089 0.7857 0.095*
C12 −0.3612 (3) 0.8049 (3) 0.73383 (19) 0.0657 (7)
H12 −0.3546 0.7758 0.7877 0.079*
C13 −0.3216 (3) 0.7014 (3) 0.65471 (16) 0.0533 (6)
C14 −0.2753 (3) 0.5560 (3) 0.65304 (16) 0.0529 (6)
C15 −0.2738 (3) 0.5015 (3) 0.73695 (17) 0.0604 (7)
C16 −0.1294 (3) 0.5534 (3) 0.81633 (17) 0.0610 (7)
H16 −0.1401 0.5308 0.8705 0.073*
C17 0.0172 (3) 0.6311 (3) 0.81710 (17) 0.0550 (6)
H17 0.0211 0.6584 0.7635 0.066*
C18 0.1718 (3) 0.6790 (3) 0.89032 (16) 0.0519 (6)
C19 0.3209 (3) 0.7416 (3) 0.87506 (18) 0.0667 (8)
H19 0.3190 0.7560 0.8173 0.080*
C20 0.4712 (3) 0.7833 (3) 0.94162 (18) 0.0680 (8)
H20 0.5679 0.8259 0.9279 0.082*
C21 0.4836 (3) 0.7640 (3) 1.02901 (16) 0.0516 (6)
C22 0.3322 (3) 0.7030 (3) 1.04536 (17) 0.0610 (7)
H22 0.3334 0.6892 1.1032 0.073*
C23 0.1831 (3) 0.6632 (3) 0.97861 (17) 0.0611 (7)
H23 0.0850 0.6240 0.9927 0.073*
C24 0.7882 (3) 0.8619 (4) 1.0742 (2) 0.0757 (9)
H24A 0.7613 0.9339 1.0389 0.091*
H24B 0.8275 0.7740 1.0346 0.091*
C25 0.9284 (4) 0.9408 (4) 1.1579 (2) 0.0930 (11)
H25A 0.8976 1.0392 1.1913 0.112*
H25B 1.0317 0.9634 1.1378 0.112*
C26 0.9649 (4) 0.8453 (4) 1.2232 (2) 0.0958 (11)
H26A 1.0141 0.7547 1.1941 0.115*
H26B 1.0468 0.9066 1.2800 0.115*
C27 0.8026 (4) 0.7947 (4) 1.2463 (2) 0.0897 (10)
H27A 0.8248 0.7249 1.2836 0.108*
H27B 0.7629 0.8850 1.2832 0.108*
C28 0.6666 (4) 0.7140 (4) 1.1604 (2) 0.0755 (9)
H28A 0.7004 0.6167 1.1277 0.091*
H28B 0.5614 0.6895 1.1782 0.091*

(E)-1-(Anthracen-9-yl)-3-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one (I) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0856 (14) 0.1238 (18) 0.0697 (13) −0.0401 (13) 0.0025 (11) 0.0461 (13)
N1 0.0538 (12) 0.0678 (14) 0.0501 (12) 0.0009 (10) 0.0081 (10) 0.0215 (10)
C1 0.0478 (14) 0.0621 (17) 0.0490 (15) −0.0043 (12) 0.0073 (11) 0.0170 (13)
C2 0.0658 (18) 0.0722 (19) 0.0683 (19) −0.0012 (15) 0.0129 (15) 0.0236 (15)
C3 0.085 (2) 0.069 (2) 0.090 (2) 0.0049 (16) 0.0221 (19) 0.0092 (19)
C4 0.091 (2) 0.093 (3) 0.066 (2) −0.003 (2) 0.0264 (18) −0.0005 (19)
C5 0.080 (2) 0.094 (2) 0.0528 (17) −0.0077 (19) 0.0148 (15) 0.0124 (17)
C6 0.0506 (14) 0.0739 (18) 0.0416 (14) −0.0052 (13) 0.0062 (11) 0.0145 (13)
C7 0.0575 (16) 0.088 (2) 0.0448 (15) −0.0011 (15) 0.0026 (12) 0.0307 (15)
C8 0.0485 (14) 0.0717 (18) 0.0531 (16) −0.0001 (13) 0.0063 (12) 0.0249 (14)
C9 0.0624 (17) 0.084 (2) 0.078 (2) 0.0066 (16) 0.0074 (15) 0.0418 (18)
C10 0.0686 (19) 0.077 (2) 0.096 (3) 0.0075 (16) 0.0124 (18) 0.027 (2)
C11 0.0720 (19) 0.079 (2) 0.075 (2) 0.0070 (17) 0.0159 (16) 0.0079 (17)
C12 0.0608 (17) 0.0736 (19) 0.0567 (17) −0.0009 (14) 0.0121 (13) 0.0146 (15)
C13 0.0425 (13) 0.0679 (17) 0.0446 (14) −0.0048 (12) 0.0042 (11) 0.0169 (13)
C14 0.0476 (14) 0.0642 (16) 0.0433 (14) −0.0082 (12) 0.0044 (11) 0.0196 (12)
C15 0.0612 (16) 0.0677 (17) 0.0519 (15) −0.0027 (14) 0.0111 (13) 0.0223 (13)
C16 0.0687 (17) 0.0704 (17) 0.0447 (14) −0.0022 (14) 0.0075 (13) 0.0257 (13)
C17 0.0633 (16) 0.0592 (15) 0.0445 (14) 0.0049 (13) 0.0091 (12) 0.0221 (12)
C18 0.0569 (15) 0.0563 (15) 0.0434 (14) 0.0056 (12) 0.0109 (12) 0.0178 (11)
C19 0.0674 (17) 0.088 (2) 0.0476 (15) −0.0017 (15) 0.0129 (14) 0.0283 (14)
C20 0.0586 (16) 0.092 (2) 0.0555 (17) −0.0045 (15) 0.0151 (14) 0.0292 (15)
C21 0.0545 (15) 0.0567 (15) 0.0450 (14) 0.0055 (12) 0.0129 (12) 0.0178 (11)
C22 0.0630 (17) 0.0770 (18) 0.0419 (14) −0.0010 (14) 0.0112 (13) 0.0205 (13)
C23 0.0563 (15) 0.0764 (18) 0.0519 (15) −0.0021 (13) 0.0145 (13) 0.0232 (13)
C24 0.0600 (17) 0.095 (2) 0.073 (2) −0.0034 (16) 0.0141 (15) 0.0316 (17)
C25 0.0672 (19) 0.103 (2) 0.105 (3) −0.0109 (18) −0.0082 (19) 0.052 (2)
C26 0.065 (2) 0.109 (3) 0.108 (3) −0.0009 (18) −0.0116 (18) 0.049 (2)
C27 0.074 (2) 0.122 (3) 0.076 (2) 0.0079 (19) −0.0034 (17) 0.051 (2)
C28 0.0664 (18) 0.087 (2) 0.078 (2) 0.0026 (15) 0.0066 (15) 0.0422 (17)

(E)-1-(Anthracen-9-yl)-3-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one (I) . Geometric parameters (Å, º)

O1—C15 1.219 (3) C15—C16 1.442 (3)
N1—C21 1.386 (3) C16—C17 1.323 (3)
N1—C24 1.445 (3) C16—H16 0.9300
N1—C28 1.449 (3) C17—C18 1.442 (3)
C1—C14 1.385 (3) C17—H17 0.9300
C1—C2 1.415 (4) C18—C19 1.379 (3)
C1—C6 1.425 (3) C18—C23 1.389 (3)
C2—C3 1.354 (4) C19—C20 1.366 (3)
C2—H1 0.9300 C19—H19 0.9300
C3—C4 1.406 (4) C20—C21 1.387 (3)
C3—H2 0.9300 C20—H20 0.9300
C4—C5 1.331 (4) C21—C22 1.398 (3)
C4—H3 0.9300 C22—C23 1.361 (3)
C5—C6 1.413 (4) C22—H22 0.9300
C5—H4 0.9300 C23—H23 0.9300
C6—C7 1.375 (4) C24—C25 1.486 (4)
C7—C8 1.380 (4) C24—H24A 0.9700
C7—H5 0.9300 C24—H24B 0.9700
C8—C9 1.415 (4) C25—C26 1.500 (4)
C8—C13 1.426 (3) C25—H25A 0.9700
C9—C10 1.336 (4) C25—H25B 0.9700
C9—H6 0.9300 C26—C27 1.493 (4)
C10—C11 1.396 (4) C26—H26A 0.9700
C10—H10 0.9300 C26—H26B 0.9700
C11—C12 1.345 (4) C27—C28 1.491 (4)
C11—H11 0.9300 C27—H27A 0.9700
C12—C13 1.417 (3) C27—H27B 0.9700
C12—H12 0.9300 C28—H28A 0.9700
C13—C14 1.389 (3) C28—H28B 0.9700
C14—C15 1.503 (3)
C21—N1—C24 118.4 (2) C16—C17—C18 128.4 (2)
C21—N1—C28 117.4 (2) C16—C17—H17 115.8
C24—N1—C28 113.0 (2) C18—C17—H17 115.8
C14—C1—C2 123.1 (2) C19—C18—C23 115.7 (2)
C14—C1—C6 119.1 (2) C19—C18—C17 120.8 (2)
C2—C1—C6 117.7 (2) C23—C18—C17 123.5 (2)
C3—C2—C1 121.2 (3) C20—C19—C18 122.5 (2)
C3—C2—H1 119.4 C20—C19—H19 118.8
C1—C2—H1 119.4 C18—C19—H19 118.8
C2—C3—C4 120.3 (3) C19—C20—C21 121.9 (2)
C2—C3—H2 119.9 C19—C20—H20 119.1
C4—C3—H2 119.9 C21—C20—H20 119.1
C5—C4—C3 120.5 (3) N1—C21—C20 122.6 (2)
C5—C4—H3 119.7 N1—C21—C22 121.5 (2)
C3—C4—H3 119.7 C20—C21—C22 115.9 (2)
C4—C5—C6 121.4 (3) C23—C22—C21 121.6 (2)
C4—C5—H4 119.3 C23—C22—H22 119.2
C6—C5—H4 119.3 C21—C22—H22 119.2
C7—C6—C5 122.0 (3) C22—C23—C18 122.5 (2)
C7—C6—C1 119.2 (2) C22—C23—H23 118.8
C5—C6—C1 118.8 (3) C18—C23—H23 118.8
C6—C7—C8 122.5 (2) N1—C24—C25 112.8 (2)
C6—C7—H5 118.7 N1—C24—H24A 109.0
C8—C7—H5 118.7 C25—C24—H24A 109.0
C7—C8—C9 123.1 (3) N1—C24—H24B 109.0
C7—C8—C13 118.3 (3) C25—C24—H24B 109.0
C9—C8—C13 118.6 (3) H24A—C24—H24B 107.8
C10—C9—C8 121.6 (3) C24—C25—C26 113.0 (3)
C10—C9—H6 119.2 C24—C25—H25A 109.0
C8—C9—H6 119.2 C26—C25—H25A 109.0
C9—C10—C11 120.1 (3) C24—C25—H25B 109.0
C9—C10—H10 119.9 C26—C25—H25B 109.0
C11—C10—H10 119.9 H25A—C25—H25B 107.8
C12—C11—C10 120.7 (3) C27—C26—C25 109.6 (2)
C12—C11—H11 119.7 C27—C26—H26A 109.8
C10—C11—H11 119.7 C25—C26—H26A 109.8
C11—C12—C13 121.7 (3) C27—C26—H26B 109.8
C11—C12—H12 119.2 C25—C26—H26B 109.8
C13—C12—H12 119.2 H26A—C26—H26B 108.2
C14—C13—C12 123.0 (2) C28—C27—C26 111.7 (3)
C14—C13—C8 119.8 (2) C28—C27—H27A 109.3
C12—C13—C8 117.3 (3) C26—C27—H27A 109.3
C1—C14—C13 121.1 (2) C28—C27—H27B 109.3
C1—C14—C15 119.6 (2) C26—C27—H27B 109.3
C13—C14—C15 119.2 (2) H27A—C27—H27B 107.9
O1—C15—C16 121.0 (2) N1—C28—C27 112.6 (2)
O1—C15—C14 118.7 (2) N1—C28—H28A 109.1
C16—C15—C14 120.2 (2) C27—C28—H28A 109.1
C17—C16—C15 124.3 (2) N1—C28—H28B 109.1
C17—C16—H16 117.9 C27—C28—H28B 109.1
C15—C16—H16 117.9 H28A—C28—H28B 107.8
C14—C1—C2—C3 −179.0 (2) C8—C13—C14—C15 −175.9 (2)
C6—C1—C2—C3 0.3 (4) C1—C14—C15—O1 −77.6 (3)
C1—C2—C3—C4 −1.0 (5) C13—C14—C15—O1 99.6 (3)
C2—C3—C4—C5 0.5 (5) C1—C14—C15—C16 101.5 (3)
C3—C4—C5—C6 0.6 (5) C13—C14—C15—C16 −81.3 (3)
C4—C5—C6—C7 178.3 (3) O1—C15—C16—C17 169.2 (3)
C4—C5—C6—C1 −1.3 (4) C14—C15—C16—C17 −9.8 (4)
C14—C1—C6—C7 0.6 (4) C15—C16—C17—C18 −175.6 (2)
C2—C1—C6—C7 −178.8 (2) C16—C17—C18—C19 171.5 (3)
C14—C1—C6—C5 −179.8 (2) C16—C17—C18—C23 −7.2 (4)
C2—C1—C6—C5 0.8 (3) C23—C18—C19—C20 1.1 (4)
C5—C6—C7—C8 −178.6 (2) C17—C18—C19—C20 −177.7 (3)
C1—C6—C7—C8 1.0 (4) C18—C19—C20—C21 0.5 (5)
C6—C7—C8—C9 178.3 (2) C24—N1—C21—C20 −5.5 (4)
C6—C7—C8—C13 −1.4 (4) C28—N1—C21—C20 −146.8 (3)
C7—C8—C9—C10 178.1 (3) C24—N1—C21—C22 176.8 (2)
C13—C8—C9—C10 −2.1 (4) C28—N1—C21—C22 35.5 (3)
C8—C9—C10—C11 0.9 (4) C19—C20—C21—N1 −179.3 (2)
C9—C10—C11—C12 0.7 (5) C19—C20—C21—C22 −1.5 (4)
C10—C11—C12—C13 −0.9 (4) N1—C21—C22—C23 178.8 (2)
C11—C12—C13—C14 −179.0 (2) C20—C21—C22—C23 0.9 (4)
C11—C12—C13—C8 −0.4 (4) C21—C22—C23—C18 0.7 (4)
C7—C8—C13—C14 0.3 (3) C19—C18—C23—C22 −1.7 (4)
C9—C8—C13—C14 −179.4 (2) C17—C18—C23—C22 177.1 (2)
C7—C8—C13—C12 −178.4 (2) C21—N1—C24—C25 165.5 (2)
C9—C8—C13—C12 1.8 (3) C28—N1—C24—C25 −51.5 (3)
C2—C1—C14—C13 177.7 (2) N1—C24—C25—C26 51.8 (4)
C6—C1—C14—C13 −1.7 (3) C24—C25—C26—C27 −52.4 (4)
C2—C1—C14—C15 −5.2 (4) C25—C26—C27—C28 53.5 (4)
C6—C1—C14—C15 175.5 (2) C21—N1—C28—C27 −163.3 (2)
C12—C13—C14—C1 179.9 (2) C24—N1—C28—C27 53.3 (3)
C8—C13—C14—C1 1.2 (4) C26—C27—C28—N1 −54.9 (4)
C12—C13—C14—C15 2.7 (4)

(E)-1-(Anthracen-9-yl)-3-[4-(piperidin-1-yl)phenyl]prop-2-en-1-one (I) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C18–C23 ring.

D—H···A D—H H···A D···A D—H···A
C28—H28B···O1i 0.97 2.36 3.262 (4) 154
C28—H28A···Cg1ii 0.97 2.95 3.861 (4) 157

Symmetry codes: (i) −x, −y+1, −z+2; (ii) −x+1, −y+1, −z+2.

(E)-1-(Anthracen-9-yl)-3-[4-(diphenylamino)phenyl]prop-2-en-1-one (II) . Crystal data

C35H25NO F(000) = 2000
Mr = 475.56 Dx = 1.232 Mg m3
Monoclinic, C2/c Mo Kα radiation, λ = 0.71073 Å
a = 31.2875 (16) Å Cell parameters from 9835 reflections
b = 9.0470 (4) Å θ = 2.3–21.9°
c = 18.3643 (8) Å µ = 0.07 mm1
β = 99.388 (3)° T = 296 K
V = 5128.5 (4) Å3 Block, yellow
Z = 8 0.96 × 0.23 × 0.17 mm

(E)-1-(Anthracen-9-yl)-3-[4-(diphenylamino)phenyl]prop-2-en-1-one (II) . Data collection

Bruker SMART APEXII DUO CCD area-detector diffractometer 4183 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.076
φ and ω scans θmax = 30.4°, θmin = 1.3°
Absorption correction: multi-scan (SADABS; Bruker, 2009) h = −44→44
Tmin = 0.645, Tmax = 0.957 k = −12→12
98729 measured reflections l = −26→26
7726 independent reflections

(E)-1-(Anthracen-9-yl)-3-[4-(diphenylamino)phenyl]prop-2-en-1-one (II) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.057 H-atom parameters constrained
wR(F2) = 0.144 w = 1/[σ2(Fo2) + (0.0415P)2 + 2.2393P] where P = (Fo2 + 2Fc2)/3
S = 1.01 (Δ/σ)max = 0.001
7726 reflections Δρmax = 0.13 e Å3
334 parameters Δρmin = −0.14 e Å3

(E)-1-(Anthracen-9-yl)-3-[4-(diphenylamino)phenyl]prop-2-en-1-one (II) . Special details

Experimental. The following wavelength and cell were deduced by SADABS from the direction cosines etc. They are given here for emergency use only: CELL 0.71163 9.142 16.459 18.559 99.001 89.988 106.089
Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

(E)-1-(Anthracen-9-yl)-3-[4-(diphenylamino)phenyl]prop-2-en-1-one (II) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
N1 0.54087 (4) 0.92358 (14) 0.60195 (7) 0.0596 (3)
O1 0.76241 (4) 0.60494 (16) 0.40875 (8) 0.0900 (4)
C1 0.69686 (5) 0.56889 (18) 0.25826 (8) 0.0548 (4)
C2 0.70542 (5) 0.7199 (2) 0.24498 (10) 0.0667 (4)
H2A 0.7163 0.7808 0.2845 0.080*
C3 0.69796 (6) 0.7766 (3) 0.17592 (12) 0.0841 (6)
H3A 0.7036 0.8759 0.1684 0.101*
C4 0.68185 (8) 0.6870 (3) 0.11597 (12) 0.0993 (7)
H4A 0.6766 0.7273 0.0688 0.119*
C5 0.67379 (8) 0.5439 (3) 0.12545 (11) 0.0930 (7)
H5A 0.6634 0.4860 0.0845 0.112*
C6 0.68065 (6) 0.4783 (2) 0.19662 (9) 0.0677 (5)
C7 0.67269 (6) 0.3305 (2) 0.20807 (11) 0.0783 (5)
H7A 0.6621 0.2718 0.1675 0.094*
C8 0.67976 (6) 0.26679 (19) 0.27691 (10) 0.0662 (5)
C9 0.67272 (7) 0.1140 (2) 0.28858 (15) 0.0909 (7)
H9A 0.6619 0.0544 0.2485 0.109*
C10 0.68128 (8) 0.0541 (2) 0.35592 (16) 0.0987 (7)
H10A 0.6765 −0.0462 0.3622 0.118*
C11 0.69737 (7) 0.1414 (2) 0.41678 (13) 0.0858 (6)
H11A 0.7036 0.0983 0.4633 0.103*
C12 0.70399 (6) 0.2875 (2) 0.40906 (10) 0.0681 (5)
H12A 0.7141 0.3442 0.4505 0.082*
C13 0.69584 (5) 0.35568 (17) 0.33898 (9) 0.0545 (4)
C14 0.70393 (4) 0.50520 (17) 0.32830 (8) 0.0504 (3)
C15 0.72316 (5) 0.59679 (18) 0.39314 (8) 0.0554 (4)
C16 0.69564 (5) 0.67286 (17) 0.43679 (8) 0.0553 (4)
H16A 0.7088 0.7352 0.4741 0.066*
C17 0.65301 (5) 0.66021 (16) 0.42750 (8) 0.0506 (3)
H17A 0.6402 0.5991 0.3894 0.061*
C18 0.62422 (5) 0.73214 (16) 0.47080 (7) 0.0484 (3)
C19 0.58198 (5) 0.68422 (18) 0.46718 (8) 0.0568 (4)
H19A 0.5719 0.6082 0.4348 0.068*
C20 0.55459 (5) 0.74561 (18) 0.50998 (9) 0.0585 (4)
H20A 0.5264 0.7100 0.5065 0.070*
C21 0.56838 (5) 0.86064 (16) 0.55852 (8) 0.0498 (3)
C22 0.61055 (5) 0.91102 (16) 0.56133 (8) 0.0511 (3)
H22A 0.6205 0.9887 0.5927 0.061*
C23 0.63763 (5) 0.84824 (16) 0.51872 (8) 0.0508 (3)
H23A 0.6657 0.8841 0.5219 0.061*
C24 0.50401 (5) 0.84596 (19) 0.61751 (8) 0.0561 (4)
C25 0.50740 (6) 0.7044 (2) 0.64455 (10) 0.0742 (5)
H25A 0.5343 0.6582 0.6533 0.089*
C26 0.47145 (8) 0.6306 (3) 0.65871 (12) 0.0934 (7)
H26A 0.4740 0.5341 0.6764 0.112*
C27 0.43226 (8) 0.6972 (3) 0.64707 (13) 0.1015 (8)
H27A 0.4079 0.6470 0.6568 0.122*
C28 0.42867 (7) 0.8379 (3) 0.62104 (12) 0.0937 (7)
H28A 0.4017 0.8837 0.6132 0.112*
C29 0.46430 (6) 0.9135 (2) 0.60614 (9) 0.0714 (5)
H29A 0.4615 1.0099 0.5885 0.086*
C30 0.55076 (5) 1.06241 (18) 0.63734 (9) 0.0572 (4)
C31 0.55374 (7) 1.0733 (2) 0.71230 (10) 0.0883 (6)
H31A 0.5491 0.9905 0.7400 0.106*
C32 0.56357 (9) 1.2064 (3) 0.74657 (13) 0.1146 (9)
H32A 0.5654 1.2134 0.7975 0.137*
C33 0.57072 (8) 1.3275 (3) 0.70722 (16) 0.1042 (8)
H33A 0.5779 1.4168 0.7311 0.125*
C34 0.56734 (7) 1.3186 (2) 0.63278 (13) 0.0865 (6)
H34A 0.5718 1.4023 0.6056 0.104*
C35 0.55728 (6) 1.18625 (19) 0.59741 (10) 0.0695 (5)
H35A 0.5549 1.1806 0.5463 0.083*

(E)-1-(Anthracen-9-yl)-3-[4-(diphenylamino)phenyl]prop-2-en-1-one (II) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0647 (8) 0.0574 (8) 0.0621 (8) −0.0005 (6) 0.0262 (6) −0.0097 (6)
O1 0.0500 (7) 0.1216 (11) 0.0971 (10) −0.0044 (7) 0.0079 (6) −0.0522 (9)
C1 0.0488 (8) 0.0628 (9) 0.0562 (9) −0.0018 (7) 0.0182 (7) −0.0101 (8)
C2 0.0596 (10) 0.0703 (11) 0.0742 (11) −0.0030 (8) 0.0227 (8) −0.0012 (9)
C3 0.0780 (13) 0.0912 (15) 0.0907 (15) 0.0032 (11) 0.0360 (11) 0.0192 (12)
C4 0.1056 (17) 0.131 (2) 0.0662 (13) 0.0071 (16) 0.0295 (12) 0.0171 (14)
C5 0.1064 (17) 0.1208 (19) 0.0534 (11) −0.0031 (15) 0.0174 (10) −0.0125 (12)
C6 0.0677 (11) 0.0839 (13) 0.0533 (10) −0.0038 (9) 0.0155 (8) −0.0155 (9)
C7 0.0864 (13) 0.0825 (13) 0.0673 (12) −0.0145 (10) 0.0162 (10) −0.0346 (10)
C8 0.0661 (10) 0.0614 (10) 0.0748 (12) −0.0072 (8) 0.0226 (9) −0.0239 (9)
C9 0.1045 (16) 0.0618 (12) 0.1124 (18) −0.0143 (11) 0.0356 (14) −0.0324 (12)
C10 0.1129 (18) 0.0577 (12) 0.136 (2) −0.0023 (12) 0.0523 (16) −0.0029 (14)
C11 0.0895 (14) 0.0722 (13) 0.1014 (16) 0.0072 (11) 0.0322 (12) 0.0109 (12)
C12 0.0664 (11) 0.0692 (11) 0.0717 (11) 0.0008 (9) 0.0200 (9) −0.0027 (9)
C13 0.0498 (8) 0.0561 (9) 0.0607 (9) −0.0017 (7) 0.0187 (7) −0.0112 (8)
C14 0.0435 (7) 0.0578 (9) 0.0522 (8) −0.0015 (6) 0.0145 (6) −0.0144 (7)
C15 0.0483 (8) 0.0612 (9) 0.0571 (9) −0.0016 (7) 0.0097 (7) −0.0127 (7)
C16 0.0543 (9) 0.0608 (9) 0.0505 (8) −0.0010 (7) 0.0077 (7) −0.0166 (7)
C17 0.0549 (9) 0.0534 (8) 0.0434 (8) −0.0002 (7) 0.0080 (6) −0.0074 (6)
C18 0.0504 (8) 0.0520 (8) 0.0429 (7) 0.0036 (6) 0.0077 (6) −0.0048 (6)
C19 0.0553 (9) 0.0608 (9) 0.0545 (9) −0.0031 (7) 0.0090 (7) −0.0154 (7)
C20 0.0509 (8) 0.0650 (10) 0.0611 (9) −0.0042 (7) 0.0133 (7) −0.0117 (8)
C21 0.0547 (8) 0.0525 (8) 0.0438 (8) 0.0059 (7) 0.0128 (6) −0.0022 (6)
C22 0.0566 (9) 0.0511 (8) 0.0448 (8) 0.0026 (7) 0.0058 (6) −0.0077 (6)
C23 0.0495 (8) 0.0543 (8) 0.0486 (8) 0.0001 (7) 0.0080 (6) −0.0050 (7)
C24 0.0606 (9) 0.0653 (10) 0.0448 (8) −0.0003 (8) 0.0161 (7) −0.0058 (7)
C25 0.0765 (12) 0.0699 (12) 0.0784 (12) −0.0023 (9) 0.0189 (9) 0.0062 (10)
C26 0.1081 (18) 0.0881 (15) 0.0889 (15) −0.0294 (14) 0.0308 (13) −0.0025 (12)
C27 0.0915 (17) 0.130 (2) 0.0908 (16) −0.0422 (16) 0.0377 (13) −0.0292 (15)
C28 0.0591 (12) 0.134 (2) 0.0910 (15) −0.0019 (13) 0.0198 (10) −0.0251 (15)
C29 0.0676 (11) 0.0879 (13) 0.0604 (10) 0.0107 (10) 0.0152 (8) −0.0034 (9)
C30 0.0609 (9) 0.0586 (9) 0.0549 (9) 0.0057 (7) 0.0179 (7) −0.0100 (8)
C31 0.1208 (17) 0.0893 (14) 0.0589 (11) −0.0092 (13) 0.0272 (11) −0.0114 (10)
C32 0.155 (2) 0.119 (2) 0.0749 (15) −0.0213 (18) 0.0321 (15) −0.0418 (15)
C33 0.1124 (18) 0.0869 (16) 0.118 (2) −0.0103 (14) 0.0336 (15) −0.0477 (15)
C34 0.0954 (15) 0.0605 (11) 0.1077 (17) 0.0056 (10) 0.0284 (12) −0.0109 (11)
C35 0.0818 (12) 0.0621 (11) 0.0662 (11) 0.0100 (9) 0.0166 (9) −0.0025 (9)

(E)-1-(Anthracen-9-yl)-3-[4-(diphenylamino)phenyl]prop-2-en-1-one (II) . Geometric parameters (Å, º)

N1—C21 1.3876 (18) C17—H17A 0.9300
N1—C24 1.419 (2) C18—C19 1.382 (2)
N1—C30 1.425 (2) C18—C23 1.390 (2)
O1—C15 1.2170 (18) C19—C20 1.371 (2)
C1—C14 1.394 (2) C19—H19A 0.9300
C1—C2 1.421 (2) C20—C21 1.392 (2)
C1—C6 1.422 (2) C20—H20A 0.9300
C2—C3 1.353 (3) C21—C22 1.389 (2)
C2—H2A 0.9300 C22—C23 1.3672 (19)
C3—C4 1.394 (3) C22—H22A 0.9300
C3—H3A 0.9300 C23—H23A 0.9300
C4—C5 1.336 (3) C24—C29 1.370 (2)
C4—H4A 0.9300 C24—C25 1.372 (2)
C5—C6 1.420 (3) C25—C26 1.369 (3)
C5—H5A 0.9300 C25—H25A 0.9300
C6—C7 1.382 (3) C26—C27 1.352 (3)
C7—C8 1.374 (3) C26—H26A 0.9300
C7—H7A 0.9300 C27—C28 1.358 (3)
C8—C13 1.419 (2) C27—H27A 0.9300
C8—C9 1.422 (3) C28—C29 1.373 (3)
C9—C10 1.337 (3) C28—H28A 0.9300
C9—H9A 0.9300 C29—H29A 0.9300
C10—C11 1.394 (3) C30—C31 1.368 (2)
C10—H10A 0.9300 C30—C35 1.372 (2)
C11—C12 1.349 (3) C31—C32 1.370 (3)
C11—H11A 0.9300 C31—H31A 0.9300
C12—C13 1.412 (2) C32—C33 1.351 (3)
C12—H12A 0.9300 C32—H32A 0.9300
C13—C14 1.396 (2) C33—C34 1.356 (3)
C14—C15 1.494 (2) C33—H33A 0.9300
C15—C16 1.443 (2) C34—C35 1.374 (3)
C16—C17 1.322 (2) C34—H34A 0.9300
C16—H16A 0.9300 C35—H35A 0.9300
C17—C18 1.4494 (19)
C21—N1—C24 120.91 (13) C19—C18—C23 117.05 (13)
C21—N1—C30 121.00 (13) C19—C18—C17 120.52 (13)
C24—N1—C30 117.88 (12) C23—C18—C17 122.41 (13)
C14—C1—C2 123.36 (15) C20—C19—C18 121.84 (14)
C14—C1—C6 118.58 (15) C20—C19—H19A 119.1
C2—C1—C6 118.06 (16) C18—C19—H19A 119.1
C3—C2—C1 121.13 (18) C19—C20—C21 120.81 (14)
C3—C2—H2A 119.4 C19—C20—H20A 119.6
C1—C2—H2A 119.4 C21—C20—H20A 119.6
C2—C3—C4 120.3 (2) N1—C21—C22 121.24 (13)
C2—C3—H3A 119.8 N1—C21—C20 121.20 (14)
C4—C3—H3A 119.8 C22—C21—C20 117.55 (13)
C5—C4—C3 120.8 (2) C23—C22—C21 121.07 (14)
C5—C4—H4A 119.6 C23—C22—H22A 119.5
C3—C4—H4A 119.6 C21—C22—H22A 119.5
C4—C5—C6 121.5 (2) C22—C23—C18 121.66 (14)
C4—C5—H5A 119.3 C22—C23—H23A 119.2
C6—C5—H5A 119.3 C18—C23—H23A 119.2
C7—C6—C5 122.72 (18) C29—C24—C25 119.11 (17)
C7—C6—C1 119.09 (17) C29—C24—N1 119.71 (16)
C5—C6—C1 118.19 (18) C25—C24—N1 121.19 (15)
C8—C7—C6 122.66 (16) C26—C25—C24 120.5 (2)
C8—C7—H7A 118.7 C26—C25—H25A 119.8
C6—C7—H7A 118.7 C24—C25—H25A 119.8
C7—C8—C13 118.97 (16) C27—C26—C25 120.3 (2)
C7—C8—C9 122.75 (18) C27—C26—H26A 119.9
C13—C8—C9 118.26 (19) C25—C26—H26A 119.9
C10—C9—C8 121.4 (2) C26—C27—C28 119.7 (2)
C10—C9—H9A 119.3 C26—C27—H27A 120.2
C8—C9—H9A 119.3 C28—C27—H27A 120.2
C9—C10—C11 120.3 (2) C27—C28—C29 120.9 (2)
C9—C10—H10A 119.9 C27—C28—H28A 119.5
C11—C10—H10A 119.9 C29—C28—H28A 119.5
C12—C11—C10 120.8 (2) C24—C29—C28 119.6 (2)
C12—C11—H11A 119.6 C24—C29—H29A 120.2
C10—C11—H11A 119.6 C28—C29—H29A 120.2
C11—C12—C13 121.06 (18) C31—C30—C35 119.13 (17)
C11—C12—H12A 119.5 C31—C30—N1 119.80 (16)
C13—C12—H12A 119.5 C35—C30—N1 121.07 (14)
C14—C13—C12 122.79 (15) C30—C31—C32 120.0 (2)
C14—C13—C8 119.02 (15) C30—C31—H31A 120.0
C12—C13—C8 118.17 (15) C32—C31—H31A 120.0
C1—C14—C13 121.68 (14) C33—C32—C31 120.7 (2)
C1—C14—C15 119.26 (14) C33—C32—H32A 119.6
C13—C14—C15 118.95 (14) C31—C32—H32A 119.6
O1—C15—C16 120.72 (14) C32—C33—C34 119.9 (2)
O1—C15—C14 118.75 (13) C32—C33—H33A 120.1
C16—C15—C14 120.53 (13) C34—C33—H33A 120.1
C17—C16—C15 124.60 (14) C33—C34—C35 120.2 (2)
C17—C16—H16A 117.7 C33—C34—H34A 119.9
C15—C16—H16A 117.7 C35—C34—H34A 119.9
C16—C17—C18 126.49 (14) C30—C35—C34 120.09 (18)
C16—C17—H17A 116.8 C30—C35—H35A 120.0
C18—C17—H17A 116.8 C34—C35—H35A 120.0
C14—C1—C2—C3 −179.93 (15) C16—C17—C18—C19 −164.77 (16)
C6—C1—C2—C3 0.7 (2) C16—C17—C18—C23 13.6 (2)
C1—C2—C3—C4 −0.4 (3) C23—C18—C19—C20 −1.4 (2)
C2—C3—C4—C5 −0.5 (3) C17—C18—C19—C20 176.98 (15)
C3—C4—C5—C6 0.9 (4) C18—C19—C20—C21 0.7 (3)
C4—C5—C6—C7 −179.8 (2) C24—N1—C21—C22 −159.50 (14)
C4—C5—C6—C1 −0.6 (3) C30—N1—C21—C22 15.1 (2)
C14—C1—C6—C7 −0.3 (2) C24—N1—C21—C20 21.1 (2)
C2—C1—C6—C7 179.07 (16) C30—N1—C21—C20 −164.28 (15)
C14—C1—C6—C5 −179.64 (16) C19—C20—C21—N1 179.90 (15)
C2—C1—C6—C5 −0.2 (2) C19—C20—C21—C22 0.5 (2)
C5—C6—C7—C8 179.33 (18) N1—C21—C22—C23 179.68 (14)
C1—C6—C7—C8 0.1 (3) C20—C21—C22—C23 −0.9 (2)
C6—C7—C8—C13 0.1 (3) C21—C22—C23—C18 0.2 (2)
C6—C7—C8—C9 −178.22 (18) C19—C18—C23—C22 1.0 (2)
C7—C8—C9—C10 177.7 (2) C17—C18—C23—C22 −177.38 (14)
C13—C8—C9—C10 −0.6 (3) C21—N1—C24—C29 −129.43 (16)
C8—C9—C10—C11 0.2 (3) C30—N1—C24—C29 55.8 (2)
C9—C10—C11—C12 0.9 (3) C21—N1—C24—C25 51.2 (2)
C10—C11—C12—C13 −1.6 (3) C30—N1—C24—C25 −123.52 (17)
C11—C12—C13—C14 −177.34 (16) C29—C24—C25—C26 1.2 (3)
C11—C12—C13—C8 1.1 (2) N1—C24—C25—C26 −179.45 (16)
C7—C8—C13—C14 0.1 (2) C24—C25—C26—C27 −0.9 (3)
C9—C8—C13—C14 178.47 (16) C25—C26—C27—C28 0.2 (3)
C7—C8—C13—C12 −178.37 (16) C26—C27—C28—C29 0.2 (3)
C9—C8—C13—C12 0.0 (2) C25—C24—C29—C28 −0.8 (3)
C2—C1—C14—C13 −178.85 (14) N1—C24—C29—C28 179.80 (16)
C6—C1—C14—C13 0.5 (2) C27—C28—C29—C24 0.2 (3)
C2—C1—C14—C15 −2.6 (2) C21—N1—C30—C31 −123.00 (18)
C6—C1—C14—C15 176.76 (14) C24—N1—C30—C31 51.7 (2)
C12—C13—C14—C1 178.00 (14) C21—N1—C30—C35 57.2 (2)
C8—C13—C14—C1 −0.4 (2) C24—N1—C30—C35 −128.10 (17)
C12—C13—C14—C15 1.7 (2) C35—C30—C31—C32 −0.7 (3)
C8—C13—C14—C15 −176.67 (13) N1—C30—C31—C32 179.5 (2)
C1—C14—C15—O1 −87.0 (2) C30—C31—C32—C33 −0.5 (4)
C13—C14—C15—O1 89.39 (19) C31—C32—C33—C34 1.3 (4)
C1—C14—C15—C16 93.66 (18) C32—C33—C34—C35 −0.9 (4)
C13—C14—C15—C16 −89.99 (18) C31—C30—C35—C34 1.0 (3)
O1—C15—C16—C17 −174.13 (17) N1—C30—C35—C34 −179.15 (16)
C14—C15—C16—C17 5.2 (3) C33—C34—C35—C30 −0.2 (3)
C15—C16—C17—C18 178.77 (15)

(E)-1-(Anthracen-9-yl)-3-[4-(diphenylamino)phenyl]prop-2-en-1-one (II) . Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the C18–C23 ring.

D—H···A D—H H···A D···A D—H···A
C23—H23A···O1i 0.93 2.40 3.221 (2) 147
C29—H29A···Cg1ii 0.93 2.96 3.739 (19) 142

Symmetry codes: (i) −x+3/2, −y+3/2, −z+1; (ii) x+3/2, y+5/2, z+1.

Funding Statement

This work was funded by Malaysian Government grant My Brain15 to D.A. Zainuri. Universiti Sains Malaysia grants 203/PFIZIK/6711572 and 304/PFIZIK/6313336.

References

  1. Abdullah, A. A., Hassan, N. H. H., Arshad, S., Khalib, N. C. & Razak, I. A. (2016). Acta Cryst. E72, 648–651. [DOI] [PMC free article] [PubMed]
  2. Agrahari, A., Wagers, P. O., Schildcrout, S. M., Masnovi, J. & Youngs, W. J. (2015). Acta Cryst. E71, 357–359. [DOI] [PMC free article] [PubMed]
  3. Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Cicogna, F., Ingrosso, G., Lodato, F., Marchetti, F. & Zandomeneghi, M. (2004). Tetrahedron, 60, 11959–11968.
  5. D’silva, E. D., Podagatlapalli, G. K., Rao, S. V., Rao, D. N. & Dharmaprakash, S. M. (2011). Cryst. Growth Des. 11, 5326–5369.
  6. Girisha, M., Yathirajan, H. S., Jasinski, J. P. & Glidewell, C. (2016). Acta Cryst. E72, 1153–1158. [DOI] [PMC free article] [PubMed]
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Gunasekaran, S., Kumaresan, S., Arunbalaji, R., Anand, G. & Srinivasan, S. (2008). J. Chem. Sci. 120, 315–324.
  9. Harlow, R. L., Loghry, R. A., Williams, H. J. & Simonsen, S. H. (1975). Acta Cryst. B31, 1344–1350.
  10. Jung, Y., Son, K., Oh, Y. E. & Noh, D. (2008). Polyhedron, 27, 861–867.
  11. Maidur, S. R., Jahagirdar, J. R., Patil, P. S., Chia, T. S. & Quah, C. K. (2018). Opt. Mater. 75, 580–594.
  12. Murray, J. S. & Sen, K. (1996). Molecular Electrostatic Potentials, Concepts and Applications. Amsterdam: Elsevier.
  13. Scrocco, E. & Tomasi, J. (1978). Advances in Quantum Chemistry. New York: Academic Press.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  16. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  17. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D. & Spackman, M. A. (2012). CrystalExplorer. University of Western Australia, Perth.
  18. Wu, W., Liu, Y. & Zhu, D. (2010). Chem. Soc. Rev. 39, 1489–1502. [DOI] [PubMed]
  19. Zainuri, D. A., Arshad, S., Khalib, N. C., Razak, A. I., Pillai, R. R., Sulaiman, F., Hashim, N. S., Ooi, K. L., Armaković, S., Armaković, S. J., Panicker, Y. & Van Alsenoy, C. (2017). J. Mol. Struct. 1128, 520–533.
  20. Zainuri, D. A., Razak, I. A. & Arshad, S. (2018a). Acta Cryst. E74, 492–496. [DOI] [PMC free article] [PubMed]
  21. Zainuri, D. A., Razak, I. A. & Arshad, S. (2018b). Acta Cryst. E74, 650–655. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, II. DOI: 10.1107/S2056989018006527/lh5873sup1.cif

e-74-00780-sup1.cif (5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006527/lh5873Isup2.hkl

e-74-00780-Isup2.hkl (263.9KB, hkl)

Structure factors: contains datablock(s) II. DOI: 10.1107/S2056989018006527/lh5873IIsup3.hkl

e-74-00780-IIsup3.hkl (423.3KB, hkl)

Comparison between selected calculated (DFT) and experimental geometrical data. DOI: 10.1107/S2056989018006527/lh5873sup4.pdf

e-74-00780-sup4.pdf (53.9KB, pdf)

CCDC references: 1824550, 1817218

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES