Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 May 31;74(Pt 6):871–873. doi: 10.1107/S2056989018007764

Crystal structure of 2-{5-[2-(2-hy­droxy­phen­yl)diazen-1-yl]-1-methyl­pyrrol-2-yl}phenol methanol monosolvate

Guiwen Yang a, Huixiao Feng a, Zhenming Yin a,*
PMCID: PMC6002831  PMID: 29951248

The azo N=N bond adopts a trans conformation and the pyrrole N and azo group are in an anti orientation. The dihedral angles between the pyrrole ring and the two phenyl rings are 6.7 (3) and 54.7 (3)°. In the crystal, a supra­molecular ring structure is formed between two azo­pyrrole and two methanol solvent mol­ecules through four O—H⋯O hydrogen bonds.

Keywords: azo­pyrrole, crystal structure, hydrogen bonding

Abstract

In the title azo­pyrrole compound, C17H15N3O2·CH3OH, the azo N=N bond adopts a trans configuration and the pyrrole N and azo group are in an anti orientation. The dihedral angles between the pyrrole ring and the two phenyl rings are 6.7 (3) and 54.7 (3)°. In the crystal, a supra­molecular ring structure is formed between two azo­pyrrole and two methanol solvent mol­ecules through four O—H⋯O hydrogen bonds.

Chemical context  

Recently, azo­pyrrole dyes have received much attention for their promising use in the design of advanced materials and devices. For example, some thienyl­pyrrole azo dyes bearing heterocyclic groups have good non-linear optical properties (Raposo et al., 2011). Mikroyannidis and coworkers found that many azo­pyrrole dyes are efficient bulk heterojunction solar cell materials (Sharma et al., 2012). In a previous work, we reported the crystal engineering of some 5,5′-bis­(phenyl­diazo)­dipyrro­methane compounds and demonstrated their inter­locked type self-assemblies in the solid state via quadruple N—H⋯N hydrogen bonds (Yin et al., 2008, 2009). In a continuation of this research, we report herein the crystal structure of 2-{5-[2-(2-hy­droxy­phen­yl)diazen-1-yl]-1-methyl­pyrrol-2-yl}phenol methanol monosolvate.graphic file with name e-74-00871-scheme1.jpg

Structural commentary  

The structure of the title compound is shown in Fig. 1. The asymmetric unit contains one azo­pyrrole mol­ecule and one methanol solvent mol­ecule. The azoylazo­pyrrole group is almost planar, reflected by the dihedral angle between the pyrrole ring (N3/C7–C10) and the benzene ring (C1–C6) of only 6.7 (3)°, which may be due to the existence of the intra­molecular O1—H1⋯N2 hydrogen bond (Table 1) between the hy­droxy group and the azo N atom. The dihedral angle between pyrrole ring and the other benzene ring (C12–C17) is 54.7 (3)°, which may be caused by the steric repulsion between hy­droxy group and methyl group. The azo N=N bond adopts a trans configuration and its length is 1.286 (2) Å, which is shorter than that in the crystal of 2,5-bis­(2-hy­droxy­phenyl­azo)-1H-pyrrole (1.293 Å; Li et al. 2009). It is worth mentioning that the N1 atom of the azo group and the N3 atom of the pyrrole ring are arranged on opposite sides with respect to the C7—N2 bond, which is the same as in the crystal of 2-phenyl­azo-1-vinyl pyrrole (Trofimov et al., 2006) but different to many other observations (Li et al., 2009; Yin et al., 2008). The bond lengths in the pyrrole ring are more equal compared to those normally observed.

Figure 1.

Figure 1

ORTEP diagram for the title compound, with displacement ellipsoids drawn at the 30% probability level. The methanol solvent mol­ecule was omitted for clarity.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1–C6 and C12-C17 rings, respectively

D—H⋯A D—H H⋯A DA D—H⋯A
O1—H1⋯N2 0.84 1.81 2.530 (2) 143
O2—H2⋯O3i 0.84 1.81 2.641 (2) 171
O3—H3A⋯O1ii 0.84 1.97 2.763 (2) 157
C11—H11BCg1iii 0.98 2.73 3.587 (2) 147
C18—H18CCg2iv 0.98 2.75 3.483 (3) 132

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Supra­molecular features  

In the crystal, two azo­pyrrole mol­ecules are bridged by two methanol solvent mol­ecules through four O—H⋯O hydrogen bonds forming a large supra­molecular ring structure, in which the methanol acts as both a hydrogen-bond acceptor and a donor (Fig. 2, Table 1). This type of coordination environment is most populated (occupying 70%) for methanol mol­ecules as revealed by a search of the Cambridge Structural Database (CSD) (Brychczynska et al. 2008). The methyl groups point to the inside of the ring. The rings are further held together through C—H⋯π contacts involving the benzene rings (Table 1). There are no π–π inter­actions between the aromatic rings. The packing is shown in Fig. 3.

Figure 2.

Figure 2

O—H⋯O hydrogen-bonded (Table 1) supra­molecular ring structure.

Figure 3.

Figure 3

A view of the crystal packing along the b axis.

Database survey  

A search in the Cambridge Structural Database (Version 5.38; Groom et al., 2016) returned 45 entries for azo­pyrrole derivatives, including three entries for N-vinyl­phenyl­azo­pyrrole (Trofimov et al., 2006; Rusakov et al., 2007), four entries for mono- or bis­azo­pyrroles (Li et al., 2009), two entries for azo calix[4]pyrroles (Nishiyabu et al., 2006), five entries for pyrrole-azocrown ethers (Wagner-Wysiecka et al., 2011; Szczygelska-Tao et al., 2008), two entries for azo­pyrrole boron difluoride complexes (Li et al., 2009; Lee et al., 2012), ten entries for metal complexes (Li et al., 2008; Li, & Dolphin, 2011; Yin et al., 2012; Zhang et al., 2015; Ghorui et al., 2016); the majority are for mono- or bis­phenyl­azodipyrro­methanes (Yin et al., 2008, 2009; Chen & Yin, 2014; Zhang & Yin, 2014).

Synthesis and crystallization  

A 273 K solution of 2-amino­phenol 0.272 g (2.5 mmol) and aqueous HCl (2 mL) in water (2 mL) was treated with another 273 K solution of NaNO2 (0.18 g, 2.5 mmol) in 3 mL water, and the mixture was stirred at 273 K for 30 min. The diazo­nium salt solution was added dropwise to a solution of N-methyl­pyrrole (81 mg, 1 mmol) in aceto­nitrile (25 mL) and three drops of acetic acid. The combined solution was maintained at 273 K for 2 h with stirring. After that, EtOAc (25 mL) and water (25 mL) were added. The organic layer was separated and washed with water (20 mL) and dried with anhydrous MgSO4. The solution was evaporated and the residue was purified by column chromatography on silica (ethyl acetate/petroleum ether = 1:2), which gave the title compound as an orange powder (200 mg, 68%, m.p. 404 K).

1H NMR (400MHz, DMSO-d 6): δ 3.73 (s, 3H, –CH3), 6.32 (d, J = 4 Hz, 1H, pyrrole C—H), 6.86 (d, J = 4 Hz, 1H, pyrrole C–H), 6.90–6.95 (m, 2H, Ar C-H), 6.99 (t, 2H, J = 8 Hz, Ar C—H), 7.23–7.31 (m, 3H, Ar C-H), 7.65 (d, J = 8Hz, 1H, Ar C—H), 9.95 (s, 1H, –OH), 10.43 (s, 1H, –OH) . Crystals suitable X-ray diffraction analysis were obtained by the slow evaporation of a CHCl3/CH3OH solution of the title compound.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. O—H atoms were located in a difference-Fourier map and refined freely. Other H atoms were positioned geometrically (C—H = 0.95 or 0.98 Å) and included in the final cycles of refinement using a riding model, with U iso(H) = 1.2U eq(C) or 1.5U eq(Cmeth­yl).

Table 2. Experimental details.

Crystal data
Chemical formula C17H15N3O2·CH4O
M r 325.36
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 173
a, b, c (Å) 7.1597 (11), 9.8762 (16), 12.243 (2)
α, β, γ (°) 110.426 (3), 94.051 (3), 93.378 (3)
V3) 806.0 (2)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.14 × 0.13 × 0.12
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2005)
T min, T max 0.987, 0.989
No. of measured, independent and observed [I > 2σ(I)] reflections 4168, 2830, 2071
R int 0.025
(sin θ/λ)max−1) 0.595
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.045, 0.109, 1.03
No. of reflections 2830
No. of parameters 222
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.21, −0.23

Computer programs: APEX2 and SAINT (Bruker, 2005), SHELXS97, SHELXL97 and SHELXTL (Sheldrick, 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018007764/ff2153sup1.cif

e-74-00871-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018007764/ff2153Isup2.hkl

e-74-00871-Isup2.hkl (138.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018007764/ff2153Isup3.cml

CCDC reference: 1845021

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C17H15N3O2·CH4O Z = 2
Mr = 325.36 F(000) = 344
Triclinic, P1 Dx = 1.341 Mg m3
a = 7.1597 (11) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.8762 (16) Å Cell parameters from 1104 reflections
c = 12.243 (2) Å θ = 2.3–28.1°
α = 110.426 (3)° µ = 0.09 mm1
β = 94.051 (3)° T = 173 K
γ = 93.378 (3)° BLOCK, yellow
V = 806.0 (2) Å3 0.14 × 0.13 × 0.12 mm

Data collection

Bruker APEXII CCD diffractometer 2830 independent reflections
Radiation source: fine-focus sealed tube 2071 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
φ and ω scans θmax = 25.0°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2005) h = −8→8
Tmin = 0.987, Tmax = 0.989 k = −11→9
4168 measured reflections l = −14→14

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.045 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.109 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0437P)2 + 0.2373P] where P = (Fo2 + 2Fc2)/3
2830 reflections (Δ/σ)max < 0.001
222 parameters Δρmax = 0.21 e Å3
0 restraints Δρmin = −0.23 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2sigma(F2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.2218 (2) 0.53355 (15) −0.07978 (12) 0.0254 (4)
H1 0.2260 0.5941 −0.0113 0.038*
O2 0.4830 (2) 1.13606 (14) 0.27561 (13) 0.0221 (4)
H2 0.5527 1.1998 0.2636 0.033*
O3 0.2725 (2) 0.68674 (17) 0.77244 (15) 0.0304 (4)
H3A 0.2900 0.6375 0.8154 0.046*
N1 0.2920 (2) 0.48800 (18) 0.14369 (15) 0.0191 (4)
N2 0.2614 (2) 0.61395 (18) 0.14132 (14) 0.0181 (4)
N3 0.2453 (2) 0.86125 (17) 0.24967 (14) 0.0166 (4)
C1 0.2840 (3) 0.3796 (2) 0.03169 (18) 0.0180 (5)
C2 0.2539 (3) 0.4013 (2) −0.07572 (18) 0.0196 (5)
C3 0.2592 (3) 0.2857 (2) −0.18007 (19) 0.0247 (5)
H3 0.2390 0.3001 −0.2526 0.030*
C4 0.2933 (3) 0.1506 (2) −0.17897 (19) 0.0243 (5)
H4 0.2988 0.0728 −0.2508 0.029*
C5 0.3199 (3) 0.1269 (2) −0.07380 (19) 0.0235 (5)
H5 0.3407 0.0329 −0.0735 0.028*
C6 0.3159 (3) 0.2406 (2) 0.02965 (19) 0.0206 (5)
H6 0.3353 0.2244 0.1015 0.025*
C7 0.2752 (3) 0.7239 (2) 0.24820 (17) 0.0170 (5)
C8 0.3197 (3) 0.7316 (2) 0.36227 (17) 0.0190 (5)
H8 0.3478 0.6533 0.3870 0.023*
C9 0.3152 (3) 0.8753 (2) 0.43346 (18) 0.0190 (5)
H9 0.3386 0.9128 0.5164 0.023*
C10 0.2708 (3) 0.9552 (2) 0.36319 (17) 0.0172 (5)
C11 0.1888 (3) 0.8954 (2) 0.14600 (18) 0.0210 (5)
H11A 0.1466 0.9933 0.1702 0.032*
H11B 0.0858 0.8251 0.0986 0.032*
H11C 0.2959 0.8908 0.0997 0.032*
C12 0.2552 (3) 1.1127 (2) 0.39959 (17) 0.0167 (5)
C13 0.3645 (3) 1.2011 (2) 0.35662 (17) 0.0166 (5)
C14 0.3540 (3) 1.3501 (2) 0.39739 (17) 0.0184 (5)
H14 0.4266 1.4092 0.3664 0.022*
C15 0.2372 (3) 1.4124 (2) 0.48346 (18) 0.0203 (5)
H15 0.2299 1.5144 0.5113 0.024*
C16 0.1314 (3) 1.3269 (2) 0.52895 (18) 0.0211 (5)
H16 0.0526 1.3699 0.5886 0.025*
C17 0.1411 (3) 1.1790 (2) 0.48707 (18) 0.0201 (5)
H17 0.0682 1.1207 0.5187 0.024*
C18 0.0860 (3) 0.7274 (3) 0.7761 (2) 0.0310 (6)
H18A 0.0712 0.7970 0.8541 0.046*
H18B −0.0020 0.6411 0.7594 0.046*
H18C 0.0596 0.7720 0.7173 0.046*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0358 (9) 0.0192 (8) 0.0215 (8) 0.0050 (7) 0.0042 (7) 0.0068 (7)
O2 0.0216 (8) 0.0161 (8) 0.0286 (8) 0.0020 (6) 0.0093 (7) 0.0066 (7)
O3 0.0220 (8) 0.0362 (10) 0.0448 (10) 0.0055 (7) 0.0064 (7) 0.0279 (8)
N1 0.0188 (9) 0.0144 (9) 0.0233 (10) 0.0014 (7) 0.0030 (8) 0.0053 (8)
N2 0.0164 (9) 0.0155 (10) 0.0216 (9) 0.0004 (7) 0.0024 (7) 0.0057 (8)
N3 0.0157 (9) 0.0155 (9) 0.0188 (9) 0.0018 (7) 0.0022 (7) 0.0062 (7)
C1 0.0120 (10) 0.0167 (11) 0.0226 (11) 0.0005 (8) 0.0008 (9) 0.0040 (9)
C2 0.0165 (11) 0.0176 (12) 0.0253 (12) 0.0020 (9) 0.0015 (9) 0.0083 (9)
C3 0.0235 (12) 0.0296 (13) 0.0199 (11) 0.0021 (10) 0.0022 (10) 0.0072 (10)
C4 0.0209 (11) 0.0210 (12) 0.0236 (12) 0.0036 (9) 0.0026 (9) −0.0015 (10)
C5 0.0212 (12) 0.0160 (12) 0.0304 (13) 0.0036 (9) 0.0001 (10) 0.0049 (10)
C6 0.0172 (11) 0.0211 (12) 0.0230 (11) 0.0008 (9) −0.0021 (9) 0.0080 (9)
C7 0.0152 (10) 0.0136 (11) 0.0215 (11) 0.0004 (8) 0.0032 (9) 0.0052 (9)
C8 0.0222 (11) 0.0143 (11) 0.0216 (11) 0.0022 (9) 0.0025 (9) 0.0077 (9)
C9 0.0198 (11) 0.0184 (11) 0.0179 (11) 0.0012 (9) 0.0031 (9) 0.0051 (9)
C10 0.0143 (10) 0.0160 (11) 0.0195 (11) 0.0004 (8) 0.0028 (9) 0.0042 (9)
C11 0.0239 (12) 0.0176 (11) 0.0198 (11) 0.0019 (9) −0.0034 (9) 0.0054 (9)
C12 0.0151 (10) 0.0142 (11) 0.0197 (11) 0.0000 (8) −0.0022 (9) 0.0055 (9)
C13 0.0148 (10) 0.0174 (11) 0.0160 (10) 0.0031 (8) −0.0001 (8) 0.0040 (9)
C14 0.0181 (11) 0.0154 (11) 0.0211 (11) −0.0006 (8) −0.0010 (9) 0.0066 (9)
C15 0.0210 (11) 0.0141 (11) 0.0227 (11) 0.0027 (9) −0.0009 (9) 0.0031 (9)
C16 0.0206 (11) 0.0200 (12) 0.0216 (11) 0.0047 (9) 0.0048 (9) 0.0050 (9)
C17 0.0171 (11) 0.0202 (12) 0.0239 (11) −0.0005 (9) 0.0028 (9) 0.0090 (9)
C18 0.0216 (12) 0.0363 (14) 0.0367 (14) 0.0030 (10) 0.0015 (11) 0.0153 (12)

Geometric parameters (Å, º)

O1—C2 1.357 (2) C7—C8 1.385 (3)
O1—H1 0.8400 C8—C9 1.386 (3)
O2—C13 1.362 (2) C8—H8 0.9500
O2—H2 0.8400 C9—C10 1.389 (3)
O3—C18 1.416 (3) C9—H9 0.9500
O3—H3A 0.8400 C10—C12 1.475 (3)
N1—N2 1.286 (2) C11—H11A 0.9800
N1—C1 1.410 (2) C11—H11B 0.9800
N2—C7 1.371 (2) C11—H11C 0.9800
N3—C10 1.367 (2) C12—C17 1.393 (3)
N3—C7 1.380 (3) C12—C13 1.396 (3)
N3—C11 1.460 (3) C13—C14 1.388 (3)
C1—C6 1.397 (3) C14—C15 1.386 (3)
C1—C2 1.409 (3) C14—H14 0.9500
C2—C3 1.390 (3) C15—C16 1.382 (3)
C3—C4 1.375 (3) C15—H15 0.9500
C3—H3 0.9500 C16—C17 1.378 (3)
C4—C5 1.389 (3) C16—H16 0.9500
C4—H4 0.9500 C17—H17 0.9500
C5—C6 1.372 (3) C18—H18A 0.9800
C5—H5 0.9500 C18—H18B 0.9800
C6—H6 0.9500 C18—H18C 0.9800
C2—O1—H1 109.5 C10—C9—H9 125.7
C13—O2—H2 109.5 N3—C10—C9 107.62 (17)
C18—O3—H3A 109.5 N3—C10—C12 124.35 (19)
N2—N1—C1 113.64 (18) C9—C10—C12 128.03 (18)
N1—N2—C7 115.61 (18) N3—C11—H11A 109.5
C10—N3—C7 108.49 (17) N3—C11—H11B 109.5
C10—N3—C11 127.06 (17) H11A—C11—H11B 109.5
C7—N3—C11 124.41 (17) N3—C11—H11C 109.5
C6—C1—C2 118.50 (19) H11A—C11—H11C 109.5
C6—C1—N1 115.80 (19) H11B—C11—H11C 109.5
C2—C1—N1 125.66 (19) C17—C12—C13 118.08 (19)
O1—C2—C3 119.0 (2) C17—C12—C10 119.67 (19)
O1—C2—C1 121.41 (18) C13—C12—C10 122.00 (19)
C3—C2—C1 119.6 (2) O2—C13—C14 121.74 (19)
C4—C3—C2 120.4 (2) O2—C13—C12 117.65 (18)
C4—C3—H3 119.8 C14—C13—C12 120.60 (19)
C2—C3—H3 119.8 C15—C14—C13 119.8 (2)
C3—C4—C5 120.6 (2) C15—C14—H14 120.1
C3—C4—H4 119.7 C13—C14—H14 120.1
C5—C4—H4 119.7 C16—C15—C14 120.3 (2)
C6—C5—C4 119.3 (2) C16—C15—H15 119.9
C6—C5—H5 120.3 C14—C15—H15 119.9
C4—C5—H5 120.3 C17—C16—C15 119.5 (2)
C5—C6—C1 121.5 (2) C17—C16—H16 120.3
C5—C6—H6 119.3 C15—C16—H16 120.3
C1—C6—H6 119.3 C16—C17—C12 121.7 (2)
N2—C7—N3 117.55 (18) C16—C17—H17 119.2
N2—C7—C8 133.93 (19) C12—C17—H17 119.2
N3—C7—C8 108.49 (17) O3—C18—H18A 109.5
C7—C8—C9 106.85 (19) O3—C18—H18B 109.5
C7—C8—H8 126.6 H18A—C18—H18B 109.5
C9—C8—H8 126.6 O3—C18—H18C 109.5
C8—C9—C10 108.55 (18) H18A—C18—H18C 109.5
C8—C9—H9 125.7 H18B—C18—H18C 109.5
C1—N1—N2—C7 −177.49 (17) C7—C8—C9—C10 −0.8 (2)
N2—N1—C1—C6 −179.85 (17) C7—N3—C10—C9 −0.6 (2)
N2—N1—C1—C2 2.6 (3) C11—N3—C10—C9 177.13 (18)
C6—C1—C2—O1 179.88 (19) C7—N3—C10—C12 178.51 (18)
N1—C1—C2—O1 −2.6 (3) C11—N3—C10—C12 −3.7 (3)
C6—C1—C2—C3 −0.9 (3) C8—C9—C10—N3 0.9 (2)
N1—C1—C2—C3 176.63 (19) C8—C9—C10—C12 −178.2 (2)
O1—C2—C3—C4 179.32 (19) N3—C10—C12—C17 128.7 (2)
C1—C2—C3—C4 0.1 (3) C9—C10—C12—C17 −52.3 (3)
C2—C3—C4—C5 1.1 (3) N3—C10—C12—C13 −57.2 (3)
C3—C4—C5—C6 −1.4 (3) C9—C10—C12—C13 121.8 (2)
C4—C5—C6—C1 0.6 (3) C17—C12—C13—O2 176.58 (17)
C2—C1—C6—C5 0.6 (3) C10—C12—C13—O2 2.4 (3)
N1—C1—C6—C5 −177.19 (18) C17—C12—C13—C14 −2.3 (3)
N1—N2—C7—N3 179.37 (17) C10—C12—C13—C14 −176.47 (18)
N1—N2—C7—C8 1.5 (3) O2—C13—C14—C15 −177.29 (17)
C10—N3—C7—N2 −178.23 (17) C12—C13—C14—C15 1.5 (3)
C11—N3—C7—N2 3.9 (3) C13—C14—C15—C16 0.0 (3)
C10—N3—C7—C8 0.2 (2) C14—C15—C16—C17 −0.8 (3)
C11—N3—C7—C8 −177.69 (18) C15—C16—C17—C12 0.0 (3)
N2—C7—C8—C9 178.4 (2) C13—C12—C17—C16 1.5 (3)
N3—C7—C8—C9 0.4 (2) C10—C12—C17—C16 175.89 (18)

Hydrogen-bond geometry (Å, º)

Cg1 and Cg2 are the centroids of the C1–C6 and C12-C17 rings, respectively

D—H···A D—H H···A D···A D—H···A
O1—H1···N2 0.84 1.81 2.530 (2) 143
O2—H2···O3i 0.84 1.81 2.641 (2) 171
O3—H3A···O1ii 0.84 1.97 2.763 (2) 157
C11—H11B···Cg1iii 0.98 2.73 3.587 (2) 147
C18—H18C···Cg2iv 0.98 2.75 3.483 (3) 132

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) x, y, z+1; (iii) −x, −y+1, −z; (iv) −x, −y+2, −z+1.

Funding Statement

This work was funded by National Natural Science Foundation of China grant 21172174.

References

  1. Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Brychczynska, M., Davey, R. J. & Pidcock, E. (2008). New J. Chem. 32, 1754–1760.
  3. Chen, J. & Yin, Z. (2014). Dyes Pigments, 102, 94–99.
  4. Ghorui, T., Roy, S., Pramanik, S. & Pramanik, K. (2016). Dalton Trans. 45, 5720–5729. [DOI] [PubMed]
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Lee, H. Y., Olasz, A., Chen, C.-H. & Lee, D. (2012). Org. Lett. 14, 6286–6289. [DOI] [PubMed]
  7. Li, Y. & Dolphin, D. (2011). Can. J. Chem. 89, 481–487.
  8. Li, W.-Y., Mao, L.-S., Lu, L. & He, H.-W. (2008). Acta Cryst. E64, m490. [DOI] [PMC free article] [PubMed]
  9. Li, Y., Patrick, B. O. & Dolphin, D. (2009). J. Org. Chem. 74, 5237–5243. [DOI] [PubMed]
  10. Nishiyabu, R., Palacios, M. A., Dehaen, W. & Anzenbacher, P. Jr (2006). J. Am. Chem. Soc. 128, 11496–11504. [DOI] [PubMed]
  11. Raposo, M. M. M. M., Castro, C. R., Fonseca, A. M. C., Schellenberg, P. & Belsley, M. (2011). Tetrahedron, 67, 5189–5198.
  12. Rusakov, Y. Y., Krivdin, L. B., Senotrusova, E. Y., Schmidt, E. Y., Vasiltsov, A. M., Mikhaleva, A. I., Trofimov, B. A., Dyachenko, O. A., Chekhlov, A. N. & Kazheva, O. N. (2007). Magn. Reson. Chem. 45, 142–151. [DOI] [PubMed]
  13. Sharma, G. D., Mikroyannidis, J. A., Sharma, S. S. & Justin Thomas, K. R. (2012). Dyes Pigments, 94, 320–329.
  14. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  15. Szczygelska-Tao, J., Fonari, M. S. & Biernat, J. F. (2008). Supramol. Chem. 20, 651–658.
  16. Trofimov, B. A., Schmidt, Y. E., Mikhaleva, A. I., Vasil’tsov, A. M., Zaitsev, A. B., Smolyanina, N. S., Senotrusova, E. Y., Afonin, A. V., Ushakov, I. A., Petrushenko, K. B., Kazheva, O. N., Dyachenko, O. A., Smirnov, V. V., Schmidt, A. F., Markova, M. V. & Morozova, L. V. (2006). Eur. J. Org. Chem. pp. 4021–4033.
  17. Wagner-Wysiecka, E., Rzymowski, T., Fonari, M. S., Kulmaczewski, R. & Luboch, E. (2011). Tetrahedron, 67, 1862–1872.
  18. Yin, Z., Wang, W., Du, M., Wang, X. & Guo, J. (2009). CrystEngComm, 11, 2441–2446.
  19. Yin, Z., Wang, W., Guo, J., Wang, J., He, J. & Cheng, J.-P. (2008). CrystEngComm, 10, 957–959.
  20. Yin, Z., Yan, Y., Sun, S. & Wang, W. (2012). J. Coord. Chem. 65, 865–874.
  21. Zhang, H., Chen, J. & Yin, Z. (2015). Chin. J. Struct. Chem. 34, 1876–1882.
  22. Zhang, H. & Yin, Z. (2014). Chin. J. Struct. Chem. 33, 1813–1818.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018007764/ff2153sup1.cif

e-74-00871-sup1.cif (20.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018007764/ff2153Isup2.hkl

e-74-00871-Isup2.hkl (138.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018007764/ff2153Isup3.cml

CCDC reference: 1845021

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES