Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 May 1;74(Pt 6):776–779. doi: 10.1107/S2056989018006126

Crystal structure of a new polymorph of (2S,3S)-2-amino-3-methyl­penta­noic acid

Sofia Curland a, Elena Meirzadeh a, Yael Diskin-Posner b,*
PMCID: PMC6002834  PMID: 29951228

A new polymorph of (2S,3S)-2-amino-3-methyl­penta­noic acid, l-isoleucine C6H13NO2, crystallizes in the monoclinic space group P21 with four independent mol­ecules in the asymmetric unit. In the crystal, N–H⋯O hydrogen bonds link two pairs of independent mol­ecules and their symmetry-related counterparts to form two types of layers stacked in an anti-parallel manner parallel to (001). The hydro­phobic aliphatic isopropyl groups protrude from these layers.

Keywords: crystal structure, isoleucine, polymorph, amino acid

Abstract

A new polymorph of (2S,3S)-2-amino-3-methyl­penta­noic acid, l-isoleucine C6H13NO2, crystallizes in the monoclinic space group P21 with four independent mol­ecules in the asymmetric unit. The mol­ecules are zwitterions. In the crystal, N—H⋯O hydrogen bonds link two pairs of independent mol­ecules and their symmetry-related counterparts to form two types of layers stacked in an anti-parallel manner parallel to (001). The hydro­phobic aliphatic isopropyl groups protrude from these layers.

Chemical context  

(2S,3S)-2-Amino-3-methyl­penta­noic acid, known as l-isoleucine (l-Ile), is one of the 20 amino acids common in animal proteins and required for normal functioning in humans. l-Ile is classified as a hydro­phobic amino acid and is one of the two common amino acids that has a chiral side chain. l-Ile is essential for human muscle tissue recovery after exercise, along with Valine and Leucine.graphic file with name e-74-00776-scheme1.jpg

The structure of l-Ile was first determined by Torii & Iitaka (1971). The crystal was found to belong to the monoclinic space group P21, with four mol­ecules in the unit cell, Z = 4. The asymmetric unit contains two independent mol­ecules, with the side chain of the l-Ile mol­ecules exhibiting two different conformations (Görbitz & Dalhus, 1996; Torii & Iitaka, 1971). Another polymorph in the ortho­rhom­bic space group P2221 with the unit cell containing eight mol­ecules was reported by Khawas (1970). The presence of an additional l-Ile polymorph is supported by X-ray powder diffraction measurements by Anuar et al. (2009), who suggested that l-Ile is prone to polymorphism as a result of the structural thermal motion of the aliphatic side chain.

Structural commentary  

In the structure of the title compound there are four l-Ile mol­ecules in the asymmetric unit (Fig. 1). The mol­ecules are zwitterions and organized in pairs. The hydro­philic parts of the mol­ecules are facing each other and generate inter­molecular N—H⋯O hydrogen bonds (Table 1), within the pair and with symmetry-related pairs. The aliphatic parts of the mol­ecules are exposed, pointing away from the hydrogen-bonded network, creating a hydro­phobic layer (Fig. 2). A similar network pattern was described previously (Görbitz & Dalhus, 1996; Torii & Iitaka, 1971).

Figure 1.

Figure 1

The asymmetric unit of the title compound with atomic numbering. Displacement ellipsoids are shown at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N1—H1A⋯O2i 0.91 1.96 2.853 (5) 165
N3—H3A⋯O5ii 0.91 1.93 2.820 (5) 165
N3—H3B⋯O3iii 0.91 2.01 2.818 (5) 147
N3—H3C⋯O3iv 0.91 1.87 2.773 (4) 172
N4—H4D⋯O8i 0.91 1.97 2.843 (5) 162
N2—H2A⋯O5 0.91 2.19 3.055 (5) 159
N2—H2A⋯O6 0.91 2.20 2.953 (5) 139
N2—H2C⋯O6v 0.91 1.85 2.762 (5) 174
N2—H2B⋯O4ii 0.91 1.94 2.826 (5) 163

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

Part of the crystal structure viewed perpendicular to the ac plane showing adjacent anti-parallel layers formed by hydrogen-bonded pairs and symmetry-related mol­ecules. The hydro­phobic side chains protrude away and stack together. Displacement ellipsoids are shown at the 50% probability level (C atoms black, O red, N blue). H atoms are omitted for clarity. Blue dashed lines denote hydrogen bonds.

The existence of another chiral center in the side chain allows for conformational differences. Each l-Ile pair consists of two types of conformers. This is presented in the values of the following torsion angles. The two mol­ecules of conformer type I have torsion angles N1—C2—C3—C6 = 80.1 (4)°, N1—C2—C3—C4 = −155.4 (3)° and N3—C14—C15—C18 = 78.1 (4)°, N3—C14—C15—C16 = −155.8 (3)°. The other two mol­ecules are of conformer type II with the torsion angles N2—C8—C9—C12 = 178.6 (4)°, N2—C8—C9—C10 = −56.9 (5)° and N4—C20—C21—C24 = 179.1 (4)°, N4—C20—C21—C22 = −56.8 (5)°. Furthermore, there is a minor conformational variance between all the four independent mol­ecules, as illus­trated by the torsion angles of the iso-propyl side chains: C6—C3—C4—C5 = −56.6 (5)°, C12—C9—C10—C11 = −51.6 (6)°, C18—C15—C16—C17 = −58.9 (5)° and C24—C21—C22—C23 = −53.2 (6)°.

Supra­molecular features  

In the crystal, N—H⋯O hydrogen bonds (Table 1) connect the mol­ecules, forming layers parallel to (001). The polar side of l-Ile is embedded inside the layers while the side chains are oriented away, creating a hydro­phobic surface. However, this hydrogen-bonding network has directionality along the polar b axis and specifically parallel to (001) (see Figs. 2 and 3). The adjacent layer is slightly rotated and grows in the opposite direction to the first one, an anti-parallel layer. The structure is composed of alternating layers with the hydro­philic side generating a hydrogen-bonding network growing in the opposite direction and the hydro­phobic side chains are directed outside. There is a slight offset between the layers to allow the hydro­phobic side chains to fit the gaps in the adjacent layer surface.

Figure 3.

Figure 3

Part of the crystal structure viewed perpendicular to the bc plane showing adjacent anti-parallel layers formed by the hydrogen-bonded mol­ecule pairs and symmetry-related mol­ecules. The hydro­phobic side chains protrude away and are stacked together. Displacement ellipsoids are shown at the 50% probability level (C atoms black, O red, N blue). H atoms are omitted for clarity. Blue dashed lines denote hydrogen bonds.

Database survey  

A comparison between the polymorph presented in this paper and the one reported by Görbitz & Dalhus (1996) is presented in Fig. 4. Both structures have the same monoclinic crystallographic P21 symmetry; however, one has four mol­ecules in the unit cell and the other has only two. As described above, the layers show growth directionality and a pair of l-Ile mol­ecules manage the layer organization. The new polymorph has alternating layers in opposite direction, anti-parallel, unlike the polymorph reported by Görbitz & Dalhus (1996), that has only parallel layers.

Figure 4.

Figure 4

Overlay of two structures with mol­ecules presented as capped sticks along the b axis. The previous monoclinic P21 polymorph with two mol­ecules in the asymmetric unit is the small unit cell with all mol­ecules colored in gray and ordered in a parallel layer arrangement. The new monoclinic P2 1 polymorph has four mol­ecules in the asymmetric unit (colored red, blue, yellow and green). The colors are according to symmetry equivalence. While the blue and red pairs form exactly the same network layer as the polymorph reported by Görbitz & Dalhus (1996), it is evident that the green and yellow pairs have a different orientation, with an anti-parallel layer arrangement.

Synthesis and crystallization  

Single crystals of l-Ile were grown from supersaturated aqueous solutions, via slow evaporation at 323 K in a clean-room environment. The l-Ile powder (Holand–Moran 99%) was dissolved in water (Ultra-pure Millipore water, 18.2 MΩ cm at 298 K, Millipore Synergy UV, Type 1 water) by heating to 353 K, with constant stirring until total dissolution. The hot solution was then filtered through cotton wool into glass crystallization dishes, which were covered with filter paper in order to allow slow evaporation, placed in a heating bath. Colorless crystal chunks, suitable for X-ray crystallographic analysis were obtained. The absolute configuration of the title compound is already known.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. H atoms were placed in calculated positions with C—H = 0.98–1.00 Å, N—H = 0.91 Å and included in the refinement in a riding-model approximation with U iso(H) = 1.2U eq(C) or 1.5U eq(N, Cmeth­yl).

Table 2. Experimental details.

Crystal data
Chemical formula C6H13NO2
M r 131.17
Crystal system, space group Monoclinic, P21
Temperature (K) 100
a, b, c (Å) 9.6757 (5), 5.2885 (3), 28.0136 (15)
β (°) 98.300 (3)
V3) 1418.44 (13)
Z 8
Radiation type Mo Kα
μ (mm−1) 0.09
Crystal size (mm) 0.50 × 0.20 × 0.15
 
Data collection
Diffractometer Bruker APEXII KappaCCD
Absorption correction Multi-scan (SADABS; Bruker, 2015)
T min, T max 0.956, 0.987
No. of measured, independent and observed [I > 2σ(I)] reflections 44938, 7935, 7188
R int 0.060
(sin θ/λ)max−1) 0.694
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.077, 0.211, 1.15
No. of reflections 7935
No. of parameters 338
No. of restraints 7
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.58, −0.42
Absolute structure Flack x determined using 2758 quotients [(I +)−(I )]/[(I +)+(I )] (Parsons et al., 2013)
Absolute structure parameter −0.2 (4)

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXT (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), PLATON (Spek, 2009), CrystalMaker (CrystalMaker, 2013) and Mercury (Macrae et al., 2008).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018006126/lh5872sup1.cif

e-74-00776-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006126/lh5872Isup2.hkl

e-74-00776-Isup2.hkl (630KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018006126/lh5872Isup3.cml

CCDC reference: 1838774

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank Professor Leslie Leiserowitz, Dr Isabelle Weissbuch and Dr David Ehre (Weizmann Institute) for helpful discussions.

supplementary crystallographic information

Crystal data

C6H13NO2 F(000) = 576
Mr = 131.17 Dx = 1.228 Mg m3
Monoclinic, P21 Mo Kα radiation, λ = 0.71073 Å
a = 9.6757 (5) Å Cell parameters from 47498 reflections
b = 5.2885 (3) Å θ = 0.7–30.6°
c = 28.0136 (15) Å µ = 0.09 mm1
β = 98.300 (3)° T = 100 K
V = 1418.44 (13) Å3 Prism, colorless
Z = 8 0.50 × 0.20 × 0.15 mm

Data collection

Bruker APEXII KappaCCD diffractometer 7188 reflections with I > 2σ(I)
φ and ω scans Rint = 0.060
Absorption correction: multi-scan (SADABS; Bruker, 2015) θmax = 29.6°, θmin = 2.8°
Tmin = 0.956, Tmax = 0.987 h = −13→13
44938 measured reflections k = −7→7
7935 independent reflections l = −38→38

Refinement

Refinement on F2 H-atom parameters constrained
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0831P)2 + 2.4061P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.077 (Δ/σ)max = 0.005
wR(F2) = 0.211 Δρmax = 0.58 e Å3
S = 1.15 Δρmin = −0.42 e Å3
7935 reflections Extinction correction: SHELXL2014 (Sheldrick, 2015b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
338 parameters Extinction coefficient: 0.043 (6)
7 restraints Absolute structure: Flack x determined using 2758 quotients [(I+)-(I-)]/[(I+)+(I-)] (Parsons et al., 2013)
Hydrogen site location: inferred from neighbouring sites Absolute structure parameter: −0.2 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.8884 (3) 0.5064 (6) 0.04413 (11) 0.0166 (6)
O2 0.8218 (3) 0.8831 (6) 0.06814 (11) 0.0162 (6)
C1 0.8005 (4) 0.6525 (8) 0.05824 (14) 0.0125 (7)
C2 0.6598 (4) 0.5418 (8) 0.06684 (14) 0.0126 (7)
H2 0.5843 0.6615 0.0531 0.015*
N1 0.6375 (3) 0.2952 (7) 0.04012 (12) 0.0128 (6)
H1A 0.7063 0.1847 0.0518 0.019*
H1B 0.6396 0.3219 0.0081 0.019*
H1C 0.5531 0.2297 0.0443 0.019*
C3 0.6498 (4) 0.5036 (8) 0.12085 (15) 0.0155 (8)
H3 0.5734 0.3791 0.1234 0.019*
C4 0.6086 (5) 0.7558 (10) 0.14216 (16) 0.0223 (9)
H4A 0.6805 0.8837 0.1379 0.027*
H4B 0.5192 0.8135 0.1237 0.027*
C5 0.5922 (6) 0.7431 (12) 0.19564 (18) 0.0311 (11)
H5A 0.6832 0.7080 0.2148 0.047*
H5B 0.5265 0.6080 0.2007 0.047*
H5C 0.5566 0.9051 0.2057 0.047*
C6 0.7850 (4) 0.3964 (9) 0.14852 (15) 0.0194 (8)
H6A 0.7685 0.3426 0.1807 0.029*
H6B 0.8576 0.5269 0.1516 0.029*
H6C 0.8153 0.2510 0.1310 0.029*
O3 0.8415 (3) 0.0087 (6) 0.45421 (11) 0.0164 (6)
O4 0.7533 (3) −0.3784 (6) 0.44210 (13) 0.0219 (7)
C7 0.7422 (4) −0.1469 (8) 0.44123 (14) 0.0142 (7)
C8 0.6019 (4) −0.0244 (8) 0.42024 (15) 0.0146 (8)
H8 0.5250 −0.1492 0.4218 0.018*
N2 0.5777 (4) 0.2014 (8) 0.44997 (13) 0.0172 (7)
H2A 0.4852 0.2410 0.4452 0.026*
H2B 0.6278 0.3345 0.4411 0.026*
H2C 0.6053 0.1661 0.4817 0.026*
C9 0.6022 (4) 0.0536 (9) 0.36746 (15) 0.0178 (8)
H9 0.6802 0.1769 0.3666 0.021*
C10 0.4661 (5) 0.1855 (10) 0.34710 (17) 0.0229 (9)
H10A 0.4579 0.3436 0.3654 0.027*
H10B 0.3868 0.0751 0.3521 0.027*
C11 0.4548 (6) 0.2498 (11) 0.29339 (17) 0.0286 (11)
H11A 0.4369 0.0949 0.2743 0.043*
H11B 0.5424 0.3263 0.2869 0.043*
H11C 0.3779 0.3692 0.2846 0.043*
C12 0.6304 (8) −0.1739 (12) 0.3372 (2) 0.0400 (15)
H12A 0.6393 −0.1183 0.3044 0.060*
H12B 0.5527 −0.2938 0.3360 0.060*
H12C 0.7172 −0.2562 0.3516 0.060*
O5 0.2587 (3) 0.1881 (6) 0.43174 (12) 0.0184 (6)
O6 0.3479 (3) 0.5641 (6) 0.45466 (11) 0.0165 (6)
C13 0.2467 (4) 0.4193 (8) 0.44065 (14) 0.0144 (8)
C14 0.0998 (4) 0.5344 (8) 0.43171 (15) 0.0138 (7)
H14 0.0340 0.4158 0.4448 0.017*
N3 0.1002 (3) 0.7776 (7) 0.45836 (12) 0.0145 (7)
H3A 0.1555 0.8911 0.4457 0.022*
H3B 0.1338 0.7515 0.4900 0.022*
H3C 0.0116 0.8390 0.4557 0.022*
C15 0.0477 (4) 0.5754 (9) 0.37737 (15) 0.0162 (8)
H15 −0.0310 0.6995 0.3749 0.019*
C16 −0.0116 (5) 0.3277 (10) 0.35459 (17) 0.0241 (10)
H16A −0.0829 0.2629 0.3736 0.029*
H16B 0.0645 0.2014 0.3567 0.029*
C17 −0.0782 (6) 0.3523 (12) 0.30162 (19) 0.0325 (12)
H17A −0.0061 0.3961 0.2818 0.049*
H17B −0.1495 0.4853 0.2987 0.049*
H17C −0.1216 0.1912 0.2905 0.049*
C18 0.1600 (5) 0.6889 (9) 0.35062 (16) 0.0192 (8)
H18A 0.1184 0.7351 0.3178 0.029*
H18B 0.2343 0.5644 0.3492 0.029*
H18C 0.1993 0.8401 0.3677 0.029*
O7 0.3780 (3) 0.0868 (6) 0.04550 (11) 0.0161 (6)
O8 0.3022 (3) 0.4780 (6) 0.05701 (12) 0.0201 (7)
C19 0.2915 (4) 0.2440 (8) 0.05879 (14) 0.0141 (7)
C20 0.1698 (4) 0.1267 (8) 0.08112 (14) 0.0134 (7)
H20 0.0926 0.2535 0.0795 0.016*
N4 0.1169 (4) −0.1027 (7) 0.05243 (13) 0.0156 (7)
H4C 0.0295 −0.1410 0.0585 0.023*
H4D 0.1749 −0.2357 0.0610 0.023*
H4E 0.1143 −0.0702 0.0204 0.023*
C21 0.2165 (4) 0.0562 (9) 0.13404 (15) 0.0169 (8)
H21 0.2944 −0.0688 0.1352 0.020*
C22 0.0973 (5) −0.0696 (12) 0.15609 (18) 0.0301 (12)
H22A 0.0153 0.0445 0.1517 0.036*
H22B 0.0702 −0.2275 0.1382 0.036*
C23 0.1336 (6) −0.1325 (13) 0.20962 (18) 0.0325 (12)
H23A 0.1303 0.0220 0.2287 0.049*
H23B 0.2278 −0.2048 0.2157 0.049*
H23C 0.0662 −0.2552 0.2188 0.049*
C24 0.2721 (7) 0.2875 (13) 0.1629 (2) 0.0404 (14)
H24A 0.1940 0.3971 0.1681 0.061*
H24B 0.3357 0.3806 0.1450 0.061*
H24C 0.3225 0.2338 0.1941 0.061*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0092 (12) 0.0188 (16) 0.0221 (15) −0.0007 (11) 0.0029 (10) −0.0017 (12)
O2 0.0148 (13) 0.0118 (14) 0.0225 (15) −0.0048 (11) 0.0043 (11) −0.0015 (12)
C1 0.0086 (16) 0.0147 (18) 0.0139 (16) −0.0025 (13) 0.0001 (12) 0.0019 (14)
C2 0.0090 (15) 0.0120 (18) 0.0170 (17) −0.0032 (14) 0.0020 (13) −0.0007 (14)
N1 0.0104 (14) 0.0107 (15) 0.0165 (15) −0.0019 (11) −0.0011 (12) 0.0008 (12)
C3 0.0121 (16) 0.018 (2) 0.0159 (17) −0.0024 (14) 0.0017 (13) −0.0004 (15)
C4 0.024 (2) 0.024 (2) 0.021 (2) 0.0029 (18) 0.0066 (16) −0.0020 (17)
C5 0.035 (3) 0.036 (3) 0.025 (2) 0.001 (2) 0.012 (2) −0.006 (2)
C6 0.0179 (19) 0.023 (2) 0.0168 (18) 0.0006 (16) 0.0000 (15) 0.0030 (16)
O3 0.0109 (12) 0.0159 (15) 0.0218 (14) 0.0014 (11) −0.0001 (10) −0.0033 (11)
O4 0.0164 (15) 0.0124 (15) 0.0365 (19) 0.0049 (11) 0.0030 (13) −0.0001 (13)
C7 0.0112 (17) 0.0148 (19) 0.0160 (18) 0.0024 (14) −0.0001 (13) −0.0005 (14)
C8 0.0094 (16) 0.0138 (18) 0.0205 (19) −0.0011 (13) 0.0019 (14) −0.0010 (15)
N2 0.0128 (15) 0.0223 (19) 0.0172 (16) 0.0095 (14) 0.0045 (12) 0.0038 (14)
C9 0.0129 (17) 0.021 (2) 0.0187 (19) 0.0011 (15) −0.0004 (14) 0.0004 (16)
C10 0.0144 (19) 0.033 (3) 0.021 (2) 0.0019 (18) 0.0013 (15) 0.0027 (18)
C11 0.031 (2) 0.034 (3) 0.019 (2) 0.009 (2) −0.0027 (17) 0.0027 (19)
C12 0.060 (4) 0.036 (3) 0.021 (2) 0.017 (3) −0.003 (2) −0.011 (2)
O5 0.0156 (14) 0.0139 (15) 0.0257 (15) 0.0046 (11) 0.0028 (11) −0.0002 (12)
O6 0.0122 (13) 0.0194 (16) 0.0177 (14) 0.0013 (11) 0.0015 (10) −0.0007 (12)
C13 0.0107 (16) 0.018 (2) 0.0139 (17) 0.0063 (14) 0.0017 (13) 0.0034 (14)
C14 0.0080 (15) 0.0159 (19) 0.0176 (18) 0.0008 (14) 0.0016 (13) 0.0012 (15)
N3 0.0118 (15) 0.0158 (17) 0.0166 (16) 0.0020 (13) 0.0043 (12) 0.0028 (13)
C15 0.0119 (17) 0.020 (2) 0.0162 (18) 0.0027 (15) −0.0004 (14) −0.0009 (15)
C16 0.020 (2) 0.027 (2) 0.023 (2) −0.0042 (18) −0.0031 (16) −0.0015 (18)
C17 0.028 (2) 0.040 (3) 0.027 (2) −0.003 (2) −0.0058 (19) −0.007 (2)
C18 0.0201 (19) 0.017 (2) 0.0203 (19) 0.0000 (16) 0.0041 (15) 0.0056 (16)
O7 0.0101 (12) 0.0177 (15) 0.0214 (14) −0.0005 (11) 0.0048 (10) −0.0034 (11)
O8 0.0194 (15) 0.0144 (15) 0.0273 (16) −0.0022 (12) 0.0060 (12) 0.0006 (12)
C19 0.0097 (16) 0.0160 (19) 0.0161 (17) −0.0004 (14) 0.0007 (13) 0.0008 (14)
C20 0.0122 (17) 0.0145 (18) 0.0135 (17) 0.0011 (13) 0.0023 (13) 0.0024 (14)
N4 0.0114 (15) 0.0192 (18) 0.0155 (15) −0.0044 (13) 0.0001 (12) 0.0018 (13)
C21 0.0134 (17) 0.020 (2) 0.0171 (18) −0.0005 (15) 0.0022 (14) 0.0010 (15)
C22 0.016 (2) 0.051 (3) 0.024 (2) 0.000 (2) 0.0035 (17) 0.010 (2)
C23 0.034 (3) 0.045 (3) 0.020 (2) −0.005 (2) 0.0069 (19) 0.006 (2)
C24 0.051 (2) 0.037 (2) 0.032 (2) −0.010 (2) 0.0032 (19) −0.0004 (18)

Geometric parameters (Å, º)

O1—C1 1.255 (5) O5—C13 1.256 (5)
O2—C1 1.261 (5) O6—C13 1.260 (5)
C1—C2 1.532 (5) C13—C14 1.534 (5)
C2—N1 1.504 (5) C14—N3 1.487 (5)
C2—C3 1.543 (6) C14—C15 1.548 (6)
C2—H2 1.0000 C14—H14 1.0000
N1—H1A 0.9100 N3—H3A 0.9100
N1—H1B 0.9100 N3—H3B 0.9100
N1—H1C 0.9100 N3—H3C 0.9100
C3—C6 1.530 (6) C15—C18 1.529 (6)
C3—C4 1.537 (6) C15—C16 1.532 (6)
C3—H3 1.0000 C15—H15 1.0000
C4—C5 1.530 (7) C16—C17 1.535 (7)
C4—H4A 0.9900 C16—H16A 0.9900
C4—H4B 0.9900 C16—H16B 0.9900
C5—H5A 0.9800 C17—H17A 0.9800
C5—H5B 0.9800 C17—H17B 0.9800
C5—H5C 0.9800 C17—H17C 0.9800
C6—H6A 0.9800 C18—H18A 0.9800
C6—H6B 0.9800 C18—H18B 0.9800
C6—H6C 0.9800 C18—H18C 0.9800
O3—C7 1.277 (5) O7—C19 1.273 (5)
O4—C7 1.229 (5) O8—C19 1.243 (5)
C7—C8 1.542 (5) C19—C20 1.541 (5)
C8—N2 1.493 (6) C20—N4 1.504 (5)
C8—C9 1.536 (6) C20—C21 1.532 (6)
C8—H8 1.0000 C20—H20 1.0000
N2—H2A 0.9100 N4—H4C 0.9100
N2—H2B 0.9100 N4—H4D 0.9100
N2—H2C 0.9100 N4—H4E 0.9100
C9—C12 1.519 (7) C21—C24 1.521 (8)
C9—C10 1.526 (6) C21—C22 1.536 (6)
C9—H9 1.0000 C21—H21 1.0000
C10—C11 1.531 (6) C22—C23 1.526 (7)
C10—H10A 0.9900 C22—H22A 0.9900
C10—H10B 0.9900 C22—H22B 0.9900
C11—H11A 0.9800 C23—H23A 0.9800
C11—H11B 0.9800 C23—H23B 0.9800
C11—H11C 0.9800 C23—H23C 0.9800
C12—H12A 0.9800 C24—H24A 0.9800
C12—H12B 0.9800 C24—H24B 0.9800
C12—H12C 0.9800 C24—H24C 0.9800
O1—C1—O2 124.6 (4) O5—C13—O6 124.2 (4)
O1—C1—C2 118.2 (4) O5—C13—C14 117.7 (4)
O2—C1—C2 117.1 (4) O6—C13—C14 118.0 (4)
N1—C2—C1 108.7 (3) N3—C14—C13 109.0 (3)
N1—C2—C3 110.5 (3) N3—C14—C15 110.5 (3)
C1—C2—C3 112.8 (3) C13—C14—C15 112.2 (3)
N1—C2—H2 108.3 N3—C14—H14 108.3
C1—C2—H2 108.3 C13—C14—H14 108.3
C3—C2—H2 108.3 C15—C14—H14 108.3
C2—N1—H1A 109.5 C14—N3—H3A 109.5
C2—N1—H1B 109.5 C14—N3—H3B 109.5
H1A—N1—H1B 109.5 H3A—N3—H3B 109.5
C2—N1—H1C 109.5 C14—N3—H3C 109.5
H1A—N1—H1C 109.5 H3A—N3—H3C 109.5
H1B—N1—H1C 109.5 H3B—N3—H3C 109.5
C6—C3—C4 112.1 (4) C18—C15—C16 112.4 (4)
C6—C3—C2 112.0 (3) C18—C15—C14 112.6 (3)
C4—C3—C2 108.9 (3) C16—C15—C14 109.8 (4)
C6—C3—H3 107.9 C18—C15—H15 107.2
C4—C3—H3 107.9 C16—C15—H15 107.2
C2—C3—H3 107.9 C14—C15—H15 107.2
C5—C4—C3 114.3 (4) C15—C16—C17 114.2 (4)
C5—C4—H4A 108.7 C15—C16—H16A 108.7
C3—C4—H4A 108.7 C17—C16—H16A 108.7
C5—C4—H4B 108.7 C15—C16—H16B 108.7
C3—C4—H4B 108.7 C17—C16—H16B 108.7
H4A—C4—H4B 107.6 H16A—C16—H16B 107.6
C4—C5—H5A 109.5 C16—C17—H17A 109.5
C4—C5—H5B 109.5 C16—C17—H17B 109.5
H5A—C5—H5B 109.5 H17A—C17—H17B 109.5
C4—C5—H5C 109.5 C16—C17—H17C 109.5
H5A—C5—H5C 109.5 H17A—C17—H17C 109.5
H5B—C5—H5C 109.5 H17B—C17—H17C 109.5
C3—C6—H6A 109.5 C15—C18—H18A 109.5
C3—C6—H6B 109.5 C15—C18—H18B 109.5
H6A—C6—H6B 109.5 H18A—C18—H18B 109.5
C3—C6—H6C 109.5 C15—C18—H18C 109.5
H6A—C6—H6C 109.5 H18A—C18—H18C 109.5
H6B—C6—H6C 109.5 H18B—C18—H18C 109.5
O4—C7—O3 125.2 (4) O8—C19—O7 125.2 (4)
O4—C7—C8 119.7 (4) O8—C19—C20 119.3 (4)
O3—C7—C8 115.0 (4) O7—C19—C20 115.4 (4)
N2—C8—C9 110.2 (3) N4—C20—C21 110.5 (3)
N2—C8—C7 108.9 (3) N4—C20—C19 109.2 (3)
C9—C8—C7 110.9 (3) C21—C20—C19 110.8 (3)
N2—C8—H8 109.0 N4—C20—H20 108.8
C9—C8—H8 109.0 C21—C20—H20 108.8
C7—C8—H8 109.0 C19—C20—H20 108.8
C8—N2—H2A 109.5 C20—N4—H4C 109.5
C8—N2—H2B 109.5 C20—N4—H4D 109.5
H2A—N2—H2B 109.5 H4C—N4—H4D 109.5
C8—N2—H2C 109.5 C20—N4—H4E 109.5
H2A—N2—H2C 109.5 H4C—N4—H4E 109.5
H2B—N2—H2C 109.5 H4D—N4—H4E 109.5
C12—C9—C10 111.6 (4) C24—C21—C20 110.5 (4)
C12—C9—C8 110.5 (4) C24—C21—C22 111.3 (4)
C10—C9—C8 111.2 (3) C20—C21—C22 111.2 (3)
C12—C9—H9 107.8 C24—C21—H21 107.9
C10—C9—H9 107.8 C20—C21—H21 107.9
C8—C9—H9 107.8 C22—C21—H21 107.9
C9—C10—C11 113.8 (4) C23—C22—C21 114.2 (4)
C9—C10—H10A 108.8 C23—C22—H22A 108.7
C11—C10—H10A 108.8 C21—C22—H22A 108.7
C9—C10—H10B 108.8 C23—C22—H22B 108.7
C11—C10—H10B 108.8 C21—C22—H22B 108.7
H10A—C10—H10B 107.7 H22A—C22—H22B 107.6
C10—C11—H11A 109.5 C22—C23—H23A 109.5
C10—C11—H11B 109.5 C22—C23—H23B 109.5
H11A—C11—H11B 109.5 H23A—C23—H23B 109.5
C10—C11—H11C 109.5 C22—C23—H23C 109.5
H11A—C11—H11C 109.5 H23A—C23—H23C 109.5
H11B—C11—H11C 109.5 H23B—C23—H23C 109.5
C9—C12—H12A 109.5 C21—C24—H24A 109.5
C9—C12—H12B 109.5 C21—C24—H24B 109.5
H12A—C12—H12B 109.5 H24A—C24—H24B 109.5
C9—C12—H12C 109.5 C21—C24—H24C 109.5
H12A—C12—H12C 109.5 H24A—C24—H24C 109.5
H12B—C12—H12C 109.5 H24B—C24—H24C 109.5
O1—C1—C2—N1 −19.5 (5) O5—C13—C14—N3 162.0 (4)
O2—C1—C2—N1 163.7 (3) O6—C13—C14—N3 −20.6 (5)
O1—C1—C2—C3 103.3 (4) O5—C13—C14—C15 −75.3 (5)
O2—C1—C2—C3 −73.5 (5) O6—C13—C14—C15 102.1 (4)
N1—C2—C3—C6 80.1 (4) N3—C14—C15—C18 78.1 (4)
C1—C2—C3—C6 −41.7 (5) C13—C14—C15—C18 −43.8 (5)
N1—C2—C3—C4 −155.4 (3) N3—C14—C15—C16 −155.8 (3)
C1—C2—C3—C4 82.8 (4) C13—C14—C15—C16 82.3 (4)
C6—C3—C4—C5 −56.6 (5) C18—C15—C16—C17 −58.9 (5)
C2—C3—C4—C5 178.9 (4) C14—C15—C16—C17 174.9 (4)
O4—C7—C8—N2 141.7 (4) O8—C19—C20—N4 141.5 (4)
O3—C7—C8—N2 −41.9 (5) O7—C19—C20—N4 −41.7 (5)
O4—C7—C8—C9 −96.9 (5) O8—C19—C20—C21 −96.5 (5)
O3—C7—C8—C9 79.4 (5) O7—C19—C20—C21 80.3 (4)
N2—C8—C9—C12 178.6 (4) N4—C20—C21—C24 179.1 (4)
C7—C8—C9—C12 58.0 (5) C19—C20—C21—C24 57.9 (5)
N2—C8—C9—C10 −56.9 (5) N4—C20—C21—C22 −56.8 (5)
C7—C8—C9—C10 −177.5 (4) C19—C20—C21—C22 −178.0 (4)
C12—C9—C10—C11 −51.6 (6) C24—C21—C22—C23 −53.2 (6)
C8—C9—C10—C11 −175.4 (4) C20—C21—C22—C23 −176.9 (5)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N1—H1A···O2i 0.91 1.96 2.853 (5) 165
N3—H3A···O5ii 0.91 1.93 2.820 (5) 165
N3—H3B···O3iii 0.91 2.01 2.818 (5) 147
N3—H3C···O3iv 0.91 1.87 2.773 (4) 172
N4—H4D···O8i 0.91 1.97 2.843 (5) 162
N2—H2A···O5 0.91 2.19 3.055 (5) 159
N2—H2A···O6 0.91 2.20 2.953 (5) 139
N2—H2C···O6v 0.91 1.85 2.762 (5) 174
N2—H2B···O4ii 0.91 1.94 2.826 (5) 163

Symmetry codes: (i) x, y−1, z; (ii) x, y+1, z; (iii) −x+1, y+1/2, −z+1; (iv) x−1, y+1, z; (v) −x+1, y−1/2, −z+1.

Funding Statement

This work was funded by Israeli Science Foundation grant 546/17. Minerva Foundation grant . Harold Perlman Family grant to E. Meirzadeh.

References

  1. Anuar, N., Daud, W. R. W., Roberts, K. J., Kamarudin, S. K. & Tasirin, S. M. (2009). Cryst. Growth Des. 9, 2853–2862.
  2. Bruker (2015). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
  3. CrystalMaker (2013). CrystalMaker. CrystalMaker Software Limited, Oxfordshire, England.
  4. Görbitz, C. H. & Dalhus, B. (1996). Acta Cryst. C52, 1464–1466.
  5. Khawas, B. (1970). Acta Cryst. B26, 1385–1387. [DOI] [PubMed]
  6. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  7. Parsons, S., Flack, H. D. & Wagner, T. (2013). Acta Cryst. B69, 249–259. [DOI] [PMC free article] [PubMed]
  8. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  9. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Torii, K. & Iitaka, Y. (1971). Acta Cryst. B27, 2237–2246.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018006126/lh5872sup1.cif

e-74-00776-sup1.cif (1.4MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018006126/lh5872Isup2.hkl

e-74-00776-Isup2.hkl (630KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018006126/lh5872Isup3.cml

CCDC reference: 1838774

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES