Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 May 31;74(Pt 6):868–870. doi: 10.1107/S2056989018007478

Crystal structure of 1-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]-2-bromo­ethan-1-one

Sandeep Chandrashekharappa a, Keshab M Bairagi b, Mahendra K Mohan a, Viresh Mohanlall c, Kabange Kasumbwe c, Katharigatta N Venugopala c,*, Susanta K Nayak b,*
PMCID: PMC6002836  PMID: 29951247

The title compound crystallizes with four mol­ecules in the unit cell (Z = 4) and one formula unit in the asymmetric unit. In the crystal, mol­ecules are linked in a head-to-tail fashion into dimers along the b-axis direction through weak C—H⋯Br and C—O⋯Csp 2 inter­actions. C—H⋯O, C—F⋯π and F⋯F inter­actions are also observed

Keywords: crystal structure, tri­fluoro­meth­yl)phenyl­bromo­ethanone, weak inter­actions

Abstract

The title compound, C10H5BrF6O, synthesized via continuous stirring of 3,5-bis­(tri­fluoro­meth­yl) aceto­phenone with bromine in an acidic medium and concentrated under reduced pressure, crystallizes with four mol­ecules in the unit cell (Z = 4) and one formula unit in the asymmetric unit. In the crystal, mol­ecules are linked in a head-to-tail fashion into dimers along the b-axis direction through weak C—H⋯Br and C—O⋯Csp 2 inter­actions. C—H⋯O, C—F⋯π and F⋯F inter­actions are also observed.

Chemical context  

Substituted phenacyl bromides can be achieved by α-bromination of substituted ketones employing suitable bromination reagents such as mol­ecular bromine (Curran & Chang, 1989), copper bromide (King & Ostrum, 1964), N-bromo­succinimide (Tanemura et al., 2004), 3-methyl­imidazolium tribromide (Chiappe et al., 2004) and hydrogen bromide (Podgoršek et al., 2009). In our previous communications, we tried to develop inter­mediates (Chopra et al., 2007) for the construction of biologically active heterocyclic compounds (Kasumbwe et al., 2017). In this context, the title compound serves as a synthetic precursor and finds application in the construction of pharmacologically active heterocyclic compounds (Venugopala et al., 2018, 2007).graphic file with name e-74-00868-scheme1.jpg

Structural commentary  

A displacement ellipsoid plot of the title compound with the atom labelling is shown in Fig. 1. The compound crystallizes in the monoclinic space group P21/c with one mol­ecule in the asymmetric unit and four mol­ecules in the unit cell (Z = 4). The torsion angle between the alkyl bromide unit and the phenyl ring (C3—C2—C1—Br1) is −179.6 (3)° whereas that between the alkyl bromide and carbonyl parts (O1—C2—C1—Br1) is 0.3 (5)°, which shows a preference for a syn orientation of the alkyl bromide unit with respect to the carbonyl group.

Figure 1.

Figure 1

The asymmetric unit of the title compound, with 50% probability ellipsoids.

Supra­molecular features  

In the crystal, the mol­ecules are arranged in a head-to-tail fashion, forming dimers sustained by C—Br⋯H and >C=O⋯π(>C=O) (O⋯π = 3.252 Å) inter­actions. The dimers are linked along the c-axis direction by C—H⋯O and C—F⋯π inter­actions (Table 1, Fig. 2). The assembly of dimers is further extended along the a-axis direction by F1⋯F4(x, Inline graphic − y, Inline graphic + z) [2.868 (4) Å] inter­actions, resulting in a bilayer which further packs in parallel fashion along the a-axis direction (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1A⋯O1i 0.99 2.57 3.501 (5) 157
C1—Br1⋯H4ii 1.92 (1) 2.94 (11) 3.882 169
C2—O1⋯C2iii 1.20 (1) 3.05 (1) 4.126 149 (1)
C9—F2⋯πiv 1.32 (1) 3.89 4.848 130

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

Figure 2.

Figure 2

Dimer assembled through C—H⋯Br and >C=O⋯π(>C=O) inter­actions (left) and dimers extending along the b-axis direction via C—H⋯O and C—F⋯π inter­actions (Table 1).

Figure 3.

Figure 3

F⋯F inter­actions resulting in a bilayer that packs in a parallel fashion along the a-axis direction.

Database survey  

There are more than 1000 crystal structure of phenyl ethanone derivatives in the Cambridge Structural Database (CSD) (Conquest Version 1.17; Groom et al., 2016) but none of them gave a hit for 1-[3,5-bis­(tri­fluoro­meth­yl)phen­yl]-2-bromo­ethanone. However, the crystal structures of related derivatives have been reported. These include phenyl 2-bromo­ethanone (URELEJ; Betz et al., 2011) and a phenyl 2-bromo­ethanone complex (VIVFIP; Laube et al., 1991). The first compound, Z = 4, features two prominent hydrogen bonds involving the oxygen atom while in the second, also Z = 4, the oxygen atom forms a complex with anti­mony penta­chloride.

Synthesis and crystallization  

A stirred solution of 3,5-bis­(tri­fluoro­meth­yl) aceto­phenone (0.5 g, 1.95 mmol) in acetic acid (5 mL) was added dropwise to bromine (0.312 g, 1.95 mmol) in acetic acid. The reaction medium was stirred at room temperature for 5 h. To the resulting mixture, water (5 mL) was added and the mixture was concentrated under reduced pressure. The residue obtained was diluted with ethyl­acetate (10 mL), the organic layer washed with water (10 mL) and a sodium bicarbonate solution (5 mL), and filtered through dried sodium sulfate and evaporated to obtain 1-(3,5-bis­(tri­fluoro­meth­yl)phen­yl)-2-bromo­ethanone as a light-yellow solid in 62% yield. m.p: 317–318 K. 1H NMR: (CDCl3, 600 MHz): 8.44 (2H, s), 8.13 (1H, s), 4.48 (2H, s); 13C NMR: (CDCl3, 150 MHz): 188.81, 135.31, 133.06, 132.83, 132.60, 128.99, 127.08, 127.06, 125.42, 123.61, 121.80, 120.00, 29.46.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. Hydrogen atoms were placed in idealized positions (C—H = 0.95–0.99 Å) and refined using a riding model with U iso(H) = 1.2–1.5U eq(C).

Table 2. Experimental details.

Crystal data
Chemical formula C10H5BrF6O
M r 335.04
Crystal system, space group Monoclinic, P21/c
Temperature (K) 153
a, b, c (Å) 14.156 (5), 5.0111 (16), 15.535 (5)
β (°) 104.316 (5)
V3) 1067.7 (6)
Z 4
Radiation type Mo Kα
μ (mm−1) 3.92
Crystal size (mm) 0.23 × 0.09 × 0.06
 
Data collection
Diffractometer Bruker Kappa APEXII DUO
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.442, 0.759
No. of measured, independent and observed [I > 2σ(I)] reflections 11628, 2405, 1741
R int 0.060
(sin θ/λ)max−1) 0.646
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.103, 1.03
No. of reflections 2405
No. of parameters 163
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.78, −1.12

Computer programs: APEX2 and SAINT (Bruker, 2012), SHELXS (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015), Mercury (Macrae et al., 2008), PLATON (Spek, 2009) and PARST (Nardelli, 1995).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018007478/ds2250sup1.cif

e-74-00868-sup1.cif (378.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018007478/ds2250Isup2.hkl

e-74-00868-Isup2.hkl (192.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018007478/ds2250Isup3.cml

CCDC reference: 1843826

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C10H5BrF6O F(000) = 648
Mr = 335.04 Dx = 2.084 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
Hall symbol: -P 2ybc Cell parameters from 2405 reflections
a = 14.156 (5) Å θ = 2.7–27.4°
b = 5.0111 (16) Å µ = 3.92 mm1
c = 15.535 (5) Å T = 153 K
β = 104.316 (5)° Needle, colorless
V = 1067.7 (6) Å3 0.23 × 0.09 × 0.06 mm
Z = 4

Data collection

Bruker Kappa APEXII DUO diffractometer 2405 independent reflections
Radiation source: fine-focus sealed tube 1741 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.060
ω scans θmax = 27.4°, θmin = 2.7°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −18→18
Tmin = 0.442, Tmax = 0.759 k = −6→6
11628 measured reflections l = −20→20

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.041 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.103 H-atom parameters constrained
S = 1.03 w = 1/[σ2(Fo2) + (0.0541P)2 + 0.3605P] where P = (Fo2 + 2Fc2)/3
2405 reflections (Δ/σ)max < 0.001
163 parameters Δρmax = 0.78 e Å3
0 restraints Δρmin = −1.12 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Br1 0.60416 (2) 0.14882 (9) 0.09433 (3) 0.03259 (16)
F1 0.21893 (17) 0.1990 (6) 0.38145 (15) 0.0468 (7)
F2 0.1420 (2) −0.0983 (6) 0.29661 (17) 0.0597 (8)
F3 0.07527 (19) 0.2781 (7) 0.3050 (2) 0.0655 (9)
F4 0.19332 (17) 0.8957 (5) 0.00403 (18) 0.0480 (7)
F5 0.07651 (19) 0.8912 (5) 0.06942 (16) 0.0484 (7)
F6 0.07736 (15) 0.6137 (5) −0.03417 (14) 0.0362 (6)
O1 0.45527 (18) −0.0571 (6) 0.18612 (18) 0.0329 (6)
C1 0.4825 (2) 0.3126 (8) 0.0979 (3) 0.0278 (9)
H1A 0.4955 0.4921 0.1249 0.033*
H1B 0.4423 0.3352 0.0365 0.033*
C2 0.4258 (3) 0.1506 (8) 0.1506 (2) 0.0258 (8)
C3 0.3301 (2) 0.2646 (8) 0.1557 (2) 0.0237 (8)
C4 0.2889 (3) 0.1673 (8) 0.2217 (2) 0.0264 (8)
H4 0.3218 0.0353 0.2620 0.032*
C5 0.1991 (2) 0.2642 (8) 0.2285 (2) 0.0255 (8)
C6 0.1483 (2) 0.4474 (8) 0.1686 (2) 0.0259 (8)
H6 0.0857 0.5070 0.1722 0.031*
C7 0.1901 (2) 0.5434 (8) 0.1028 (2) 0.0239 (8)
C8 0.2806 (3) 0.4557 (8) 0.0968 (2) 0.0255 (8)
H8 0.3091 0.5261 0.0524 0.031*
C9 0.1583 (3) 0.1609 (9) 0.3022 (3) 0.0313 (9)
C10 0.1348 (3) 0.7374 (9) 0.0362 (3) 0.0308 (9)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Br1 0.0200 (2) 0.0386 (3) 0.0398 (3) 0.00282 (17) 0.00868 (15) −0.0043 (2)
F1 0.0405 (14) 0.072 (2) 0.0306 (13) −0.0144 (13) 0.0130 (11) −0.0053 (12)
F2 0.093 (2) 0.044 (2) 0.0531 (17) −0.0302 (15) 0.0394 (16) −0.0108 (13)
F3 0.0370 (14) 0.094 (2) 0.077 (2) 0.0245 (15) 0.0356 (14) 0.0359 (17)
F4 0.0332 (13) 0.0366 (17) 0.0686 (18) −0.0044 (11) 0.0020 (12) 0.0237 (13)
F5 0.0500 (14) 0.0464 (18) 0.0440 (14) 0.0282 (13) 0.0024 (11) −0.0025 (12)
F6 0.0292 (11) 0.0432 (17) 0.0324 (12) −0.0001 (10) 0.0005 (9) −0.0029 (10)
O1 0.0285 (14) 0.0294 (18) 0.0420 (16) 0.0055 (12) 0.0109 (12) 0.0065 (13)
C1 0.0188 (16) 0.029 (3) 0.036 (2) 0.0010 (15) 0.0074 (15) −0.0008 (17)
C2 0.0235 (17) 0.023 (2) 0.030 (2) −0.0036 (16) 0.0046 (14) −0.0040 (17)
C3 0.0203 (17) 0.023 (2) 0.028 (2) −0.0016 (15) 0.0056 (15) −0.0021 (16)
C4 0.0237 (17) 0.022 (2) 0.032 (2) −0.0005 (15) 0.0052 (15) −0.0020 (16)
C5 0.0230 (18) 0.025 (2) 0.028 (2) −0.0036 (15) 0.0061 (15) −0.0023 (16)
C6 0.0189 (16) 0.025 (2) 0.034 (2) 0.0007 (15) 0.0056 (15) −0.0002 (17)
C7 0.0190 (16) 0.021 (2) 0.029 (2) 0.0009 (14) 0.0017 (14) −0.0010 (16)
C8 0.0274 (18) 0.021 (2) 0.028 (2) −0.0007 (15) 0.0071 (15) −0.0012 (16)
C9 0.0253 (18) 0.032 (3) 0.037 (2) −0.0022 (17) 0.0085 (16) −0.0016 (18)
C10 0.0263 (19) 0.029 (2) 0.034 (2) 0.0032 (17) 0.0013 (16) −0.0008 (18)

Geometric parameters (Å, º)

Br1—C1 1.921 (4) C3—C4 1.388 (5)
F1—C9 1.329 (4) C3—C8 1.389 (5)
F2—C9 1.319 (5) C4—C5 1.388 (5)
F3—C9 1.325 (4) C4—H4 0.9500
F4—C10 1.330 (5) C5—C6 1.377 (5)
F5—C10 1.324 (5) C5—C9 1.497 (5)
F6—C10 1.343 (4) C6—C7 1.388 (5)
O1—C2 1.203 (5) C6—H6 0.9500
C1—C2 1.516 (5) C7—C8 1.378 (5)
C1—H1A 0.9900 C7—C10 1.492 (5)
C1—H1B 0.9900 C8—H8 0.9500
C2—C3 1.490 (5)
C2—C1—Br1 112.7 (3) C7—C6—H6 120.6
C2—C1—H1A 109.1 C8—C7—C6 120.8 (3)
Br1—C1—H1A 109.1 C8—C7—C10 119.9 (3)
C2—C1—H1B 109.1 C6—C7—C10 119.3 (3)
Br1—C1—H1B 109.1 C7—C8—C3 120.1 (3)
H1A—C1—H1B 107.8 C7—C8—H8 119.9
O1—C2—C3 121.6 (3) C3—C8—H8 119.9
O1—C2—C1 122.7 (3) F2—C9—F3 107.2 (3)
C3—C2—C1 115.7 (3) F2—C9—F1 105.4 (3)
C4—C3—C8 119.5 (3) F3—C9—F1 106.3 (3)
C4—C3—C2 117.3 (3) F2—C9—C5 112.7 (3)
C8—C3—C2 123.1 (3) F3—C9—C5 112.7 (3)
C5—C4—C3 119.5 (4) F1—C9—C5 112.1 (3)
C5—C4—H4 120.2 F5—C10—F4 107.8 (4)
C3—C4—H4 120.2 F5—C10—F6 106.0 (3)
C6—C5—C4 121.2 (3) F4—C10—F6 106.1 (3)
C6—C5—C9 120.8 (3) F5—C10—C7 112.4 (3)
C4—C5—C9 118.0 (4) F4—C10—C7 112.4 (3)
C5—C6—C7 118.8 (3) F6—C10—C7 111.8 (3)
C5—C6—H6 120.6
Br1—C1—C2—O1 0.3 (5) C10—C7—C8—C3 −176.6 (4)
Br1—C1—C2—C3 −179.6 (3) C4—C3—C8—C7 −1.4 (6)
O1—C2—C3—C4 17.6 (5) C2—C3—C8—C7 176.9 (3)
C1—C2—C3—C4 −162.5 (3) C6—C5—C9—F2 117.1 (4)
O1—C2—C3—C8 −160.8 (4) C4—C5—C9—F2 −62.1 (5)
C1—C2—C3—C8 19.1 (5) C6—C5—C9—F3 −4.4 (6)
C8—C3—C4—C5 −0.6 (6) C4—C5—C9—F3 176.5 (4)
C2—C3—C4—C5 −179.0 (3) C6—C5—C9—F1 −124.2 (4)
C3—C4—C5—C6 2.7 (6) C4—C5—C9—F1 56.6 (5)
C3—C4—C5—C9 −178.1 (3) C8—C7—C10—F5 −151.0 (4)
C4—C5—C6—C7 −2.7 (6) C6—C7—C10—F5 30.9 (5)
C9—C5—C6—C7 178.2 (3) C8—C7—C10—F4 −29.3 (5)
C5—C6—C7—C8 0.5 (6) C6—C7—C10—F4 152.6 (4)
C5—C6—C7—C10 178.7 (4) C8—C7—C10—F6 89.9 (4)
C6—C7—C8—C3 1.5 (6) C6—C7—C10—F6 −88.2 (4)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C1—H1A···O1i 0.99 2.57 3.501 (5) 157
C1—Br1···H4ii 1.92 (1) 2.94 (11) 3.882 169
C2—O1···C2iii 1.20 (1) 3.05 (1) 4.126 149 (1)
C9—F2···πiv 1.32 (1) 3.89 4.848 130

Symmetry codes: (i) x, y+1, z; (ii) −x+1, y+1/2, −z+1/2; (iii) −x+1, y−1/2, −z+1/2; (iv) x, y−1, z.

Funding Statement

This work was funded by National Research Foundation grants 96807 and 98884. Durban University of Technology grant . VNIT Nagpur grant to Keshab M. Bairagi.

References

  1. Betz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1207. [DOI] [PMC free article] [PubMed]
  2. Bruker (2012). APEX2, SAINT and SADABS, Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Chiappe, C., Leandri, E. & Pieraccini, D. (2004). Chem. Commun. pp. 2536–2537. [DOI] [PubMed]
  4. Chopra, D., Venugopala, K. N. & Rao, G. K. (2007). Acta Cryst. E63, o4872.
  5. Curran, D. P. & Chang, C. T. (1989). J. Org. Chem. 54, 3140–3157.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Kasumbwe, K., Venugopala, K. N., Mohanlall, V. & Odhav, B. (2017). Anticancer Agents Med. Chem. 17, 276–285. [DOI] [PubMed]
  8. King, L. C. & Ostrum, G. K. (1964). J. Org. Chem. 29, 3459–3461.
  9. Laube, T., Weidenhaupt, A. & Hunziker, R. (1991). J. Am. Chem. Soc. 113, 2561–2567.
  10. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  11. Nardelli, M. (1995). J. Appl. Cryst. 28, 659.
  12. Podgoršek, A., Jurisch, M., Stavber, S., Zupan, M., Iskra, J. & Gladysz, J. A. (2009). J. Org. Chem. 74, 3133–3140. [DOI] [PubMed]
  13. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  14. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  15. Spek, A. L. (2009). Acta Cryst D65, 148–155. [DOI] [PMC free article] [PubMed]
  16. Tanemura, K., Suzuki, T., Nishida, Y., Satsumabayashi, K. & Horaguchi, T. (2004). Chem. Commun. pp. 470–471. [DOI] [PubMed]
  17. Venugopala, K. N. (2018). Asian J. Chem. 30, 684–688.
  18. Venugopala, K. N., Rao, G. K., Pal, P. N. S. & Ganesh, G. L. (2007). Orient. J. Chem. 23, 1093–1096.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S2056989018007478/ds2250sup1.cif

e-74-00868-sup1.cif (378.3KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018007478/ds2250Isup2.hkl

e-74-00868-Isup2.hkl (192.8KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018007478/ds2250Isup3.cml

CCDC reference: 1843826

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES