Skip to main content
The Scientific World Journal logoLink to The Scientific World Journal
. 2002 Feb 1;2:275–281. doi: 10.1100/tsw.2002.99

The TREX2 3′→ 5′ Exonuclease Physically Interacts with DNA Polymerase δ and Increases Its Accuracy

Igor V Shevelev 1,2, Kristijan Ramadan 1, Ulrich Hubscher 1,*
PMCID: PMC6009725  PMID: 12806015

Abstract

Proofreading function by the 3′→ 5′ exonuclease of DNA polymerase δ (pol δ) is consistent with the observation that deficiency of the associated exonuclease can lead to a strong mutation phenotype, high error rates during DNA replication, and ultimately cancer. We have isolated pol δd from isotonic (pol δi) and detergent (pol δd) calf thymus extracts. Pol δd had a 20-fold higher ratio of exonuclease to DNA polymerase than pol δi. This was due to the physical association of the TREX2 exonuclease to pol δd, which was missing from pol δi. Pol δd was fivefold more accurate than pol δi under error-prone conditions (1 μM dGTP and 20 dATP, dCTP, and dTTP) in a M13mp2 DNA forward mutation assay, and fourfold more accurate in an M13mp2T90 reversion assay. Under error-free conditions (20 μM each of the four dNTPs), however, both polymerases showed equal fidelity. Our data suggested that autonomous 3′→ 5′ exonucleases, such as TREX2, through its association with pol I can guarantee high fidelity under difficult conditions in the cell (e.g., imbalance of dNTPs) and can add to the accuracy of the DNA replication machinery, thus preventing mutagenesis.

Keywords: isotonic and detergent, extracted pol δ, proofreading, TREX2 3′→ 5′ exonuclease


Articles from The Scientific World Journal are provided here courtesy of Wiley

RESOURCES