Skip to main content
Springer logoLink to Springer
. 2018 Jun 20;2018(1):139. doi: 10.1186/s13660-018-1736-5

Some new k-Riemann–Liouville fractional integral inequalities associated with the strongly η-quasiconvex functions with modulus μ0

Eze R Nwaeze 1,, Seth Kermausuor 2, Ana M Tameru 1
PMCID: PMC6010507  PMID: 30137726

Abstract

A new class of quasiconvexity called strongly η-quasiconvex function was introduced in (Awan et al. in Filomat 31(18):5783–5790, 2017). In this paper, we obtain some new k-Riemann–Liouville fractional integral inequalities associated with this class of functions. For specific values of the associated parameters, we recover results due to Dragomir and Pearce (Bull. Aust. Math. Soc. 57:377–385, 1998), Ion (Ann. Univ. Craiova, Math. Sci. Ser. 34:82–87, 2007), and Alomari et al. (RGMIA Res. Rep. Collect. 12(Supplement):Article ID 14, 2009).

Keywords: Hermite–Hadamard inequality, Strongly η-quasiconvex, Riemann–Liouville fractional integrals

Introduction

Let IR be an interval, and let I denote the interior of I. We say that a function g:IR is quasiconvex if

g(tx+(1t)y)max{g(x),g(y)}

for all x,yI and t[0,1].

For functions that are quasiconvex on [a,b], Dragomir and Pearce [5] established the following inequality of the Hermite–Hadamard type.

Theorem 1

Let g:[a,b]R be a quasiconvex positive function. If gL1([a,b]), then we have the following succeeding inequality:

1baabg(t)dtmax{g(a),g(b)}. 1

Ion [8] obtained the following two results in the same direction.

Theorem 2

Let g:[a,b]R be a differentiable function on (a,b). If, in addition, the absolute value function |g| is quasiconvex on [a,b], then we have the following succeeding inequality:

|g(a)+g(b)21baabg(t)dt|ba4max{|g(a)|,|g(b)|}. 2

Theorem 3

Let g:[a,b]R be a differentiable function on (a,b). If, in addition, the absolute value function |g|pp1 is quasiconvex on [a,b] with p>1, then we have the following succeeding inequality:

|g(a)+g(b)21baabg(t)dt|ba2(p+1)1p[max{|g(a)|pp1,|g(b)|pp1}]p1p. 3

Subsequently, Alomari et al. [2] obtained the following generalization of Theorem 2.

Theorem 4

Let g:IR be a differentiable function on I with a,bI and a<b. If, in addition, the absolute value function |g|q is quasiconvex on [a,b], q1, then we have the following succeeding inequality:

|g(a)+g(b)21baabg(t)dt|ba4[max{|g(a)|q,|g(b)|q}]1q. 4

Recently, Gordji et al. [6] introduced a new class of functions, called the η-quasiconvex functions. We present the definition for completeness.

Definition 5

A function g:IRR is said to be an η-quasiconvex function with respect to η:R×RR if

g(tx+(1t)y)max{g(y),g(y)+η(g(x),g(y))}

for all x,yI and t[0,1].

For some results concerning the η-convex functions and related results, we refer the interested reader to the papers [4, 7, 9, 10, 12, 13, 1517] and the references therein. Recently, Awan et al. [3] proposed the following definition, which gives a further generalization of Definition 5.

Definition 6

A function g:IRR is said to be a strongly η-quasiconvex function with respect to η:R×RR and modulus μ0 if

g(tx+(1t)y)max{g(y),g(y)+η(g(x),g(y))}μt(1t)(yx)2

for all x,yI and t[0,1].

Example 7

The function g(x)=x2 is strongly η-quasiconvex with respect to the bifunction η(x,y)=2x+y and modulus μ=1. To see this, let t[0,1]. Then

max{g(y),g(y)+η(g(x),g(y))}μt(1t)(yx)2g(y)+η(g(x),g(y))t(1t)(yx)2y2+t(2x2+y2)t(1t)(yx)2=t2x2+2xyt(1t)+(1t)2y2+t(x2+2y2)t2x2+2xyt(1t)+(1t)2y2=g(tx+(1t)y).

Remark 8

If g is strongly η-quasiconvex with respect to η(x,y)=xy and modulus μ=0, then Definition 6 reduces to the classical definition of the quasiconvexity.

Our purpose in this paper is to prove analogues of inequalities (1)–(4) for the strongly η-quasiconvex functions via the k-Riemann–Liouville fractional integral operators. We recapture these inequalities as particular cases of our results (see Remark 20).

We close this section by presenting the definition of the k-Riemann–Liouville fractional integral operators.

Definition 9

(See [11])

The left- and right-sided k-Riemann–Liouville fractional integral operators Ja+αk and Jbαk of order α>0, for a real-valued continuous function g(x), are defined as

Ja+αkg(x)=1kΓk(α)ax(xt)αk1g(t)dt,x>a, 5

and

Jbαkg(x)=1kΓk(α)xb(tx)αk1g(t)dt,x<b, 6

where k>0, and Γk is the k-gamma function given by

Γk(x):=0tx1etkkdt,Re(x)>0,

with the properties Γk(x+k)=xΓk(x) and Γk(k)=1.

This paper is made up of two sections. In Sect. 2, our main results are framed and justified. Some new inequalities are also obtained as corollaries of the main results.

Main results

In what follows, we will use the following notation (where convenient): for g:[a,b]R and η:R×RR, we define

M(g;η):=max{g(b),g(b)+η(g(a),g(b))}

and

N(g;η):=max{g(a),g(a)+η(g(b),g(a))}.

We now state and prove our first result of this paper.

Theorem 10

Let α,k>0, and let g:[a,b]R be a positive strongly η-quasiconvex function with modulus μ0. If gL1([a,b]), then we have the following inequality:

Γk(α+k)2(ba)αk[kJa+αg(b)+kJbαg(a)]M(g;η)+N(g;η)2αμ(ba)2(1α+k1α+2k).

Proof

The function g is strongly η-quasiconvex on [a,b] with μ0. This implies that

g(ta+(1t)b)max{g(b),g(b)+η(g(a),g(b))}μt(1t)(ba)2=M(g;η)μt(1t)(ba)2 7

and

g((1t)a+tb)max{g(a),g(a)+η(g(b),g(a))}μt(1t)(ba)2=N(g;η)μt(1t)(ba)2 8

for all t[0,1].

By adding (7) and (8) we obtain

g(ta+(1t)b)+g((1t)a+tb)M(g;η)+N(g;η)2μt(1t)(ba)2. 9

Now, multiplying both sides of (9) by tαk1 and thereafter integrating the outcome with respect to t over the interval [0,1] give

01tαk1g(ta+(1t)b)dt+01tαk1g((1t)a+tb)dtM(g;η)01tαk1dt+N(g;η)01tαk1dt2μ(ba)201tαk1t(1t)dt=2kα[M(g;η)+N(g;η)2αμ(ba)2(1α+k1α+2k)]. 10

Using the substitutions x=ta+(1t)b and y=(1t)a+tb in the definition of the k-Riemann–Liouville fractional integrals, we obtain

01tαk1g(ta+(1t)b)dt=1(ba)αkab(bx)αk1g(x)dx=kΓk(α)(ba)αk×kJa+αg(b) 11

and

01tαk1g((1t)a+tb)dt=1(ba)αkab(ya)αk1g(y)dy=kΓk(α)(ba)αk×kJbαg(a). 12

Employing (11) and (12) in (10), we get

kΓk(α)(ba)αk[kJa+αg(b)+kJbαg(a)]2kα[M(g;η)+N(g;η)2αμ(ba)2(1α+k1α+2k)].

Hence the intended inequality is reached. □

Setting μ=0 in Theorem 10, we get the following corollary.

Corollary 11

Let α,k>0, and let g:[a,b]R be a positive strongly η-quasiconvex function with modulus 0. If gL1([a,b]), then we have the following inequality:

Γk(α+k)2(ba)αk[kJa+αg(b)+kJbαg(a)]M(g;η)+N(g;η)2. 13

The following lemmas will be useful in the proof of the remaining results of this paper.

Lemma 12

Let α,k>0, and let g:[a,b]R be a differentiable function on the interval (a,b). If gL1([a,b]), then we have the following equality for the k-fractional integral:

g(a)+g(b)2Γk(α+k)2(ba)αk[kJa+αg(b)+kJbαg(a)]=ba201[(1t)αktαk]g(ta+(1t)b)dt.

Proof

The identity is achieved by setting s=0 in [1, Lemma 2.1]. □

Lemma 13

(See [14, 18])

If σ(0,1] and 0x<y, then

|xσyσ|(yx)σ.

Theorem 14

Let α,k>0, and let g:[a,b]R be a differentiable function on (a,b). If |g| is strongly η-quasiconvex on [a,b] with modulus μ0 and gL1([a,b]), then we have the following inequality:

|g(a)+g(b)2Γk(α+k)2(ba)αk[kJa+αg(b)+kJbαg(a)]|baαk+1(112αk)M(|g|;η)μ(ba)3[1(αk+2)(112αk+1)1(αk+3)(112αk+2)].

Proof

We start by making the following observations: for t[0,1], we obtain

(1t)αktαk{0,0t12,<0,12<t1, 14

and

01|(1t)αktαk|dt=012[(1t)αktαk]dt+121[tαk(1t)αk]dt=2(αk+1)(112αk). 15

Using a similar line of arguments (as previously), we obtain

01t(1t)|(1t)αktαk|dt=2(αk+2)(112αk+1)2(αk+3)(112αk+2). 16

Now, using the fact that |g| is strongly η-quasiconvex with μ0 and then applying Lemma 12, the properties of the modulus, and identities (15) and (16), we obtain:

|g(a)+g(b)2Γk(α+k)2(ba)αk[kJa+αg(b)+kJbαg(a)]|ba201|(1t)αktαk||g(ta+(1t)b)|dtba201|(1t)αktαk|[max{|g(b)|,|g(b)|+η(|g(a)|,|g(b)|)}μt(1t)(ba)2]dt=ba2max{|g(b)|,|g(b)|+η(|g(a)|,|g(b)|)}01|(1t)αktαk|dtμ(ba)3201t(1t)|(1t)αktαk|dt=ba2max{|g(b)|,|g(b)|+η(|g(a)|,|g(b)|)}2(αk+1)(112αk)μ(ba)32[2(αk+2)(112αk+1)2(αk+3)(112αk+2)].

Hence the result follows. □

Putting μ=0 in Theorem 14, we obtain the following result.

Corollary 15

Let α,k>0, and let g:[a,b]R be a differentiable function on (a,b). If |g| is strongly η-quasiconvex on [a,b] with modulus 0 and gL1([a,b]), then we have the following inequality:

|g(a)+g(b)2Γk(α+k)2(ba)αk[kJa+αg(b)+kJbαg(a)]|baαk+1(112αk)max{|g(b)|,|g(b)|+η(|g(a)|,|g(b)|)}. 17

Theorem 16

Let α,k>0, q>1, and let g:[a,b]R be a differentiable function on (a,b). If |g|q is strongly η-quasiconvex on [a,b] with modulus μ0 and gL1([a,b]), then we have the following inequality:

|g(a)+g(b)2Γk(α+k)2(ba)αk[kJa+αg(b)+kJbαg(a)]|ba2(1αkp+1)1p(M(|g|q;η)μ(ba)26)1q,

where 1p+1q=1 and αk(0,1].

Proof

As a consequence of Lemma 13, we have that

|xαkyαk||xy|αk

for all x,y[0,1] with αk(0,1]. Using the above information, we make the following computations:

01|(1t)αktαk|pdt01|12t|αkpdt=012|12t|αkpdt+121|12t|αkpdt=012(12t)αkpdt+121(2t1)αkpdt=1αkp+1. 18

Since the function |g|q is strongly η-quasiconvex on [a,b] with modulus μ0, we have

|g(ta+(1t)b)|qmax{|g(b)|q,|g(b)|q+η(|g(a)|q,|g(b)|q)}μt(1t)(ba)2. 19

Now, applying Lemma 12, the Hölder inequality, the properties of absolute values, and inequalities (18) and (19), we obtain

|g(a)+g(b)2Γk(α+k)2(ba)αk[kJa+αg(b)+kJbαg(a)]|ba201|(1t)αktαk||g(ta+(1t)b)|dtba2(01|(1t)αktαk|pdt)1p(01|g(ta+(1t)b)|qdt)1qba2(1αkp+1)1p(01[max{|g(b)|q,|g(b)|q+η(|g(a)|q,|g(b)|q)}μt(1t)(ba)2]dt)1q=ba2(1αkp+1)1p(max{|g(b)|q,|g(b)|q+η(|g(a)|q,|g(b)|q)}μ(ba)26)1q.

This completes the proof. □

Taking μ=0 in Theorem 16, we get the following:

Corollary 17

Let α,k>0, q>1, and let g:[a,b]R be a differentiable function on (a,b). If |g|q is strongly η-quasiconvex on [a,b] with modulus 0 and gL1([a,b]), then we have the following inequality:

|g(a)+g(b)2Γk(α+k)2(ba)αk[kJa+αg(b)+kJbαg(a)]|ba2(1αkp+1)1p(max{|g(b)|q,|g(b)|q+η(|g(a)|q,|g(b)|q)})1q, 20

where 1p+1q=1 and αk(0,1].

Finally, we present the following result.

Theorem 18

Let α,k>0, q1, and let g:[a,b]R be a differentiable function on (a,b). If |g|q is strongly η-quasiconvex on [a,b] with modulus μ0 and gL1([a,b]), then we have the following inequality:

|g(a)+g(b)2Γk(α+k)2(ba)αk[kJa+αg(b)+kJbαg(a)]|ba2(P(α;k))11q(M(|g|q;η)P(α;k)μ(ba)2Q(α;k))1q,

where

P(α;k)=2(αk+1)(112αk)

and

Q(α;k)=2(αk+2)(112αk+1)2(αk+3)(112αk+2).

Proof

We follow similar arguments as in the proof of the previous theorem. For this, we use again Lemma 12, the Hölder inequality, and the properties of the absolute values to obtain

|g(a)+g(b)2Γk(α+k)2(ba)αk[kJa+αg(b)+kJbαg(a)]|ba201|(1t)αktαk||g(ta+(1t)b)|dtba2(01|(1t)αktαk|dt)11q(01|(1t)αktαk||g(ta+(1t)b)|qdt)1qba2(01|(1t)αktαk|dt)11q×(01|(1t)αktαk|[max{|g(b)|q,|g(b)|q+η(|g(a)|q,|g(b)|q)}μt(1t)(ba)2]dt)1q.

The desired inequality follows by appealing to identities (15) and (16). □

Taking μ=0 in Theorem 18, we get the succeeding corollary.

Corollary 19

Let α,k>0, q1, and let g:[a,b]R be a differentiable function on (a,b). If |g|q is strongly η-quasiconvex on [a,b] with modulus 0 and gL1([a,b]), then we have the following inequality:

|g(a)+g(b)2Γk(α+k)2(ba)αk[kJa+αg(b)+kJbαg(a)]|ba2P(α;k)(max{|g(b)|q,|g(b)|q+η(|g(a)|q,|g(b)|q)})1q, 21

where

P(α;k)=2(αk+1)(112αk).

Remark 20

Substituting η(x,y)=xy and α=k=1 into (13), (17), (20), and (21), we recover (1), (2), (3), and (4), respectively.

Conclusion

Four main results of the Hermite–Hadamard kind for functions that are strongly η-quasiconvex with modulus μ0 are hereby established. We recover known results in the literature by setting η(x,y)=xy, α=k=1, and μ=0 in Theorems 10, 14, 16, and 18. More results can be obtained by choosing different bifunction η and then μ.

Acknowledgements

Many thanks to the two anonymous referees for their suggestions and comments.

Authors’ contributions

All authors read and approved the final manuscript.

Funding

There is no funding to report at this point in time.

Competing interests

The authors declare that there are no competing interests.

Footnotes

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Contributor Information

Eze R. Nwaeze, Email: enwaeze@tuskegee.edu

Seth Kermausuor, Email: skermausour@alasu.edu.

Ana M. Tameru, Email: atameru@tuskegee.edu

References

  • 1.Agarwal P., Jleli M., Tomar M. Certain Hermite–Hadamard type inequalities via generalized k-fractional integrals. J. Inequal. Appl. 2017;2017:55. doi: 10.1186/s13660-017-1318-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.Alomari M., Darus M., Dragomir S.S. Inequalities of Hermite–Hadamard’s type for functions whose derivatives absolute values are quasi-convex. RGMIA Res. Rep. Collect. 2009;12(Supplement):14. [Google Scholar]
  • 3.Awan M.U., Noorb M.A., Noorb K.I., Safdarb F. On strongly generalized convex functions. Filomat. 2017;31(18):5783–5790. doi: 10.2298/FIL1718783A. [DOI] [Google Scholar]
  • 4.Delavar M.R., De La Sen D. Some generalizations of Hermite–Hadamard type inequalities. SpringerPlus. 2016;5:1661. doi: 10.1186/s40064-016-3301-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Dragomir S.S., Pearce C.E.M. Quasi-convex functions and Hadamard’s inequality. Bull. Aust. Math. Soc. 1998;57:377–385. doi: 10.1017/S0004972700031786. [DOI] [Google Scholar]
  • 6.Gordji M.E., Delavar M.R., De La Sen M. On φ-convex functions. J. Math. Inequal. 2016;10(1):173–183. doi: 10.7153/jmi-10-15. [DOI] [Google Scholar]
  • 7.Gordji M.E., Dragomir S.S., Delavar M.R. An inequality related to η-convex functions (II) Int. J. Nonlinear Anal. Appl. 2015;6(2):26–32. [Google Scholar]
  • 8.Ion D.A. Some estimates on the Hermite–Hadamard inequality through quasi-convex functions. Ann. Univ. Craiova, Math. Sci. Ser. 2007;34:82–87. [Google Scholar]
  • 9.Jleli M., Regan D.O., Samet B. On Hermite–Hadamard type inequalities via generalized fractional integrals. Turk. J. Math. 2016;40:1221–1230. doi: 10.3906/mat-1507-79. [DOI] [Google Scholar]
  • 10.Khan M.A., Khurshid Y., Ali T. Hermite–Hadamard inequality for fractional integrals via η-convex functions. Acta Math. Univ. Comen. 2017;LXXXVI(1):153–164. [Google Scholar]
  • 11.Mubeen S., Habibullah G.M. k-Fractional integrals and applications. Int. J. Contemp. Math. Sci. 2012;7(2):89–94. [Google Scholar]
  • 12. Nwaeze, E.R.: Inequalities of the Hermite–Hadamard type for quasi-convex functions via the (k,s)-Riemann–Liouville fractional integrals. Fract. Differ. Calc. (in press)
  • 13. Nwaeze, E.R., Torres, D.F.M.: Novel results on the Hermite–Hadamard kind inequality for η-convex functions by means of the (k,r)-fractional integral operators. arXiv:1802.05619v1
  • 14.Prudnikov A.P., Brychkov Y.A., Marichev O.I. Elementary Functions. Moscow: Nauka; 1981. Integral and series. [Google Scholar]
  • 15.Sarikaya M.Z., Dahmani Z., Kiris M.E., Ahmad F. (k,s)-Riemann–Liouville fractional integral and applications. Hacet. J. Math. Stat. 2016;45(1):77–89. [Google Scholar]
  • 16.Set E., Tomar M., Sarikaya M.Z. On generalized Grüss type inequalities via k-Riemann–Liouville fractional integral. Appl. Math. Comput. 2015;269:29–34. [Google Scholar]
  • 17.Tomar M., Mubeen S., Choi J. Certain inequalities associated with Hadamard k-fractional integral operators. J. Inequal. Appl. 2016;2016:234. doi: 10.1186/s13660-016-1178-x. [DOI] [Google Scholar]
  • 18.Wang J., Zhu C., Zhou Y. New generalized Hermite–Hadamard type inequalities and applications to special means. J. Inequal. Appl. 2013;2013:325. doi: 10.1186/1029-242X-2013-325. [DOI] [Google Scholar]

Articles from Journal of Inequalities and Applications are provided here courtesy of Springer

RESOURCES