Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jun 8;74(Pt 7):915–917. doi: 10.1107/S2056989018008277

Crystal structure of diethyl {2,2,2-tri­chloro-1-[2-(1,3-dioxo-2,3-di­hydro-1H-isoindol-2-yl)-4-methyl­pentanamido]­eth­yl}phospho­nate

V S Brovarets a, O V Golovchenko a, E B Rusanov b, J A Rusanova c,*
PMCID: PMC6038616  PMID: 30002885

The crystal structure of the inter­mediate product of the synthesis of phospho­rylated 5-amino-1,3-oxazol-4-yl­phospho­nic acid derivatives is reported.

Keywords: crystal structure, phtalimide derivatives, phospho­rylated compounds

Abstract

In the title phospho­rylated compound, C20H26Cl3N2O6P, the phthalimide unit is essentially planar (r.m.s. deviation = 0.0129 Å) and the O atoms of this unit deviate from the mean plane by 0.080 (3) and 0.041 (3) Å. In the crystal, pairs of mol­ecules are linked by N—H⋯O and weak C—H⋯O hydrogen bonds involving the same acceptor atom, forming inversion dimers. In addition, π–π stacking inter­actions between the phthalimide groups, with a centroid–centroid distance of 3.7736 (13) Å, and further weak C—H⋯O hydrogen bonds connect the inversion dimers into columns along [0Inline graphic1].

Chemical context  

In early 1950, J. W. Cornforth noted that oxazole derivatives rarely occur in nature and were therefore not promising as new biologically active substances. Studies performed mostly during recent decades have shown that the oxazole ring occurs in a multitude of natural products and it has been widely employed as a component of biologically active compounds in medicinal chemistry (Jin et al., 2006). Various bacteria and marine organisms produce numerous anti­biotics belonging to the oxazole series (Chamberlin et al., 1977; Bertram et al., 2001; Jansen et al.,1992; Moody & Bagley, 1998). Today, numerous oxazole-based synthetic bioregulators with strong anti­microbial, cytostatic, immune stimulating, neuroleptic, analgesic, and other kinds of biological activity are known (Turchi et al., 1986; Palmer et al., 2003). In particular, 5-amino-1,3-oxazole and its derivatives are well recognized for their potent and diverse bioregulation activity. Here we present the crystal structure of the title compound, which is an inter­mediate product of synthesis of phospho­rylated 5-amino-1,3-oxazol-4-yl­phospho­nic acid derivatives.graphic file with name e-74-00915-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig. 1. The phthalimide unit (N1/C1–C8) is essentially planar with an r.m.s. deviation of 0.0129 Å. The oxygen atoms O4 and O5 deviate from the mean plane by 0.080 (3) and 0.041 (3) Å, respectively. In the five-membered 3-pyrroline ring, the C—C bond lengths are equivalent [C1—C8 = 1.487 (3) and C2—C3 = 1.486 (3) Å] and the C—N bond lengths differ slightly [N1—C1 = 1.417 (3) and N1—C2 = 1.398 (3) Å], while the corresponding bond angles are not equal [C1—N1—C9 = 127.97 (18) and C2—N1—C9 = 120.53 (17)°] possibly due to the steric influence of the isobutyl group. The mean C—C bond length in the C3–C8 phenyl ring is 1.387 Å. All bond lengths and angles are within normal ranges (Ng, 1992; Feeder & Jones, 1996).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level.

In the acetamide moiety, the lone pair of atom N2 is conjugated with the π-system of the C=O group. Thus, the sum of nitro­gen valency angles is 359.3° and the C14—N2 bond length of 1.356 (3) Å is inter­mediate between that for a double and a single bond (1.28 and 1.45 Å, respectively; Allen et al., 1987). The C15—N2 bond has a typical value for a single bond at 1.442 (3) Å.

The P—O distances in the phospho­nate group show typical values for double [P1=O3 1.4616 (15) Å] and single (with bridging O1 and O2) bonds. The P1—O1 and P1—O2 bonds are equivalent within experimental error with values of 1.5670 (15) and 1.5664 (16) Å, respectively. The C15—P1—O1 and C15—P1—O2 bond angles are equivalent [103.45 (9) and 102.73 (9)°, respectively], while angles O1—P1—O3 and O2—P1—O3 are not [109.82 (9) and 116.77 (9)°], which is probably due to mol­ecular packing effects.

The CCl3 group has typical values for the C—Cl distances (the mean C—Cl bond lengths is 1.773 Å). In general, all bonding parameters and the dimensions of the angles in the title complex are in good agreement with those encountered in related complexes (Bhatti et al., 2010).

Supra­molecular features  

In the crystal, pairs of mol­ecules are linked by N2—H1⋯O3i and C9—H9⋯O3i hydrogen bonds (Table 1, Fig. 2) involving the same acceptor atom, forming inversion dimers. In addition, π–π stacking inter­actions between the C3–C8 benzene rings of the phthalimide units connect the dimers into columns along [0Inline graphic1] with a centroid–centroid distance of 3.7736 (13) Å for CgCg(2 − x, −y, 2 − z). Further weak C—H⋯O hydrogen bonds occur within these columns (Fig. 3).

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
N2—H1⋯O3i 0.76 (2) 2.09 (2) 2.846 (3) 170 (2)
C9—H9⋯O3i 1.00 2.47 3.265 (3) 136
C7—H7⋯O6ii 0.95 2.46 3.393 (3) 169

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

An inversion pair of the title compound, showing the inter­molecular N—H⋯O and C—H⋯O hydrogen bonds [symmetry code: (A) 1 − x, 1 − y, 1 − z].

Figure 3.

Figure 3

The crystal packing of the title compound viewed along the a axis. Inter­molecular N—H⋯O and C—H⋯O hydrogen bonds are shown as dashed lines. Only selected H atoms are shown.

Database survey  

A search of the Cambridge Structural Database (Version 5.38; last update November 2016; Groom et al., 2016) for related compounds with a phthalimide fragment gave 77 hits including the closely related structures of the 2-[2-(1,3-dioxoisoindolin-2-yl)-acetamido]­acetic acid, (S)-4-fluoro-N-methyl-2-(1,3-dioxoisoindolin-2-yl)pent-4-enamide di­chloro­methane solvate and (S)-4-carbamoyl-4-(1,3-dioxoisoindolin-2-yl)butanoic acid (Bhatti et al., 2010; Shendage et al., 2004; Otogawa et al., 2015). All bond lengths and angles in these related compounds are similar to those in the title compound. Differences in the values of the O—P—O bond angles in the phospho­nate group and C—N—C angles around the pthalimide nitro­gen appear to be due to mol­ecular packing and steric effects.

Synthesis and crystallization  

The general procedure for the preparation of the title compound was previously described by Lukashuk et al. (2015). A mixture of 2-(1,3-dioxo-2,3-di­hydro-1H-isoindol-2-yl)-3-methyl-N-(1,2,2,2-tetra­chlo­roeth­yl)butanamide (0.14 mol), triethyl phosphite (30 mL, 0.17 mol), and dry dioxane (150 mL) was refluxed for 3 h. Colourless crystals suitable for single-crystal X-ray analysis were formed after slowly cooling to room temperature. The analytically pure title compound was obtained by solvent evaporation under reduced pressure to dryness (yield 58.84 g, 80% as a yellow oil). Analysis calculated for C19H26Cl3N2O6P: C, 44.42; H, 4.71; Cl, 20.70; N, 5.45; P, 6.03%; found: C, 44.55; H, 4.86; Cl, 20.82; N, 5.53; P, 6.19%.

The NMR spectra [1H (500 MHz), 31P (202 MHz), 13C (125 MHz); s, singlet; br, broad; d, doublet; m, multiplet] were obtained on a Bruker Avance DRX-500 instrument in a solution of DMSO-d 6, relative to inter­nal TMS or external 85% pho­spho­ric acid. 1H NMR: 9.32 (½H, d, J = 9.3 Hz, NH), 9.22 (½H, d, J = 9.3 Hz, NH), 7.92–7.88 (4H, m, aromatic), 5.29–5.21 (1H, m, CHP), 4.68–4.61 (1H, m, CH), 4.10–4.00 (4H, m, 2OCH2CH3), 2.97–2.90 (1H, m, CH), 1.22–1.15 (6H, m, 2OCH2CH3), 1.11–1.05 (3H, m, CH3), 0.88–0.79 (3H, m, CH3). 13C NMR: 168.61 (d, J = 4.5 Hz, C=O), 167.41 (d, J = 4.5 Hz, C=O), 134.41, 134.36, 130.55, 130.53, 122.85, 122.80 (aromatic), 96.21 (d, J = 14.5 Hz, CCl3), 96.06 (d, J = 14.5 Hz, CCl3), 62.30 (d, J = 6.5 Hz, OCH2CH3), 62.07 (d, J = 6.5 Hz, OCH2CH3), 60.31 (d, J = 158.8 Hz, CP), 60.26 (d, J = 158.6 Hz, CP), 59.31, 59.22 (CH), 25.92, 25.84 (CH), 18.55, 18.50 (CH3), 18.49, 18.36 (CH3), 14.97 (d, J = 6.0 Hz, OCH2CH3), 14.86 (d, J = 6.0 Hz, OCH2CH3). 31P NMR: 14.4. 14.2.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. All C—H hydrogen atoms were placed in calculated positions (C—H = 0.98–1.00Å) and refined in the riding-model approximation with U iso(H) = 1.2–1.5U eq(H). The H atom bonded to atom N2 was located in a difference-Fourier map and refined isotropically.

Table 2. Experimental details.

Crystal data
Chemical formula C20H26Cl3N2O6P
M r 527.75
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 173
a, b, c (Å) 8.4601 (2), 10.9425 (3), 13.5321 (4)
α, β, γ (°) 78.188 (2), 88.644 (2), 75.442 (2)
V3) 1186.32 (6)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.49
Crystal size (mm) 0.24 × 0.19 × 0.08
 
Data collection
Diffractometer Bruker SMART APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2008)
T min, T max 0.87, 0.96
No. of measured, independent and observed [I > 2σ(I)] reflections 16619, 4423, 3306
R int 0.052
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.039, 0.090, 1.08
No. of reflections 4423
No. of parameters 293
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.37, −0.44

Computer programs: APEX2 and SAINT (Bruker, 2008), SHELXT (Sheldrick, 2015a ), SHELXL2016 (Sheldrick, 2015b ), SHELXTL (Sheldrick, 2008) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018008277/lh5875sup1.cif

e-74-00915-sup1.cif (619.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018008277/lh5875Isup2.hkl

e-74-00915-Isup2.hkl (352.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018008277/lh5875Isup3.cml

CCDC reference: 1847170

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C20H26Cl3N2O6P Z = 2
Mr = 527.75 F(000) = 548
Triclinic, P1 Dx = 1.477 Mg m3
a = 8.4601 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.9425 (3) Å Cell parameters from 2780 reflections
c = 13.5321 (4) Å θ = 3.4–45.8°
α = 78.188 (2)° µ = 0.49 mm1
β = 88.644 (2)° T = 173 K
γ = 75.442 (2)° Plate, colourless
V = 1186.32 (6) Å3 0.24 × 0.19 × 0.08 mm

Data collection

Bruker SMART APEXII diffractometer 4423 independent reflections
Radiation source: sealed tube 3306 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.052
φ and ω scans θmax = 25.5°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2008) h = −10→9
Tmin = 0.87, Tmax = 0.96 k = −13→13
16619 measured reflections l = −16→16

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.039 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.090 w = 1/[σ2(Fo2) + (0.0373P)2] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max = 0.007
4423 reflections Δρmax = 0.37 e Å3
293 parameters Δρmin = −0.44 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
P1 0.38432 (7) 0.33488 (6) 0.45621 (4) 0.01836 (15)
CL1 0.79937 (8) 0.30683 (7) 0.43532 (5) 0.0447 (2)
CL2 0.85600 (7) 0.07099 (6) 0.58507 (4) 0.03428 (18)
CL3 0.69011 (8) 0.09144 (7) 0.39715 (5) 0.0491 (2)
O1 0.24551 (17) 0.37482 (14) 0.53081 (11) 0.0219 (4)
O2 0.33202 (19) 0.24320 (15) 0.39667 (11) 0.0267 (4)
O3 0.42397 (18) 0.45000 (14) 0.39643 (11) 0.0247 (4)
O4 0.44032 (19) 0.15069 (15) 0.97521 (11) 0.0257 (4)
O5 0.86366 (19) 0.32359 (16) 0.85338 (12) 0.0310 (4)
O6 0.54932 (19) 0.11923 (15) 0.74528 (11) 0.0262 (4)
N1 0.6311 (2) 0.25003 (17) 0.88866 (13) 0.0187 (4)
N2 0.5722 (2) 0.2870 (2) 0.62148 (13) 0.0182 (4)
C1 0.5759 (3) 0.1669 (2) 0.96882 (16) 0.0203 (5)
C2 0.7905 (3) 0.2556 (2) 0.90771 (16) 0.0215 (5)
C3 0.8451 (3) 0.1656 (2) 1.00570 (15) 0.0194 (5)
C4 0.9935 (3) 0.1328 (2) 1.05637 (16) 0.0232 (5)
H4 1.080114 0.170025 1.030700 0.028*
C5 1.0114 (3) 0.0426 (2) 1.14710 (17) 0.0275 (6)
H5 1.112112 0.017187 1.184424 0.033*
C6 0.8833 (3) −0.0105 (2) 1.18346 (17) 0.0275 (6)
H6 0.898632 −0.071669 1.245561 0.033*
C7 0.7331 (3) 0.0230 (2) 1.13198 (16) 0.0248 (6)
H7 0.645930 −0.013498 1.157508 0.030*
C8 0.7172 (3) 0.1123 (2) 1.04154 (15) 0.0184 (5)
C9 0.5453 (3) 0.3201 (2) 0.79368 (15) 0.0188 (5)
H9 0.599930 0.389770 0.763816 0.023*
C10 0.3643 (3) 0.3834 (2) 0.80426 (16) 0.0219 (5)
H10A 0.320062 0.436484 0.737746 0.026*
H10B 0.305581 0.314522 0.821981 0.026*
C11 0.3267 (3) 0.4684 (2) 0.88262 (17) 0.0252 (6)
H11 0.361031 0.412380 0.950673 0.030*
C12 0.4201 (3) 0.5725 (2) 0.86449 (19) 0.0360 (7)
H12A 0.537536 0.532229 0.864970 0.054*
H12B 0.386046 0.630024 0.798851 0.054*
H12C 0.396886 0.622302 0.917967 0.054*
C13 0.1436 (3) 0.5270 (3) 0.8824 (2) 0.0418 (7)
H13A 0.086390 0.458013 0.894246 0.063*
H13B 0.118619 0.576531 0.936024 0.063*
H13C 0.107779 0.584253 0.816908 0.063*
C14 0.5585 (3) 0.2307 (2) 0.71927 (15) 0.0180 (5)
C15 0.5510 (3) 0.2253 (2) 0.54002 (15) 0.0178 (5)
H15 0.512342 0.147068 0.570548 0.021*
C16 0.7154 (3) 0.1776 (2) 0.49071 (16) 0.0269 (6)
C17 0.1635 (3) 0.2852 (2) 0.59219 (18) 0.0275 (6)
H17A 0.238670 0.226629 0.646535 0.033*
H17B 0.127708 0.232492 0.550083 0.033*
C18 0.0190 (3) 0.3634 (2) 0.63664 (18) 0.0342 (6)
H18A −0.039138 0.305605 0.678612 0.051*
H18B 0.055967 0.414975 0.678234 0.051*
H18C −0.054538 0.420814 0.582181 0.051*
C19 0.2312 (3) 0.2932 (3) 0.30282 (19) 0.0380 (7)
H19A 0.227578 0.385415 0.277641 0.046*
H19B 0.118185 0.285406 0.315925 0.046*
C20 0.3037 (3) 0.2176 (3) 0.22655 (19) 0.0418 (7)
H20A 0.237677 0.249970 0.163708 0.063*
H20B 0.415264 0.226244 0.213626 0.063*
H20C 0.306207 0.126542 0.251793 0.063*
H1 0.577 (3) 0.357 (2) 0.6099 (17) 0.017 (7)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
P1 0.0179 (3) 0.0187 (3) 0.0166 (3) −0.0024 (3) −0.0006 (2) −0.0022 (2)
CL1 0.0242 (4) 0.0651 (5) 0.0359 (4) −0.0130 (3) 0.0039 (3) 0.0116 (3)
CL2 0.0240 (3) 0.0416 (4) 0.0269 (3) 0.0092 (3) −0.0043 (2) −0.0045 (3)
CL3 0.0398 (4) 0.0655 (5) 0.0372 (4) 0.0148 (4) −0.0066 (3) −0.0338 (4)
O1 0.0190 (8) 0.0186 (9) 0.0250 (8) −0.0024 (7) 0.0047 (7) −0.0012 (7)
O2 0.0290 (9) 0.0254 (9) 0.0255 (9) −0.0042 (8) −0.0092 (7) −0.0071 (7)
O3 0.0270 (9) 0.0225 (9) 0.0217 (8) −0.0073 (8) 0.0016 (7) 0.0035 (7)
O4 0.0248 (10) 0.0273 (10) 0.0250 (9) −0.0107 (8) −0.0007 (7) −0.0001 (7)
O5 0.0290 (10) 0.0377 (11) 0.0250 (9) −0.0150 (9) 0.0010 (7) 0.0046 (8)
O6 0.0407 (11) 0.0176 (9) 0.0199 (8) −0.0081 (8) 0.0048 (7) −0.0024 (7)
N1 0.0197 (10) 0.0210 (11) 0.0146 (9) −0.0060 (9) −0.0013 (7) −0.0007 (8)
N2 0.0240 (11) 0.0159 (12) 0.0146 (10) −0.0062 (10) −0.0001 (8) −0.0015 (8)
C1 0.0270 (14) 0.0144 (12) 0.0200 (12) −0.0052 (11) 0.0004 (10) −0.0044 (10)
C2 0.0240 (13) 0.0225 (13) 0.0191 (12) −0.0061 (11) 0.0027 (10) −0.0061 (10)
C3 0.0249 (13) 0.0168 (12) 0.0172 (11) −0.0051 (11) 0.0020 (9) −0.0057 (9)
C4 0.0241 (13) 0.0225 (13) 0.0246 (13) −0.0064 (11) −0.0021 (10) −0.0072 (10)
C5 0.0293 (14) 0.0254 (14) 0.0262 (13) −0.0015 (12) −0.0088 (11) −0.0070 (11)
C6 0.0384 (15) 0.0223 (14) 0.0179 (12) −0.0038 (12) −0.0045 (11) 0.0003 (10)
C7 0.0318 (14) 0.0239 (14) 0.0199 (12) −0.0100 (11) 0.0031 (10) −0.0041 (10)
C8 0.0237 (13) 0.0161 (12) 0.0154 (11) −0.0045 (10) 0.0007 (9) −0.0036 (9)
C9 0.0248 (13) 0.0175 (12) 0.0128 (11) −0.0055 (10) −0.0022 (9) 0.0008 (9)
C10 0.0226 (13) 0.0207 (13) 0.0210 (12) −0.0023 (10) −0.0027 (9) −0.0042 (10)
C11 0.0324 (14) 0.0224 (14) 0.0197 (12) −0.0042 (12) 0.0003 (10) −0.0054 (10)
C12 0.0431 (17) 0.0289 (15) 0.0406 (16) −0.0090 (13) 0.0021 (13) −0.0177 (12)
C13 0.0337 (16) 0.0431 (17) 0.0513 (18) −0.0047 (14) 0.0105 (13) −0.0228 (14)
C14 0.0166 (12) 0.0189 (13) 0.0170 (11) −0.0032 (10) 0.0007 (9) −0.0016 (10)
C15 0.0194 (12) 0.0176 (12) 0.0158 (11) −0.0036 (10) 0.0005 (9) −0.0037 (9)
C16 0.0218 (13) 0.0369 (15) 0.0180 (12) −0.0002 (11) 0.0011 (10) −0.0056 (11)
C17 0.0210 (13) 0.0277 (14) 0.0289 (13) −0.0060 (11) 0.0038 (10) 0.0046 (11)
C18 0.0225 (14) 0.0422 (17) 0.0309 (14) −0.0018 (12) 0.0076 (11) −0.0004 (12)
C19 0.0327 (15) 0.0481 (18) 0.0337 (15) −0.0071 (13) −0.0117 (12) −0.0123 (13)
C20 0.0566 (19) 0.0424 (18) 0.0311 (15) −0.0186 (15) −0.0055 (13) −0.0096 (13)

Geometric parameters (Å, º)

P1—O3 1.4616 (15) C9—C14 1.526 (3)
P1—O2 1.5564 (16) C9—C10 1.531 (3)
P1—O1 1.5670 (15) C9—H9 1.0000
P1—C15 1.839 (2) C10—C11 1.526 (3)
CL1—C16 1.764 (3) C10—H10A 0.9900
CL2—C16 1.780 (2) C10—H10B 0.9900
CL3—C16 1.772 (2) C11—C12 1.520 (3)
O1—C17 1.454 (3) C11—C13 1.520 (3)
O2—C19 1.474 (3) C11—H11 1.0000
O4—C1 1.202 (3) C12—H12A 0.9800
O5—C2 1.209 (3) C12—H12B 0.9800
O6—C14 1.220 (2) C12—H12C 0.9800
N1—C2 1.398 (3) C13—H13A 0.9800
N1—C1 1.417 (3) C13—H13B 0.9800
N1—C9 1.459 (2) C13—H13C 0.9800
N2—C14 1.356 (3) C15—C16 1.545 (3)
N2—C15 1.442 (3) C15—H15 1.0000
N2—H1 0.76 (2) C17—C18 1.496 (3)
C1—C8 1.487 (3) C17—H17A 0.9900
C2—C3 1.486 (3) C17—H17B 0.9900
C3—C4 1.374 (3) C18—H18A 0.9800
C3—C8 1.387 (3) C18—H18B 0.9800
C4—C5 1.394 (3) C18—H18C 0.9800
C4—H4 0.9500 C19—C20 1.480 (4)
C5—C6 1.389 (3) C19—H19A 0.9900
C5—H5 0.9500 C19—H19B 0.9900
C6—C7 1.392 (3) C20—H20A 0.9800
C6—H6 0.9500 C20—H20B 0.9800
C7—C8 1.387 (3) C20—H20C 0.9800
C7—H7 0.9500
O3—P1—O2 116.77 (9) C13—C11—H11 108.1
O3—P1—O1 109.82 (9) C10—C11—H11 108.1
O2—P1—O1 107.96 (9) C11—C12—H12A 109.5
O3—P1—C15 115.02 (10) C11—C12—H12B 109.5
O2—P1—C15 102.73 (9) H12A—C12—H12B 109.5
O1—P1—C15 103.45 (9) C11—C12—H12C 109.5
C17—O1—P1 123.88 (14) H12A—C12—H12C 109.5
C19—O2—P1 121.74 (15) H12B—C12—H12C 109.5
C2—N1—C1 111.45 (18) C11—C13—H13A 109.5
C2—N1—C9 120.53 (17) C11—C13—H13B 109.5
C1—N1—C9 127.97 (18) H13A—C13—H13B 109.5
C14—N2—C15 121.5 (2) C11—C13—H13C 109.5
C14—N2—H1 118.0 (17) H13A—C13—H13C 109.5
C15—N2—H1 119.8 (17) H13B—C13—H13C 109.5
O4—C1—N1 125.4 (2) O6—C14—N2 122.8 (2)
O4—C1—C8 129.3 (2) O6—C14—C9 122.46 (19)
N1—C1—C8 105.22 (18) N2—C14—C9 114.63 (19)
O5—C2—N1 124.7 (2) N2—C15—C16 111.14 (18)
O5—C2—C3 128.9 (2) N2—C15—P1 107.70 (14)
N1—C2—C3 106.43 (19) C16—C15—P1 116.87 (14)
C4—C3—C8 122.5 (2) N2—C15—H15 106.9
C4—C3—C2 129.6 (2) C16—C15—H15 106.9
C8—C3—C2 107.91 (19) P1—C15—H15 106.9
C3—C4—C5 117.0 (2) C15—C16—CL1 111.57 (16)
C3—C4—H4 121.5 C15—C16—CL3 110.61 (16)
C5—C4—H4 121.5 CL1—C16—CL3 109.04 (12)
C6—C5—C4 120.6 (2) C15—C16—CL2 108.95 (14)
C6—C5—H5 119.7 CL1—C16—CL2 108.53 (13)
C4—C5—H5 119.7 CL3—C16—CL2 108.04 (13)
C5—C6—C7 122.2 (2) O1—C17—C18 107.44 (19)
C5—C6—H6 118.9 O1—C17—H17A 110.2
C7—C6—H6 118.9 C18—C17—H17A 110.2
C8—C7—C6 116.6 (2) O1—C17—H17B 110.2
C8—C7—H7 121.7 C18—C17—H17B 110.2
C6—C7—H7 121.7 H17A—C17—H17B 108.5
C7—C8—C3 121.0 (2) C17—C18—H18A 109.5
C7—C8—C1 130.0 (2) C17—C18—H18B 109.5
C3—C8—C1 108.93 (18) H18A—C18—H18B 109.5
N1—C9—C14 110.41 (17) C17—C18—H18C 109.5
N1—C9—C10 114.38 (17) H18A—C18—H18C 109.5
C14—C9—C10 108.24 (17) H18B—C18—H18C 109.5
N1—C9—H9 107.9 O2—C19—C20 108.7 (2)
C14—C9—H9 107.9 O2—C19—H19A 109.9
C10—C9—H9 107.9 C20—C19—H19A 109.9
C11—C10—C9 115.53 (18) O2—C19—H19B 109.9
C11—C10—H10A 108.4 C20—C19—H19B 109.9
C9—C10—H10A 108.4 H19A—C19—H19B 108.3
C11—C10—H10B 108.4 C19—C20—H20A 109.5
C9—C10—H10B 108.4 C19—C20—H20B 109.5
H10A—C10—H10B 107.5 H20A—C20—H20B 109.5
C12—C11—C13 111.1 (2) C19—C20—H20C 109.5
C12—C11—C10 111.88 (19) H20A—C20—H20C 109.5
C13—C11—C10 109.45 (19) H20B—C20—H20C 109.5
C12—C11—H11 108.1
O3—P1—O1—C17 172.13 (16) N1—C1—C8—C3 1.9 (2)
O2—P1—O1—C17 43.80 (18) C2—N1—C9—C14 97.2 (2)
C15—P1—O1—C17 −64.61 (18) C1—N1—C9—C14 −79.8 (3)
O3—P1—O2—C19 −37.1 (2) C2—N1—C9—C10 −140.4 (2)
O1—P1—O2—C19 87.18 (18) C1—N1—C9—C10 42.6 (3)
C15—P1—O2—C19 −163.92 (17) N1—C9—C10—C11 51.7 (3)
C2—N1—C1—O4 174.9 (2) C14—C9—C10—C11 175.29 (19)
C9—N1—C1—O4 −7.8 (4) C9—C10—C11—C12 54.9 (3)
C2—N1—C1—C8 −2.6 (2) C9—C10—C11—C13 178.5 (2)
C9—N1—C1—C8 174.64 (19) C15—N2—C14—O6 9.9 (3)
C1—N1—C2—O5 −176.7 (2) C15—N2—C14—C9 −166.63 (18)
C9—N1—C2—O5 5.8 (3) N1—C9—C14—O6 39.6 (3)
C1—N1—C2—C3 2.2 (2) C10—C9—C14—O6 −86.3 (2)
C9—N1—C2—C3 −175.22 (17) N1—C9—C14—N2 −143.88 (19)
O5—C2—C3—C4 −3.4 (4) C10—C9—C14—N2 90.2 (2)
N1—C2—C3—C4 177.7 (2) C14—N2—C15—C16 −108.9 (2)
O5—C2—C3—C8 178.0 (2) C14—N2—C15—P1 121.90 (19)
N1—C2—C3—C8 −0.9 (2) O3—P1—C15—N2 71.35 (17)
C8—C3—C4—C5 −0.2 (3) O2—P1—C15—N2 −160.69 (14)
C2—C3—C4—C5 −178.7 (2) O1—P1—C15—N2 −48.41 (16)
C3—C4—C5—C6 −0.1 (3) O3—P1—C15—C16 −54.52 (19)
C4—C5—C6—C7 0.1 (4) O2—P1—C15—C16 73.43 (18)
C5—C6—C7—C8 0.3 (3) O1—P1—C15—C16 −174.29 (16)
C6—C7—C8—C3 −0.6 (3) N2—C15—C16—CL1 −62.8 (2)
C6—C7—C8—C1 179.4 (2) P1—C15—C16—CL1 61.4 (2)
C4—C3—C8—C7 0.6 (3) N2—C15—C16—CL3 175.64 (15)
C2—C3—C8—C7 179.4 (2) P1—C15—C16—CL3 −60.2 (2)
C4—C3—C8—C1 −179.39 (19) N2—C15—C16—CL2 57.0 (2)
C2—C3—C8—C1 −0.6 (2) P1—C15—C16—CL2 −178.83 (11)
O4—C1—C8—C7 4.5 (4) P1—O1—C17—C18 −169.00 (15)
N1—C1—C8—C7 −178.1 (2) P1—O2—C19—C20 133.89 (19)
O4—C1—C8—C3 −175.5 (2)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
N2—H1···O3i 0.76 (2) 2.09 (2) 2.846 (3) 170 (2)
C9—H9···O3i 1.00 2.47 3.265 (3) 136
C7—H7···O6ii 0.95 2.46 3.393 (3) 169

Symmetry codes: (i) −x+1, −y+1, −z+1; (ii) −x+1, −y, −z+2.

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–S19.
  2. Bertram, A. & Pattenden, G. (2001). Synlett, pp. 1873–1874.
  3. Bhatti, M. H., Yunus, U., Imtiaz-ud-Din, Shams-ul-Islam, S. & Wong, W.-Y. (2010). Acta Cryst. E66, o2969. [DOI] [PMC free article] [PubMed]
  4. Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS, Inc., Madison, Wisconsin, USA.
  5. Chamberlin, J. W. & Chen, S. J. (1977). J. Antibiot. 30, 197–201. [DOI] [PubMed]
  6. Feeder, N. & Jones, W. (1996). Acta Cryst. C52, 1516–1520.
  7. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst B72, 171–179. [DOI] [PMC free article] [PubMed]
  8. Jansen, R., Kunze, B., Reichenbach, H., Jurkiewicz, E., Hunsmann, G. & Höfle, G. (1992). Liebigs Ann. Chem. pp. 357–359.
  9. Jin, Z. (2006). Nat. Prod. Rep. 23, 464–496. [DOI] [PubMed]
  10. Lukashuk, O. I., Abdurakhmanova, E. R., Kondratyuk, K. M., Golovchenko, O. V., Khokhlov, K. V., Brovarets, V. S. & Kukhar, V. P. (2015). RSC Adv. 5, 11198–11206.
  11. Moody, C. J. & Bagley, M. C. (1998). J. Chem. Soc. Perkin Trans. 1, pp. 601–608.
  12. Ng, S. W. (1992). Acta Cryst. C48, 1694–1695.
  13. Otogawa, K., Ishikawa, K., Shiro, M. & Asahi, T. (2015). Acta Cryst. E71, 107–109. [DOI] [PMC free article] [PubMed]
  14. Palmer, D. C. (2003). Oxazoles: Synthesis, Reactions, and Spectroscopy, Ed., Hoboken: Wiley, part A, p. 255.
  15. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  16. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  17. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  18. Shendage, D. M., Fröhlich, R. & Haufe, G. (2004). Org. Lett. 6, 3675–3678. [DOI] [PubMed]
  19. Turchi, I. J. (1986). Editor. Oxazoles. New York: Wiley.
  20. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018008277/lh5875sup1.cif

e-74-00915-sup1.cif (619.1KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018008277/lh5875Isup2.hkl

e-74-00915-Isup2.hkl (352.2KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018008277/lh5875Isup3.cml

CCDC reference: 1847170

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES