In the title CoII complex, both the cation and succinate anion are located about individual inversion centres. In the crystal, the ions are linked via O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional framework.
Keywords: crystal structure, succinic acid, isonicotinamide, cobalt(II), Hirshfeld surfaces, hydrogen bonding
Abstract
The reaction of CoCl2 with succinic acid and isonicotinamide in basic solution produces the title complex [Co(C6H6N2O)2(H2O)4](C4H4O4). The cobalt(II) ion of the complex cation and the succinate anion are each located on an inversion centre. The CoII ion is octahedrally coordinated by four O atoms of water molecules and two N atoms of isonicotinamide molecules. The two ions are linked via Owater—H⋯Osuccinate hydrogen bonds, forming chains propagating along [001]. In the crystal, these hydrogen-bonded chains are linked into a three-dimensional framework by further O—H⋯O hydrogen bonds and N—H⋯O hydrogen bonds. The framework is reinforced by C—H⋯O hydrogen bonds. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the intermolecular interactions present in the crystal.
Chemical context
Metal carboxylates have attracted intense attention because of their interesting framework topologies. Among metal carboxylates, succinate dianions (succ) have good conformational freedom and they possess some desirable features such as being a versatile ligand because of the four electron-donor oxygen atoms they carry, and their ability to link inorganic moieties. Metal succinates are one of the best dicarboxylate-based moieties that display an interesting structural variety. Dicarboxylic acids such as succinic acid and amides have been particularly useful in creating many supramolecular structures between isonicotinamide and a variety of carboxylic acid molecules (Vishweshwar et al., 2003 ▸; Aakeröy et al., 2002 ▸). Dicarboxylic acid ligands have been utilized frequently in the synthesis of various metal carboxylates. For this reason they have been investigated widely, both experimentally and computationally. We describe herein the synthesis, structural features and Hirshfeld surface analysis of a new tetraaquabis(isonicotinamide-κN1)cobalt(II) succinate complex.
Structural commentary
The molecular structure of the title complex is illustrated in Fig. 1 ▸. The cobalt(II) ion is coordinated octahedrally by four O atoms of water molecules and two Npyridine atoms of isonicotinamide molecules. The values of the Co—Owater and Co—Npyridine bond lengths and the bond angles involving atom Co1 (Table 1 ▸) are close to those reported for similar cobalt(II) complexes (Gao et al., 2006 ▸; Liu et al., 2012 ▸). The C—O bond lengths in the deprotonated carboxylic groups of the succinate dianion are almost the same, viz. 1.247 (3) Å for C7—O1 and 1.257 (3) Å for C7—O2, indicating delocalization of charge. Each O atom of the succinate dianion is linked to an H atom of a water molecule via O—H⋯O hydrogen bonds, so forming chains along the c-axis direction (Table 2 ▸ and Figs. 1 ▸ and 2 ▸).
Figure 1.
The molecular structure of the title complex, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (v) −x + 1, −y + 1, −z + 2; (vi) −x + 1, −y + 1, − z + 1.]
Table 1. Selected geometric parameters (Å, °).
| Co1—O3 | 2.1134 (15) | Co1—N2 | 2.1540 (16) |
| Co1—O4 | 2.0795 (16) | ||
| O4—Co1—N2i | 92.15 (7) | O3—Co1—N2i | 88.85 (6) |
| O4—Co1—N2 | 87.85 (6) | O4i—Co1—O3 | 88.82 (7) |
| O3—Co1—N2 | 91.15 (6) | O4—Co1—O3 | 91.18 (7) |
Symmetry code: (i)
.
Table 2. Hydrogen-bond geometry (Å, °).
| D—H⋯A | D—H | H⋯A | D⋯A | D—H⋯A |
|---|---|---|---|---|
| O3—H3B⋯O1 | 0.79 (4) | 1.97 (4) | 2.756 (3) | 176 (3) |
| O4—H4A⋯O2 | 0.77 (3) | 1.88 (3) | 2.651 (2) | 174 (3) |
| O3—H3A⋯O2ii | 0.81 (3) | 1.92 (3) | 2.729 (2) | 175 (3) |
| O4—H4B⋯O5iii | 0.83 (4) | 1.97 (4) | 2.801 (2) | 174 (3) |
| N1—H1A⋯O5iv | 0.92 (4) | 2.34 (4) | 3.227 (3) | 160 (3) |
| N1—H1B⋯O1v | 0.87 (4) | 2.14 (4) | 2.966 (3) | 160 (3) |
| C5—H5⋯O2ii | 0.93 | 2.41 | 3.307 (3) | 161 |
| C6—H6⋯O5iv | 0.93 | 2.31 | 3.223 (3) | 167 |
Symmetry codes: (ii)
; (iii)
; (iv)
; (v)
.
Figure 2.
A view along the b axis of the crystal packing of the title complex. Dashed lines indicate the hydrogen bonds (see Table 2 ▸).
Supramolecular features
In the crystal, the chains formed by O—H⋯O hydrogen bonds involving the succinate anions and the complex cations are linked by further O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional supramolecular architecture (Table 2 ▸ and Fig. 2 ▸). Within the framework, C—H⋯O hydrogen bonds are also present (Table 2 ▸).
Hirshfeld surface analysis
CrystalExplorer17.5 (Turner et al., 2017 ▸) was used to analyse the interactions in the crystal. The molecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimensional d norm surfaces mapped over a fixed colour scale of −0.728 (red) to 1.428 (blue). The red spots in the d norm surface (Fig. 3 ▸), indicate the regions of donor–acceptor interactions given in Table 2 ▸.
Figure 3.
d norm mapped on the Hirshfeld surfaces to visualize the intramolecular and intermolecular interactions of the title complex.
The view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.366 to 0.236 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is given in Fig. 4 ▸. The C—H⋯O, N—H⋯O and O—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the related atoms with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.
Figure 4.
A view of the three-dimensional Hirshfeld surface of the title complex, plotted over the electrostatic potential energy.
The fingerprint plot for the title complex is presented in Fig. 5 ▸. The contribution from the O⋯H/H⋯O contacts, corresponding to C—H⋯O, N—H⋯O and O—H⋯O interactions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bonding interaction (43%) (Fig. 6 ▸ a). The H⋯H interactions appear in the middle of the scattered points in the two-dimensional fingerprint plots with an overall Hirshfeld surface of 39.8% (Fig. 6 ▸ b). The contribution of the other intermolecular contacts to the Hirshfeld surfaces is C⋯H/H⋯C (8.4%) (Fig. 6 ▸ c). The C⋯C/C⋯C contacts with 3.8% contribution appear as points of low density (Fig. 6 ▸ d).
Figure 5.
The fingerprint plot of the title compound.
Figure 6.
(a) H⋯O/O⋯H, (b) H⋯H/H⋯H, (c) H⋯C/C⋯H and (d) C⋯C/C⋯C contacts in the title complex, showing the percentages of contacts contributing to the total Hirshfeld surface area.
Database survey
A search of the Cambridge Structural Database (CSD, version 5.39, update May 2018; Groom et al., 2016 ▸) revealed the structures of five similar tetraaquabis(isonicotinamide-κN 1)cobalt(II) complexes with different counter-anions. They include p-formylbenzoate dihydrate (HUCPIF; Hökelek et al., 2009 ▸), bis(3-hydroxybenzoate) tetrahydrate (LAMMOD; Zaman et al., 2012 ▸), disaccharinate sesquihydrate (LEHHUC; Uçar et al., 2006 ▸), bis(thiophene-2,5-dicarboxylate) dihydrate (NETQOU; Liu et al., 2012 ▸) and terephthalate dihydrate (SETHIJ; Gao et al., 2006 ▸). In all five complexes the cation possesses inversion symmetry with the cobalt ion being located on a centre of symmetry. The Co—Owater bond lengths vary from ca 2.057 to 2.115 Å, while the Co—Npyridine bond lengths vary from ca 2.131 to 2.169 Å. In the title complex, the cation also possesses inversion symmetry and the Co—Owater bond lengths [2.079 (2) and 2.113 (2) Å] and the Co—Npyridine bond length [2.154 (2) Å] fall within these limits. In addition, there are several precedents for succinic acid and isonicotinamides, including the structures of bis(isonicotinamide) succinic acid (Aakeröy et al., 2002 ▸), succinic acid N,N′-octane-1,8-diyldiisonicotinamide (Aakeröy et al., 2014 ▸), succinic acid bis(isonicotinamide) (Vishweshwar et al., 2003 ▸) and catena-[(μ4-succinato)(μ2-succinato)bis(μ2-4-pyridylisonicotinamide)dizinc] (Uebler et al., 2013 ▸).
Synthesis and crystallization
An aqueous solution of succinic acid (25 mmol, 3 g) was added to a solution of NaOH (50 mmol, 2 g) under stirring. An aqueous solution of CoCl2·6H2O (25 mmol, 5.95 g) was added and the reaction mixture stirred for 30 min at room temperature. The pink mixture obtained was filtered and left to dry. The pink crystalline material (0.86 mmol, 0.20 g) obtained was dissolved in water and added to a aqueous solution of isonicotinamide (1.71 mmol, 0.21 g). The resulting suspension was filtered and the filtrate allowed to stand. Red prismatic crystals were obtained from the filtrate in five weeks.
Refinement
Crystal data, data collection and structure refinement details are summarized in Table 3 ▸. The water and NH2 H atoms were located from difference-Fourier maps and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93-0.97 Å with U iso(H) = 1.2U eq(C).
Table 3. Experimental details.
| Crystal data | |
| Chemical formula | [Co(C6H6N2O)2(H2O)4](C4H4O4) |
| M r | 491.32 |
| Crystal system, space group | Monoclinic, P21/c |
| Temperature (K) | 296 |
| a, b, c (Å) | 9.6757 (8), 10.0381 (8), 11.4947 (10) |
| β (°) | 112.489 (6) |
| V (Å3) | 1031.53 (15) |
| Z | 2 |
| Radiation type | Mo Kα |
| μ (mm−1) | 0.89 |
| Crystal size (mm) | 0.68 × 0.49 × 0.37 |
| Data collection | |
| Diffractometer | Stoe IPDS 2 |
| Absorption correction | Integration (X-RED32; Stoe & Cie, 2002 ▸) |
| T min, T max | 0.664, 0.770 |
| No. of measured, independent and observed [I > 2σ(I)] reflections | 5748, 2125, 1709 |
| R int | 0.033 |
| (sin θ/λ)max (Å−1) | 0.628 |
| Refinement | |
| R[F 2 > 2σ(F 2)], wR(F 2), S | 0.034, 0.087, 1.02 |
| No. of reflections | 2125 |
| No. of parameters | 166 |
| H-atom treatment | H atoms treated by a mixture of independent and constrained refinement |
| Δρmax, Δρmin (e Å−3) | 0.28, −0.38 |
Supplementary Material
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018008861/su5446sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018008861/su5446Isup2.hkl
CCDC reference: 1842712
Additional supporting information: crystallographic information; 3D view; checkCIF report
Acknowledgments
The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).
supplementary crystallographic information
Crystal data
| [Co(C6H6N2O)2(H2O)4](C4H4O4) | F(000) = 510 |
| Mr = 491.32 | Dx = 1.582 Mg m−3 |
| Monoclinic, P21/c | Mo Kα radiation, λ = 0.71073 Å |
| a = 9.6757 (8) Å | Cell parameters from 8789 reflections |
| b = 10.0381 (8) Å | θ = 3.1–30.2° |
| c = 11.4947 (10) Å | µ = 0.89 mm−1 |
| β = 112.489 (6)° | T = 296 K |
| V = 1031.53 (15) Å3 | Prism, red |
| Z = 2 | 0.68 × 0.49 × 0.37 mm |
Data collection
| Stoe IPDS 2 diffractometer | 2125 independent reflections |
| Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus | 1709 reflections with I > 2σ(I) |
| Detector resolution: 6.67 pixels mm-1 | Rint = 0.033 |
| rotation method scans | θmax = 26.5°, θmin = 4.0° |
| Absorption correction: integration (X-RED32; Stoe & Cie, 2002) | h = −12→12 |
| Tmin = 0.664, Tmax = 0.770 | k = −12→12 |
| 5748 measured reflections | l = −14→10 |
Refinement
| Refinement on F2 | Primary atom site location: structure-invariant direct methods |
| Least-squares matrix: full | Secondary atom site location: difference Fourier map |
| R[F2 > 2σ(F2)] = 0.034 | Hydrogen site location: mixed |
| wR(F2) = 0.087 | H atoms treated by a mixture of independent and constrained refinement |
| S = 1.02 | w = 1/[σ2(Fo2) + (0.0544P)2 + 0.0723P] where P = (Fo2 + 2Fc2)/3 |
| 2125 reflections | (Δ/σ)max < 0.001 |
| 166 parameters | Δρmax = 0.28 e Å−3 |
| 0 restraints | Δρmin = −0.38 e Å−3 |
Special details
| Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes. |
Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)
| x | y | z | Uiso*/Ueq | ||
| Co1 | 0.500000 | 0.500000 | 1.000000 | 0.02416 (13) | |
| O3 | 0.40225 (19) | 0.64528 (17) | 0.85930 (16) | 0.0323 (3) | |
| O4 | 0.39411 (19) | 0.34772 (15) | 0.87503 (16) | 0.0314 (3) | |
| O2 | 0.44508 (19) | 0.36520 (15) | 0.66478 (15) | 0.0372 (4) | |
| O5 | 1.08679 (19) | 0.30825 (16) | 0.80841 (18) | 0.0450 (4) | |
| O1 | 0.2865 (2) | 0.53407 (16) | 0.62211 (16) | 0.0413 (4) | |
| N2 | 0.68645 (19) | 0.47784 (15) | 0.94294 (17) | 0.0284 (4) | |
| N1 | 1.0405 (3) | 0.5081 (3) | 0.7144 (3) | 0.0523 (6) | |
| C1 | 1.0166 (2) | 0.4142 (2) | 0.7847 (2) | 0.0340 (5) | |
| C2 | 0.9000 (2) | 0.4398 (2) | 0.8388 (2) | 0.0291 (4) | |
| C5 | 0.7381 (2) | 0.5790 (2) | 0.8958 (2) | 0.0336 (5) | |
| H5 | 0.700517 | 0.663743 | 0.898389 | 0.040* | |
| C7 | 0.3809 (2) | 0.4648 (2) | 0.6004 (2) | 0.0296 (4) | |
| C3 | 0.8494 (3) | 0.3354 (2) | 0.8895 (2) | 0.0348 (5) | |
| H3 | 0.886482 | 0.249919 | 0.889455 | 0.042* | |
| C6 | 0.8434 (2) | 0.5649 (2) | 0.8438 (2) | 0.0343 (5) | |
| H6 | 0.876190 | 0.638596 | 0.812443 | 0.041* | |
| C4 | 0.7441 (3) | 0.3579 (2) | 0.9399 (2) | 0.0353 (5) | |
| H4 | 0.711309 | 0.286121 | 0.973646 | 0.042* | |
| C8 | 0.4207 (3) | 0.5013 (3) | 0.4888 (3) | 0.0535 (7) | |
| H8A | 0.368960 | 0.440472 | 0.420345 | 0.064* | |
| H8B | 0.382876 | 0.590118 | 0.461003 | 0.064* | |
| H1A | 0.982 (4) | 0.584 (4) | 0.697 (4) | 0.083 (12)* | |
| H1B | 1.107 (4) | 0.495 (3) | 0.683 (4) | 0.076 (11)* | |
| H4A | 0.403 (3) | 0.355 (3) | 0.812 (3) | 0.035 (7)* | |
| H3A | 0.449 (3) | 0.711 (3) | 0.857 (3) | 0.049 (8)* | |
| H3B | 0.373 (4) | 0.612 (3) | 0.792 (3) | 0.055 (9)* | |
| H4B | 0.304 (4) | 0.330 (3) | 0.858 (3) | 0.065 (10)* |
Atomic displacement parameters (Å2)
| U11 | U22 | U33 | U12 | U13 | U23 | |
| Co1 | 0.0267 (2) | 0.02335 (19) | 0.0296 (2) | −0.00065 (15) | 0.01885 (15) | 0.00042 (15) |
| O3 | 0.0388 (9) | 0.0293 (8) | 0.0331 (9) | −0.0031 (7) | 0.0184 (7) | 0.0019 (7) |
| O4 | 0.0343 (9) | 0.0338 (8) | 0.0335 (9) | −0.0035 (6) | 0.0211 (7) | −0.0022 (6) |
| O2 | 0.0519 (10) | 0.0311 (7) | 0.0413 (9) | 0.0079 (7) | 0.0319 (8) | 0.0046 (6) |
| O5 | 0.0432 (9) | 0.0380 (9) | 0.0700 (12) | −0.0002 (7) | 0.0399 (9) | −0.0086 (8) |
| O1 | 0.0469 (9) | 0.0431 (9) | 0.0443 (10) | 0.0117 (7) | 0.0291 (8) | 0.0043 (7) |
| N2 | 0.0296 (8) | 0.0264 (9) | 0.0373 (9) | −0.0010 (6) | 0.0217 (7) | −0.0014 (7) |
| N1 | 0.0506 (12) | 0.0602 (14) | 0.0686 (15) | 0.0086 (12) | 0.0479 (12) | 0.0121 (12) |
| C1 | 0.0285 (11) | 0.0403 (12) | 0.0406 (12) | −0.0040 (9) | 0.0214 (10) | −0.0073 (9) |
| C2 | 0.0257 (10) | 0.0333 (10) | 0.0336 (11) | −0.0011 (8) | 0.0174 (9) | −0.0032 (8) |
| C5 | 0.0368 (12) | 0.0252 (10) | 0.0475 (13) | 0.0038 (8) | 0.0260 (10) | 0.0045 (9) |
| C7 | 0.0323 (10) | 0.0304 (10) | 0.0309 (11) | −0.0036 (8) | 0.0175 (9) | −0.0010 (8) |
| C3 | 0.0368 (12) | 0.0258 (10) | 0.0515 (13) | −0.0003 (8) | 0.0276 (10) | −0.0027 (9) |
| C6 | 0.0349 (11) | 0.0320 (11) | 0.0450 (13) | 0.0004 (9) | 0.0253 (10) | 0.0076 (9) |
| C4 | 0.0400 (12) | 0.0262 (10) | 0.0516 (14) | −0.0018 (9) | 0.0307 (11) | 0.0014 (9) |
| C8 | 0.0439 (14) | 0.0825 (19) | 0.0455 (14) | 0.0135 (14) | 0.0298 (12) | 0.0250 (14) |
Geometric parameters (Å, º)
| Co1—O4i | 2.0794 (16) | N1—H1A | 0.92 (4) |
| Co1—O3 | 2.1134 (15) | N1—H1B | 0.87 (4) |
| Co1—O4 | 2.0795 (16) | C1—C2 | 1.504 (3) |
| Co1—N2i | 2.1540 (16) | C2—C3 | 1.377 (3) |
| Co1—O3i | 2.1134 (15) | C2—C6 | 1.381 (3) |
| Co1—N2 | 2.1540 (16) | C5—C6 | 1.372 (3) |
| O3—H3A | 0.81 (3) | C5—H5 | 0.9300 |
| O3—H3B | 0.79 (4) | C7—C8 | 1.519 (3) |
| O4—H4A | 0.77 (3) | C3—C4 | 1.370 (3) |
| O4—H4B | 0.83 (4) | C3—H3 | 0.9300 |
| O2—C7 | 1.257 (3) | C6—H6 | 0.9300 |
| O5—C1 | 1.235 (3) | C4—H4 | 0.9300 |
| O1—C7 | 1.247 (3) | C8—C8ii | 1.456 (5) |
| N2—C4 | 1.333 (3) | C8—H8A | 0.9700 |
| N2—C5 | 1.334 (3) | C8—H8B | 0.9700 |
| N1—C1 | 1.317 (3) | ||
| O3—Co1—O3i | 180 | O5—C1—N1 | 122.8 (2) |
| O4i—Co1—O4 | 180 | O5—C1—C2 | 119.4 (2) |
| N2i—Co1—N2 | 180 | N1—C1—C2 | 117.8 (2) |
| O4i—Co1—O3 | 88.82 (7) | C3—C2—C6 | 117.62 (18) |
| O4—Co1—O3 | 91.18 (7) | C3—C2—C1 | 119.32 (18) |
| O4i—Co1—O3i | 91.18 (7) | C6—C2—C1 | 123.03 (19) |
| O4—Co1—O3i | 88.82 (7) | N2—C5—C6 | 123.66 (19) |
| O4i—Co1—N2i | 87.85 (6) | N2—C5—H5 | 118.2 |
| O4—Co1—N2i | 92.15 (7) | C6—C5—H5 | 118.2 |
| O3—Co1—N2i | 88.85 (6) | O1—C7—O2 | 124.09 (19) |
| O3i—Co1—N2i | 91.15 (6) | O1—C7—C8 | 118.4 (2) |
| O4i—Co1—N2 | 92.15 (7) | O2—C7—C8 | 117.47 (19) |
| O4—Co1—N2 | 87.85 (6) | C4—C3—C2 | 119.73 (19) |
| O3—Co1—N2 | 91.15 (6) | C4—C3—H3 | 120.1 |
| O3i—Co1—N2 | 88.85 (6) | C2—C3—H3 | 120.1 |
| Co1—O3—H3A | 120 (2) | C5—C6—C2 | 118.99 (19) |
| Co1—O3—H3B | 110 (2) | C5—C6—H6 | 120.5 |
| H3A—O3—H3B | 108 (3) | C2—C6—H6 | 120.5 |
| Co1—O4—H4A | 112 (2) | N2—C4—C3 | 123.14 (19) |
| Co1—O4—H4B | 121 (2) | N2—C4—H4 | 118.4 |
| H4A—O4—H4B | 106 (3) | C3—C4—H4 | 118.4 |
| C4—N2—C5 | 116.83 (17) | C8ii—C8—C7 | 115.9 (3) |
| C4—N2—Co1 | 120.60 (13) | C8ii—C8—H8A | 108.3 |
| C5—N2—Co1 | 122.14 (13) | C7—C8—H8A | 108.3 |
| C1—N1—H1A | 119 (3) | C8ii—C8—H8B | 108.3 |
| C1—N1—H1B | 119 (2) | C7—C8—H8B | 108.3 |
| H1A—N1—H1B | 122 (3) | H8A—C8—H8B | 107.4 |
| O5—C1—C2—C3 | −14.5 (3) | N2—C5—C6—C2 | 0.2 (4) |
| N1—C1—C2—C3 | 166.3 (2) | C3—C2—C6—C5 | −1.4 (3) |
| O5—C1—C2—C6 | 163.5 (2) | C1—C2—C6—C5 | −179.5 (2) |
| N1—C1—C2—C6 | −15.7 (3) | C5—N2—C4—C3 | −1.2 (4) |
| C4—N2—C5—C6 | 1.1 (4) | Co1—N2—C4—C3 | 171.39 (19) |
| Co1—N2—C5—C6 | −171.37 (19) | C2—C3—C4—N2 | 0.0 (4) |
| C6—C2—C3—C4 | 1.4 (4) | O1—C7—C8—C8ii | 136.1 (3) |
| C1—C2—C3—C4 | 179.5 (2) | O2—C7—C8—C8ii | −44.5 (5) |
Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1.
Hydrogen-bond geometry (Å, º)
| D—H···A | D—H | H···A | D···A | D—H···A |
| O3—H3B···O1 | 0.79 (4) | 1.97 (4) | 2.756 (3) | 176 (3) |
| O4—H4A···O2 | 0.77 (3) | 1.88 (3) | 2.651 (2) | 174 (3) |
| O3—H3A···O2iii | 0.81 (3) | 1.92 (3) | 2.729 (2) | 175 (3) |
| O4—H4B···O5iv | 0.83 (4) | 1.97 (4) | 2.801 (2) | 174 (3) |
| N1—H1A···O5v | 0.92 (4) | 2.34 (4) | 3.227 (3) | 160 (3) |
| N1—H1B···O1vi | 0.87 (4) | 2.14 (4) | 2.966 (3) | 160 (3) |
| C5—H5···O2iii | 0.93 | 2.41 | 3.307 (3) | 161 |
| C6—H6···O5v | 0.93 | 2.31 | 3.223 (3) | 167 |
Symmetry codes: (iii) −x+1, y+1/2, −z+3/2; (iv) x−1, y, z; (v) −x+2, y+1/2, −z+3/2; (vi) x+1, y, z.
References
- Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432. [DOI] [PubMed]
- Aakeröy, C. B., Forbes, S. & Desper, J. (2014). CrystEngComm, 16, 5870–5877.
- Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
- Gao, G.-G., Liu, B., Li, C.-B. & Che, G.-B. (2006). Acta Cryst. E62, m3357–m3358.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
- Hökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009). Acta Cryst. E65, m1130–m1131. [DOI] [PMC free article] [PubMed]
- Liu, B., Li, X.-M., Zhou, S., Wang, Q.-W. & Li, C.-B. (2012). Chin. J. Inorg. Chem. 28, 1019–1026.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
- Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
- Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
- Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
- Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia.
- Uçar, İ., Karabulut, B., Paşaoğlu, H., Büyükgüngör, O. & Bulut, A. (2006). J. Mol. Struct. 787, 38–44.
- Uebler, J. W., Wilson, J. A. & LaDuca, R. L. (2013). CrystEngComm, 15, 1586–1596.
- Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 3, 783–790.
- Zaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m249–m250. [DOI] [PMC free article] [PubMed]
Associated Data
This section collects any data citations, data availability statements, or supplementary materials included in this article.
Supplementary Materials
Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018008861/su5446sup1.cif
Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018008861/su5446Isup2.hkl
CCDC reference: 1842712
Additional supporting information: crystallographic information; 3D view; checkCIF report






