Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jun 28;74(Pt 7):1026–1029. doi: 10.1107/S2056989018008861

Synthesis, crystal structure and Hirshfeld surface analysis of tetra­aqua­bis­(isonicotinamide-κN 1)cobalt(II) succinate

Sevgi Kansiz a, Sergey Malinkin b,*, Necmi Dege a
PMCID: PMC6038622  PMID: 30002909

In the title CoII complex, both the cation and succinate anion are located about individual inversion centres. In the crystal, the ions are linked via O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional framework.

Keywords: crystal structure, succinic acid, isonicotinamide, cobalt(II), Hirshfeld surfaces, hydrogen bonding

Abstract

The reaction of CoCl2 with succinic acid and isonicotinamide in basic solution produces the title complex [Co(C6H6N2O)2(H2O)4](C4H4O4). The cobalt(II) ion of the complex cation and the succinate anion are each located on an inversion centre. The CoII ion is octa­hedrally coordinated by four O atoms of water mol­ecules and two N atoms of isonicotinamide mol­ecules. The two ions are linked via Owater—H⋯Osuccinate hydrogen bonds, forming chains propagating along [001]. In the crystal, these hydrogen-bonded chains are linked into a three-dimensional framework by further O—H⋯O hydrogen bonds and N—H⋯O hydrogen bonds. The framework is reinforced by C—H⋯O hydrogen bonds. Hirshfeld surface analysis and two-dimensional fingerprint plots have been used to analyse the inter­molecular inter­actions present in the crystal.

Chemical context  

Metal carboxyl­ates have attracted intense attention because of their inter­esting framework topologies. Among metal carboxyl­ates, succinate dianions (succ) have good conformational freedom and they possess some desirable features such as being a versatile ligand because of the four electron-donor oxygen atoms they carry, and their ability to link inorganic moieties. Metal succinates are one of the best di­carboxyl­ate-based moieties that display an inter­esting structural variety. Di­carb­oxy­lic acids such as succinic acid and amides have been particularly useful in creating many supra­molecular structures between isonicotinamide and a variety of carb­oxy­lic acid mol­ecules (Vishweshwar et al., 2003; Aakeröy et al., 2002). Di­carb­oxy­lic acid ligands have been utilized frequently in the synthesis of various metal carboxyl­ates. For this reason they have been investigated widely, both experimentally and computationally. We describe herein the synthesis, structural features and Hirshfeld surface analysis of a new tetra­aqua­bis­(isonicotinamide-κN1)cobalt(II) succinate complex.

Structural commentary  

The mol­ecular structure of the title complex is illustrated in Fig. 1. The cobalt(II) ion is coordinated octa­hedrally by four O atoms of water mol­ecules and two Npyridine atoms of isonicotinamide mol­ecules. The values of the Co—Owater and Co—Npyridine bond lengths and the bond angles involving atom Co1 (Table 1) are close to those reported for similar cobalt(II) complexes (Gao et al., 2006; Liu et al., 2012). The C—O bond lengths in the deprotonated carb­oxy­lic groups of the succinate dianion are almost the same, viz. 1.247 (3) Å for C7—O1 and 1.257 (3) Å for C7—O2, indicating delocalization of charge. Each O atom of the succinate dianion is linked to an H atom of a water mol­ecule via O—H⋯O hydrogen bonds, so forming chains along the c-axis direction (Table 2 and Figs. 1 and 2).graphic file with name e-74-01026-scheme1.jpg

Figure 1.

Figure 1

The mol­ecular structure of the title complex, with the atom labelling. Displacement ellipsoids are drawn at the 30% probability level. [Symmetry codes: (v) −x + 1, −y + 1, −z + 2; (vi) −x + 1, −y + 1, − z + 1.]

Table 1. Selected geometric parameters (Å, °).

Co1—O3 2.1134 (15) Co1—N2 2.1540 (16)
Co1—O4 2.0795 (16)    
       
O4—Co1—N2i 92.15 (7) O3—Co1—N2i 88.85 (6)
O4—Co1—N2 87.85 (6) O4i—Co1—O3 88.82 (7)
O3—Co1—N2 91.15 (6) O4—Co1—O3 91.18 (7)

Symmetry code: (i) Inline graphic.

Table 2. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O3—H3B⋯O1 0.79 (4) 1.97 (4) 2.756 (3) 176 (3)
O4—H4A⋯O2 0.77 (3) 1.88 (3) 2.651 (2) 174 (3)
O3—H3A⋯O2ii 0.81 (3) 1.92 (3) 2.729 (2) 175 (3)
O4—H4B⋯O5iii 0.83 (4) 1.97 (4) 2.801 (2) 174 (3)
N1—H1A⋯O5iv 0.92 (4) 2.34 (4) 3.227 (3) 160 (3)
N1—H1B⋯O1v 0.87 (4) 2.14 (4) 2.966 (3) 160 (3)
C5—H5⋯O2ii 0.93 2.41 3.307 (3) 161
C6—H6⋯O5iv 0.93 2.31 3.223 (3) 167

Symmetry codes: (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

A view along the b axis of the crystal packing of the title complex. Dashed lines indicate the hydrogen bonds (see Table 2).

Supra­molecular features  

In the crystal, the chains formed by O—H⋯O hydrogen bonds involving the succinate anions and the complex cations are linked by further O—H⋯O and N—H⋯O hydrogen bonds, forming a three-dimensional supra­molecular architecture (Table 2 and Fig. 2). Within the framework, C—H⋯O hydrogen bonds are also present (Table 2).

Hirshfeld surface analysis  

CrystalExplorer17.5 (Turner et al., 2017) was used to analyse the inter­actions in the crystal. The mol­ecular Hirshfeld surfaces were obtained using a standard (high) surface resolution with the three-dimensional d norm surfaces mapped over a fixed colour scale of −0.728 (red) to 1.428 (blue). The red spots in the d norm surface (Fig. 3), indicate the regions of donor–acceptor inter­actions given in Table 2.

Figure 3.

Figure 3

d norm mapped on the Hirshfeld surfaces to visualize the intra­molecular and inter­molecular inter­actions of the title complex.

The view of the three-dimensional Hirshfeld surface of the title compound plotted over electrostatic potential energy in the range −0.366 to 0.236 a.u. using the STO-3G basis set at the Hartree–Fock level of theory is given in Fig. 4. The C—H⋯O, N—H⋯O and O—H⋯O hydrogen-bond donors and acceptors are shown as blue and red areas around the related atoms with positive (hydrogen-bond donors) and negative (hydrogen-bond acceptors) electrostatic potentials, respectively.

Figure 4.

Figure 4

A view of the three-dimensional Hirshfeld surface of the title complex, plotted over the electrostatic potential energy.

The fingerprint plot for the title complex is presented in Fig. 5. The contribution from the O⋯H/H⋯O contacts, corresponding to C—H⋯O, N—H⋯O and O—H⋯O inter­actions, is represented by a pair of sharp spikes characteristic of a strong hydrogen-bonding inter­action (43%) (Fig. 6 a). The H⋯H inter­actions appear in the middle of the scattered points in the two-dimensional fingerprint plots with an overall Hirshfeld surface of 39.8% (Fig. 6 b). The contribution of the other inter­molecular contacts to the Hirshfeld surfaces is C⋯H/H⋯C (8.4%) (Fig. 6 c). The C⋯C/C⋯C contacts with 3.8% contribution appear as points of low density (Fig. 6 d).

Figure 5.

Figure 5

The fingerprint plot of the title compound.

Figure 6.

Figure 6

(a) H⋯O/O⋯H, (b) H⋯H/H⋯H, (c) H⋯C/C⋯H and (d) C⋯C/C⋯C contacts in the title complex, showing the percentages of contacts contributing to the total Hirshfeld surface area.

Database survey  

A search of the Cambridge Structural Database (CSD, version 5.39, update May 2018; Groom et al., 2016) revealed the structures of five similar tetra­aqua­bis­(isonicotinamide-κN 1)cobalt(II) complexes with different counter-anions. They include p-formyl­benzoate dihydrate (HUCPIF; Hökelek et al., 2009), bis­(3-hy­droxy­benzoate) tetra­hydrate (LAMMOD; Zaman et al., 2012), disaccharinate sesquihydrate (LEHHUC; Uçar et al., 2006), bis­(thio­phene-2,5-di­carboxyl­ate) dihydrate (NETQOU; Liu et al., 2012) and terephthalate dihydrate (SETHIJ; Gao et al., 2006). In all five complexes the cation possesses inversion symmetry with the cobalt ion being located on a centre of symmetry. The Co—Owater bond lengths vary from ca 2.057 to 2.115 Å, while the Co—Npyridine bond lengths vary from ca 2.131 to 2.169 Å. In the title complex, the cation also possesses inversion symmetry and the Co—Owater bond lengths [2.079 (2) and 2.113 (2) Å] and the Co—Npyridine bond length [2.154 (2) Å] fall within these limits. In addition, there are several precedents for succinic acid and isonicotin­amides, including the structures of bis­(isonico­tin­amide) succinic acid (Aakeröy et al., 2002), succinic acid N,N′-octane-1,8-diyldiisonicotinamide (Aakeröy et al., 2014), succinic acid bis­(isonicotinamide) (Vishweshwar et al., 2003) and catena-[(μ4-succinato)(μ2-succinato)bis­(μ2-4-pyridyl­isonicotin­amide)­dizinc] (Uebler et al., 2013).

Synthesis and crystallization  

An aqueous solution of succinic acid (25 mmol, 3 g) was added to a solution of NaOH (50 mmol, 2 g) under stirring. An aqueous solution of CoCl2·6H2O (25 mmol, 5.95 g) was added and the reaction mixture stirred for 30 min at room temperature. The pink mixture obtained was filtered and left to dry. The pink crystalline material (0.86 mmol, 0.20 g) obtained was dissolved in water and added to a aqueous solution of isonicotinamide (1.71 mmol, 0.21 g). The resulting suspension was filtered and the filtrate allowed to stand. Red prismatic crystals were obtained from the filtrate in five weeks.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 3. The water and NH2 H atoms were located from difference-Fourier maps and freely refined. The C-bound H atoms were positioned geometrically and refined using a riding model: C—H = 0.93-0.97 Å with U iso(H) = 1.2U eq(C).

Table 3. Experimental details.

Crystal data
Chemical formula [Co(C6H6N2O)2(H2O)4](C4H4O4)
M r 491.32
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 9.6757 (8), 10.0381 (8), 11.4947 (10)
β (°) 112.489 (6)
V3) 1031.53 (15)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.89
Crystal size (mm) 0.68 × 0.49 × 0.37
 
Data collection
Diffractometer Stoe IPDS 2
Absorption correction Integration (X-RED32; Stoe & Cie, 2002)
T min, T max 0.664, 0.770
No. of measured, independent and observed [I > 2σ(I)] reflections 5748, 2125, 1709
R int 0.033
(sin θ/λ)max−1) 0.628
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.087, 1.02
No. of reflections 2125
No. of parameters 166
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.28, −0.38

Computer programs: X-AREA and X-RED32 (Stoe & Cie, 2002), SHELXS97 (Sheldrick, 2008), SHELXL2017 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012), Mercury (Macrae et al., 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018008861/su5446sup1.cif

e-74-01026-sup1.cif (269KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018008861/su5446Isup2.hkl

e-74-01026-Isup2.hkl (170.6KB, hkl)

CCDC reference: 1842712

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors acknowledge the Faculty of Arts and Sciences, Ondokuz Mayıs University, Turkey, for the use of the Stoe IPDS 2 diffractometer (purchased under grant F.279 of the University Research Fund).

supplementary crystallographic information

Crystal data

[Co(C6H6N2O)2(H2O)4](C4H4O4) F(000) = 510
Mr = 491.32 Dx = 1.582 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 9.6757 (8) Å Cell parameters from 8789 reflections
b = 10.0381 (8) Å θ = 3.1–30.2°
c = 11.4947 (10) Å µ = 0.89 mm1
β = 112.489 (6)° T = 296 K
V = 1031.53 (15) Å3 Prism, red
Z = 2 0.68 × 0.49 × 0.37 mm

Data collection

Stoe IPDS 2 diffractometer 2125 independent reflections
Radiation source: sealed X-ray tube, 12 x 0.4 mm long-fine focus 1709 reflections with I > 2σ(I)
Detector resolution: 6.67 pixels mm-1 Rint = 0.033
rotation method scans θmax = 26.5°, θmin = 4.0°
Absorption correction: integration (X-RED32; Stoe & Cie, 2002) h = −12→12
Tmin = 0.664, Tmax = 0.770 k = −12→12
5748 measured reflections l = −14→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.034 Hydrogen site location: mixed
wR(F2) = 0.087 H atoms treated by a mixture of independent and constrained refinement
S = 1.02 w = 1/[σ2(Fo2) + (0.0544P)2 + 0.0723P] where P = (Fo2 + 2Fc2)/3
2125 reflections (Δ/σ)max < 0.001
166 parameters Δρmax = 0.28 e Å3
0 restraints Δρmin = −0.38 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Co1 0.500000 0.500000 1.000000 0.02416 (13)
O3 0.40225 (19) 0.64528 (17) 0.85930 (16) 0.0323 (3)
O4 0.39411 (19) 0.34772 (15) 0.87503 (16) 0.0314 (3)
O2 0.44508 (19) 0.36520 (15) 0.66478 (15) 0.0372 (4)
O5 1.08679 (19) 0.30825 (16) 0.80841 (18) 0.0450 (4)
O1 0.2865 (2) 0.53407 (16) 0.62211 (16) 0.0413 (4)
N2 0.68645 (19) 0.47784 (15) 0.94294 (17) 0.0284 (4)
N1 1.0405 (3) 0.5081 (3) 0.7144 (3) 0.0523 (6)
C1 1.0166 (2) 0.4142 (2) 0.7847 (2) 0.0340 (5)
C2 0.9000 (2) 0.4398 (2) 0.8388 (2) 0.0291 (4)
C5 0.7381 (2) 0.5790 (2) 0.8958 (2) 0.0336 (5)
H5 0.700517 0.663743 0.898389 0.040*
C7 0.3809 (2) 0.4648 (2) 0.6004 (2) 0.0296 (4)
C3 0.8494 (3) 0.3354 (2) 0.8895 (2) 0.0348 (5)
H3 0.886482 0.249919 0.889455 0.042*
C6 0.8434 (2) 0.5649 (2) 0.8438 (2) 0.0343 (5)
H6 0.876190 0.638596 0.812443 0.041*
C4 0.7441 (3) 0.3579 (2) 0.9399 (2) 0.0353 (5)
H4 0.711309 0.286121 0.973646 0.042*
C8 0.4207 (3) 0.5013 (3) 0.4888 (3) 0.0535 (7)
H8A 0.368960 0.440472 0.420345 0.064*
H8B 0.382876 0.590118 0.461003 0.064*
H1A 0.982 (4) 0.584 (4) 0.697 (4) 0.083 (12)*
H1B 1.107 (4) 0.495 (3) 0.683 (4) 0.076 (11)*
H4A 0.403 (3) 0.355 (3) 0.812 (3) 0.035 (7)*
H3A 0.449 (3) 0.711 (3) 0.857 (3) 0.049 (8)*
H3B 0.373 (4) 0.612 (3) 0.792 (3) 0.055 (9)*
H4B 0.304 (4) 0.330 (3) 0.858 (3) 0.065 (10)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Co1 0.0267 (2) 0.02335 (19) 0.0296 (2) −0.00065 (15) 0.01885 (15) 0.00042 (15)
O3 0.0388 (9) 0.0293 (8) 0.0331 (9) −0.0031 (7) 0.0184 (7) 0.0019 (7)
O4 0.0343 (9) 0.0338 (8) 0.0335 (9) −0.0035 (6) 0.0211 (7) −0.0022 (6)
O2 0.0519 (10) 0.0311 (7) 0.0413 (9) 0.0079 (7) 0.0319 (8) 0.0046 (6)
O5 0.0432 (9) 0.0380 (9) 0.0700 (12) −0.0002 (7) 0.0399 (9) −0.0086 (8)
O1 0.0469 (9) 0.0431 (9) 0.0443 (10) 0.0117 (7) 0.0291 (8) 0.0043 (7)
N2 0.0296 (8) 0.0264 (9) 0.0373 (9) −0.0010 (6) 0.0217 (7) −0.0014 (7)
N1 0.0506 (12) 0.0602 (14) 0.0686 (15) 0.0086 (12) 0.0479 (12) 0.0121 (12)
C1 0.0285 (11) 0.0403 (12) 0.0406 (12) −0.0040 (9) 0.0214 (10) −0.0073 (9)
C2 0.0257 (10) 0.0333 (10) 0.0336 (11) −0.0011 (8) 0.0174 (9) −0.0032 (8)
C5 0.0368 (12) 0.0252 (10) 0.0475 (13) 0.0038 (8) 0.0260 (10) 0.0045 (9)
C7 0.0323 (10) 0.0304 (10) 0.0309 (11) −0.0036 (8) 0.0175 (9) −0.0010 (8)
C3 0.0368 (12) 0.0258 (10) 0.0515 (13) −0.0003 (8) 0.0276 (10) −0.0027 (9)
C6 0.0349 (11) 0.0320 (11) 0.0450 (13) 0.0004 (9) 0.0253 (10) 0.0076 (9)
C4 0.0400 (12) 0.0262 (10) 0.0516 (14) −0.0018 (9) 0.0307 (11) 0.0014 (9)
C8 0.0439 (14) 0.0825 (19) 0.0455 (14) 0.0135 (14) 0.0298 (12) 0.0250 (14)

Geometric parameters (Å, º)

Co1—O4i 2.0794 (16) N1—H1A 0.92 (4)
Co1—O3 2.1134 (15) N1—H1B 0.87 (4)
Co1—O4 2.0795 (16) C1—C2 1.504 (3)
Co1—N2i 2.1540 (16) C2—C3 1.377 (3)
Co1—O3i 2.1134 (15) C2—C6 1.381 (3)
Co1—N2 2.1540 (16) C5—C6 1.372 (3)
O3—H3A 0.81 (3) C5—H5 0.9300
O3—H3B 0.79 (4) C7—C8 1.519 (3)
O4—H4A 0.77 (3) C3—C4 1.370 (3)
O4—H4B 0.83 (4) C3—H3 0.9300
O2—C7 1.257 (3) C6—H6 0.9300
O5—C1 1.235 (3) C4—H4 0.9300
O1—C7 1.247 (3) C8—C8ii 1.456 (5)
N2—C4 1.333 (3) C8—H8A 0.9700
N2—C5 1.334 (3) C8—H8B 0.9700
N1—C1 1.317 (3)
O3—Co1—O3i 180 O5—C1—N1 122.8 (2)
O4i—Co1—O4 180 O5—C1—C2 119.4 (2)
N2i—Co1—N2 180 N1—C1—C2 117.8 (2)
O4i—Co1—O3 88.82 (7) C3—C2—C6 117.62 (18)
O4—Co1—O3 91.18 (7) C3—C2—C1 119.32 (18)
O4i—Co1—O3i 91.18 (7) C6—C2—C1 123.03 (19)
O4—Co1—O3i 88.82 (7) N2—C5—C6 123.66 (19)
O4i—Co1—N2i 87.85 (6) N2—C5—H5 118.2
O4—Co1—N2i 92.15 (7) C6—C5—H5 118.2
O3—Co1—N2i 88.85 (6) O1—C7—O2 124.09 (19)
O3i—Co1—N2i 91.15 (6) O1—C7—C8 118.4 (2)
O4i—Co1—N2 92.15 (7) O2—C7—C8 117.47 (19)
O4—Co1—N2 87.85 (6) C4—C3—C2 119.73 (19)
O3—Co1—N2 91.15 (6) C4—C3—H3 120.1
O3i—Co1—N2 88.85 (6) C2—C3—H3 120.1
Co1—O3—H3A 120 (2) C5—C6—C2 118.99 (19)
Co1—O3—H3B 110 (2) C5—C6—H6 120.5
H3A—O3—H3B 108 (3) C2—C6—H6 120.5
Co1—O4—H4A 112 (2) N2—C4—C3 123.14 (19)
Co1—O4—H4B 121 (2) N2—C4—H4 118.4
H4A—O4—H4B 106 (3) C3—C4—H4 118.4
C4—N2—C5 116.83 (17) C8ii—C8—C7 115.9 (3)
C4—N2—Co1 120.60 (13) C8ii—C8—H8A 108.3
C5—N2—Co1 122.14 (13) C7—C8—H8A 108.3
C1—N1—H1A 119 (3) C8ii—C8—H8B 108.3
C1—N1—H1B 119 (2) C7—C8—H8B 108.3
H1A—N1—H1B 122 (3) H8A—C8—H8B 107.4
O5—C1—C2—C3 −14.5 (3) N2—C5—C6—C2 0.2 (4)
N1—C1—C2—C3 166.3 (2) C3—C2—C6—C5 −1.4 (3)
O5—C1—C2—C6 163.5 (2) C1—C2—C6—C5 −179.5 (2)
N1—C1—C2—C6 −15.7 (3) C5—N2—C4—C3 −1.2 (4)
C4—N2—C5—C6 1.1 (4) Co1—N2—C4—C3 171.39 (19)
Co1—N2—C5—C6 −171.37 (19) C2—C3—C4—N2 0.0 (4)
C6—C2—C3—C4 1.4 (4) O1—C7—C8—C8ii 136.1 (3)
C1—C2—C3—C4 179.5 (2) O2—C7—C8—C8ii −44.5 (5)

Symmetry codes: (i) −x+1, −y+1, −z+2; (ii) −x+1, −y+1, −z+1.

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O3—H3B···O1 0.79 (4) 1.97 (4) 2.756 (3) 176 (3)
O4—H4A···O2 0.77 (3) 1.88 (3) 2.651 (2) 174 (3)
O3—H3A···O2iii 0.81 (3) 1.92 (3) 2.729 (2) 175 (3)
O4—H4B···O5iv 0.83 (4) 1.97 (4) 2.801 (2) 174 (3)
N1—H1A···O5v 0.92 (4) 2.34 (4) 3.227 (3) 160 (3)
N1—H1B···O1vi 0.87 (4) 2.14 (4) 2.966 (3) 160 (3)
C5—H5···O2iii 0.93 2.41 3.307 (3) 161
C6—H6···O5v 0.93 2.31 3.223 (3) 167

Symmetry codes: (iii) −x+1, y+1/2, −z+3/2; (iv) x−1, y, z; (v) −x+2, y+1/2, −z+3/2; (vi) x+1, y, z.

References

  1. Aakeröy, C. B., Beatty, A. M. & Helfrich, B. A. (2002). J. Am. Chem. Soc. 124, 14425–14432. [DOI] [PubMed]
  2. Aakeröy, C. B., Forbes, S. & Desper, J. (2014). CrystEngComm, 16, 5870–5877.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gao, G.-G., Liu, B., Li, C.-B. & Che, G.-B. (2006). Acta Cryst. E62, m3357–m3358.
  5. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  6. Hökelek, T., Yılmaz, F., Tercan, B., Sertçelik, M. & Necefoğlu, H. (2009). Acta Cryst. E65, m1130–m1131. [DOI] [PMC free article] [PubMed]
  7. Liu, B., Li, X.-M., Zhou, S., Wang, Q.-W. & Li, C.-B. (2012). Chin. J. Inorg. Chem. 28, 1019–1026.
  8. Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466–470.
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Sheldrick, G. M. (2015). Acta Cryst. A71, 3–8.
  11. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  12. Stoe & Cie (2002). X-AREA and X-RED32. Stoe & Cie GmbH, Darmstadt, Germany.
  13. Turner, M. J., MacKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). Crystal Explorer17.5. University of Western Australia.
  14. Uçar, İ., Karabulut, B., Paşaoğlu, H., Büyükgüngör, O. & Bulut, A. (2006). J. Mol. Struct. 787, 38–44.
  15. Uebler, J. W., Wilson, J. A. & LaDuca, R. L. (2013). CrystEngComm, 15, 1586–1596.
  16. Vishweshwar, P., Nangia, A. & Lynch, V. M. (2003). CrystEngComm, 3, 783–790.
  17. Zaman, İ. G., Çaylak Delibaş, N., Necefoğlu, H. & Hökelek, T. (2012). Acta Cryst. E68, m249–m250. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I, global. DOI: 10.1107/S2056989018008861/su5446sup1.cif

e-74-01026-sup1.cif (269KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018008861/su5446Isup2.hkl

e-74-01026-Isup2.hkl (170.6KB, hkl)

CCDC reference: 1842712

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES