Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jun 5;74(Pt 7):878–883. doi: 10.1107/S2056989018007971

Crystal structure determination, Hirshfeld surface analysis and energy frameworks of 6-phenyl­sulfonyl-6H-thieno[3,2-c]carbazole

U Mohamooda Sumaya a, E Sankar b, K Arasambattu MohanaKrishnan b, K Biruntha a, G Usha c,*
PMCID: PMC6038642  PMID: 30002878

Intra­molecular C—H⋯O hydrogen bonds involving the sulfone O atoms and the carbazole moiety result in two S(6) rings. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds forming inversion dimers with an Inline graphic(12) graph-set motif.

Keywords: crystal structure, carbazole, Hirshfeld surface analysis, two-dimensional fingerprint plot, energy frameworks

Abstract

In the title compound, C20H13NO2S2, the carbazole ring system forms a dihedral angle of 89.08 (1)° with the sulfonyl-substituted phenyl ring. Intra­molecular C—H⋯O hydrogen bonds involving the sulfone O atoms and the carbazole moiety result in two S(6) rings. In the crystal, mol­ecules are linked via pairs of C—H⋯O hydrogen bonds forming inversion dimers with an R 2 2(12) graph-set motif. Analysis of the Hirshfeld surfaces and two-dimensional fingerprint plots was used to explore the distribution of weak inter­molecular inter­actions in the crystal structure.

Chemical context  

Carbazole derivatives are among the most important and highly exploited heterocyclic compounds in the field of medicinal chemistry. They have been attractive to researchers because of their broad spectrum of biological activities, such as anti-oxidative (Tachibana et al., 2001), anti­tumor (Itoigawa et al., 2000), anti-inflammatory and anti­mutagenic (Ramsewak et al., 1999), anti­biotic, anti­fungal and cytotoxic (Chakraborty et al., 1965, 1978), pim kinase inhibitory (Giraud et al., 2014), anti­microbial (Gu et al., 2014) and anti-Alzheimer (Thiratmatrakul et al., 2014). Carbazole derivatives are also used as precursor compounds for the synthesis of pyridocarbazole alkaloids (Karmakar et al., 1991).graphic file with name e-74-00878-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is illustrated in Fig.1. The title compound comprises a carbazole ring system, which is attached to a phenyl sulfonyl ring and a thio­pene ring. The carbazole ring system forms a dihedral angle of 89.08 (1)° with the sulfonyl-substituted phenyl ring. The tetra­hedral configuration is distorted around the atom S2. The increase in the O2—S2—O1 angle [120.14 (9)°], with a simultaneous decrease in the N1—S2—C15 angle [104.96 (9)°] from the ideal tetra­hedral value (109.5°) are attributed to the Thorpe–Ingold effect (Bassindale, 1984). The N1—C6 [1.428 (2) Å] and N1—C7 [1.429 (2) Å] bond lengths in the mol­ecule are longer than the mean Nsp 2—Csp 2 bond length value of 1.355 (14) Å (Allen et al., 1987; Groom et al., 2016). The elongation observed may be due to the electron-withdrawing character of the phenyl­sulfonyl group. The mol­ecular structure is stabilized by C1—H1⋯O2 and C9—H9⋯O1 intra­molecular inter­actions involving the sulfone oxygen atoms, which generate two S(6) ring motifs (Fig. 1).

Figure 1.

Figure 1

The mol­ecular structure of the title compound with the atom labelling. Displacement ellipsoids are drawn at the 50% probability level. Dashed lines indicate the intra­molecular C—H⋯O hydrogen bonds, which generate S(6) ring motifs.

Supra­molecular features  

In the crystal packing (Fig. 2), the mol­ecules are linked via pairs of C—H⋯O hydrogen bonds (Table 1), forming inversion dimers with an Inline graphic(12) graph-set motif. Each molecule is involved in the formation of two dimers that propagate as a ribbon in the c-axis direction.

Figure 2.

Figure 2

The crystal packing of the title compound, viewed along the a axis. Dashed lines indicate inter­molecular hydrogen bonds. For clarity, only the H atoms involved in these inter­actions have been included.

Table 1. Hydrogen-bond geometry (Å, °).

Cg5 is the centroid of the C15–C20 ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C1—H1⋯O2 0.93 2.34 2.935 (3) 121
C1—H1⋯O2i 0.93 2.62 3.443 (3) 148
C9—H9⋯O1 0.93 2.35 2.949 (3) 122
C9—H9⋯O1ii 0.93 2.57 3.382 (2) 146
C13—H13⋯Cg5iii 0.93 2.82 3.604 (2) 143

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Hirshfeld surface analysis, inter­action energies and energy frameworks  

In order to investigate the weak inter­molecular inter­actions in the crystal, the Hirshfeld surfaces (d norm, curvedness and shape index) and 2D fingerprint plots were generated using CrystalExplorer 17.5 (Turner et al., 2017). The d norm mapping uses the normalized functions of d i and d e (Fig. 3 a), with white, red and blue coloured surfaces where d i (x axis) and d e (y axis) are the closest inter­nal and external distances from a given point on the Hirshfeld surface to the nearest atom. The white surface indicates those contacts with distances equal to the sum of van der Waals (vdW) radii, red indicates shorter contacts (< vdW radii) and blue longer contacts (> vdW radii). The electrostatic potential was also mapped on the Hirshfeld surface using a STO-3G basis set and the Hartee–Fock level of theory (Spackman et al., 2008; Jayatilaka et al., 2005). The C—H⋯O hydrogen-bond donors and acceptors are shown as blue and red regions around the atoms corresponding to positive and negative electrostatic potentials, respectively (Fig. 3 b). The presence of π–π stacking inter­actions is indicated by red and blue triangles on the shape-index surface (Fig. 3 c). Areas on the Hirshfeld surface with high curvedness tend to divide the surface into contact patches with each neighbouring mol­ecule. The coordination number in the crystal is defined by the curvedness of the Hirshfeld surface (Fig. 3 d). The nearest neighbour coordination environment of a mol­ecule is identified from the colour patches on the Hirshfeld surface depending on their closeness to adjacent mol­ecules (Fig. 3 e).

Figure 3.

Figure 3

Hirshfeld surfaces for visualizing the inter­molecular contacts of the title compound: (a) d norm highlighting the regions of C—H⋯O hydrogen bonds, (b) electrostatic potential, (c) shape index, (d) curvedness and (e) fragment patches.

Two-dimensional fingerprint plots showing the occurrence of all inter­molecular contacts (McKinnon et al., 2007) are presented in Fig. 4 a. The fingerprint plot of H⋯H contacts, which represent the largest contribution to the Hirshfeld surfaces (40%), shows a distinct pattern with a minimum value of d e = d i ≃ 1.2 Å (Fig. 4 b). The C⋯H/H⋯C inter­actions appear as the next largest region of the fingerprint plot, highly concentrated at the edges, having almost the same d e + d i ≃ 2.7 Å (Fig. 4 c), with an overall Hirshfeld surface contribution of 24.1%. The O⋯H/H⋯O inter­actions on the fingerprint plot, which contribute 15.1% of the total Hirshfeld surface with d e + d i ≃ 2.5 Å (Fig. 4 d), are shown as two symmetrical narrow pointed wings. The H⋯S/S⋯H inter­actions cover only 3.5% (Fig. 4 e) of the surface. The C⋯C contacts, which are the measure of π–π stacking inter­actions, occupy 8.7% of the Hirshfeld surface and appear as a unique triangle at d e = d i ≃ 1.8 Å (Fig. 4 f). These are the weak inter­actions that contribute the most to the packing of the title compound.

Figure 4.

Figure 4

Two-dimensional fingerprint plots for the title compound showing the contributions of different types of inter­actions: (a) all inter­molecular contacts, (b) H⋯H contacts, (c) C⋯H/H⋯C contacts, (d) O⋯H/H⋯O contacts, (e) H⋯S/S⋯H contacts and (f) C⋯C contacts. The outline of the the full fingerprint is shown in gray. Surfaces to the right highlight the relevant surface patches associated with the specific contact type and are coloured as d norm.

The inter­action energy between the mol­ecules is expressed in terms of four components: electrostatic, polarization, dispersion and exchange repulsion. These energies were obtained using monomer wavefunctions calculated at the B3LYP/6-31G(d,p) level. The total inter­action energy, which is the sum of scaled components, was calculated for a 3.8 Å radius cluster of mol­ecules around the selected mol­ecule (Fig. 5 a). The scale factors used in the CE-B3LYP benchmarked energy model (Mackenzie et al., 2017) are given in Table 2. The inter­action energies calculated by the energy model reveal that the inter­actions in crystal have a significant contribution from dispersion components (Table 3). Using energy frameworks, the magnitudes of the inter­molecular inter­action energies are represented graphically and the supra­molecular architecture of the crystal structure is visualized. Energies between mol­ecular pairs are represented as cylinders joining the centroids of pairs of mol­ecules, with the cylinder radius proportional to the magnitude of the inter­action energy. Frameworks were constructed for E elec as red cylinders, E dis as green and E tot as blue (Fig. 5 b–5d) and these cylinders represent the relative strength of mol­ecular packing in different directions.

Figure 5.

Figure 5

(a) Inter­actions between the selected reference mol­ecule (highlighted in yellow) and the mol­ecules present in a 3.8 Å cluster around it, (b) Coulomb energy framework, (c) dispersion energy framework and (d) total energy framework.

Table 2. Scale factors for benchmarked energy model.

Energy model k elec k pol k energy-dispersive k rep
CE-B3LYP⋯B3LYP/6–31G(d,p) electron densities 1.057 0.740 0.871 0.618

Table 3. Inter­action energies (kJ mol−1) between a reference mol­ecule and its neighbours.

N is the number of equivalent neighbours, R is the distance between mol­ecular centroids (mean atomic position) in Å. The colours identify mol­ecules in Fig. 5 a, with the reference mol­ecule shown in grey.

Colour N symmetry R E elec E pol E energy-dispersive E rep E total
Red 1 inversion 9.29 −3.7 −1.5 −27.5 14.6 −20.0
Orange 1 inversion 8.65 0.9 −1.4 −23.3 10.3 −14.0
Yellow 1 inversion 6.18 −12.2 −2.6 −83.1 54.3 −53.7
Green 2 translation 12.53 1.7 −0.5 −7.3 2.4 −3.4
Lime 2 translation 9.88 −2.4 −0.6 −19.5 14.0 −11.3
Aqua 2 translation 7.65 −4.5 −2.1 −12.1 5.4 −13.5
Cyan 1 inversion 7.79 −17.5 −4.8 −23.5 16.7 −32.2
Blue 1 inversion 8.76 −19.3 −5.0 −26.9 22.3 −33.8
Indigo 1 inversion 5.84 −11.7 −2.7 −87.7 51.5 −58.9
Purple 2 translation 11.22 1.9 −0.4 −6.9 3.6 −2.0
Pink 1 inversion 10.79 −2.6 −0.4 −8.1 2.1 −8.8

Synthesis and crystallization  

The first step was the alkyl­ation of 2-bromo-3-(phenyl­sulfonyl­meth­yl)thio­phene (0.7 g, 2.21 mmol) with 2-bromo­methyl-1-phenyl­sulfonyl­indol (0.85 g, 2.43 mmol) using t-BuOK (0.37 g, 3.32 mmol) in DMF (20 mL) at 278–283 K for 15 min. After completion of the reaction, the reaction mixture was poured into crushed ice. The solid obtained was filtered and dried to afford the alkyl­ated sulfone (1.16 g) as a colourless solid. To a solution of the crude alkyl­ated sulfone (1.16 g, 1.97 mmol) in DMF (15 mL), Pd(OAc)2 (0.04 g, 0.19 mmol), PPh3 (0.10 g, 0.39 mmol) and K2CO3 (0.55 g, 3.94 mmol) were added. Then the reaction mixture was heated at 353 K for 2 h. After that, the reaction mixture was filtered through a celite bed and washed with ethyl acetate (2 × 10 mL). The combined organic layer was washed with water (3 × 20 mL) and dried (Na2SO4). Removal of the solvent followed by column chromatographic purification (silica gel, 100% hexa­ne) afforded 6-(phenyl­sulfon­yl)-6H-thieno[3,2-c]carbazole (0.50 g, 70%) as a colourless solid (Fig. 6). Diffraction-quality crystals were obtained from the product by slow evaporation using chloro­form as a solvent; m.p. 417–419 K.

Figure 6.

Figure 6

Reaction scheme.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms were positioned geometrically (C—H = 0.93 Å) and refined using a riding model with U iso(H) = 1.2U eq(C). In the final refinement, reflection (001), which was obstructed by the beam stop, was omitted.

Table 4. Experimental details.

Crystal data
Chemical formula C20H13NO2S2
M r 363.43
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 298
a, b, c (Å) 7.6461 (8), 9.8772 (9), 11.2191 (12)
α, β, γ (°) 72.571 (5), 88.496 (6), 86.144 (6)
V3) 806.54 (14)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.34
Crystal size (mm) 0.25 × 0.20 × 0.20
 
Data collection
Diffractometer Bruker Kappa APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2012)
T min, T max 0.921, 0.934
No. of measured, independent and observed [I > 2σ(I)] reflections 16616, 3174, 2458
R int 0.036
(sin θ/λ)max−1) 0.617
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.034, 0.091, 1.03
No. of reflections 3102
No. of parameters 226
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.24, −0.41

Computer programs: APEX2, SAINT and XPREP (Bruker, 2012), SHELXS97 (Sheldrick, 2008), SHELXL2014 (Sheldrick, 2015) and ORTEP-3 for Windows (Farrugia, 2012).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018007971/fy2128sup1.cif

e-74-00878-sup1.cif (629.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018007971/fy2128Isup2.hkl

e-74-00878-Isup2.hkl (247.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018007971/fy2128Isup3.cml

CCDC reference: 1825258

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Central Instrumentation Facility (DST–FIST), Queen Mary’s College (A), Chennai-4 for the computing facility and SAIF, IIT, Madras, for the X-ray data-collection facility.

supplementary crystallographic information

Crystal data

C20H13NO2S2 Z = 2
Mr = 363.43 F(000) = 376
Triclinic, P1 Dx = 1.497 Mg m3
a = 7.6461 (8) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.8772 (9) Å Cell parameters from 3175 reflections
c = 11.2191 (12) Å θ = 2.4–28.8°
α = 72.571 (5)° µ = 0.34 mm1
β = 88.496 (6)° T = 298 K
γ = 86.144 (6)° Needle, colourless
V = 806.54 (14) Å3 0.25 × 0.20 × 0.20 mm

Data collection

Bruker Kappa APEXII CCD diffractometer 2458 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.036
ω and φ scan θmax = 26.0°, θmin = 2.4°
Absorption correction: multi-scan (SADABS; Bruker, 2012) h = −9→9
Tmin = 0.921, Tmax = 0.934 k = −12→12
16616 measured reflections l = −13→13
3174 independent reflections

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.034 H-atom parameters constrained
wR(F2) = 0.091 w = 1/[σ2(Fo2) + (0.0389P)2 + 0.3787P] where P = (Fo2 + 2Fc2)/3
S = 1.03 (Δ/σ)max < 0.001
3102 reflections Δρmax = 0.24 e Å3
226 parameters Δρmin = −0.41 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.3947 (3) 0.2820 (2) 0.4004 (2) 0.0462 (5)
H1 0.4480 0.1960 0.4478 0.055*
C2 0.3350 (4) 0.3854 (3) 0.4540 (2) 0.0590 (7)
H2 0.3496 0.3685 0.5394 0.071*
C3 0.2541 (4) 0.5137 (3) 0.3848 (2) 0.0614 (7)
H3 0.2148 0.5806 0.4242 0.074*
C4 0.2317 (3) 0.5426 (2) 0.2583 (2) 0.0478 (6)
H4 0.1776 0.6287 0.2118 0.057*
C5 0.2909 (3) 0.44110 (19) 0.20083 (18) 0.0327 (4)
C6 0.3716 (3) 0.31203 (19) 0.27287 (18) 0.0331 (4)
C7 0.3683 (2) 0.30993 (19) 0.06791 (17) 0.0313 (4)
C8 0.2892 (2) 0.43910 (19) 0.07345 (17) 0.0300 (4)
C9 0.3877 (3) 0.2747 (2) −0.04358 (19) 0.0395 (5)
H9 0.4417 0.1880 −0.0450 0.047*
C10 0.3247 (3) 0.3722 (2) −0.1510 (2) 0.0432 (5)
H10 0.3350 0.3499 −0.2259 0.052*
C11 0.2454 (3) 0.5042 (2) −0.15089 (19) 0.0378 (5)
C12 0.2289 (2) 0.53705 (19) −0.03801 (19) 0.0335 (4)
C13 0.1126 (3) 0.7312 (2) −0.2176 (2) 0.0526 (6)
H13 0.0633 0.8143 −0.2728 0.063*
C14 0.1762 (3) 0.6197 (2) −0.2532 (2) 0.0499 (6)
H14 0.1756 0.6172 −0.3354 0.060*
C15 0.2718 (3) −0.02095 (18) 0.26426 (18) 0.0318 (4)
C16 0.2018 (3) −0.0612 (2) 0.38416 (19) 0.0392 (5)
H16 0.2624 −0.0493 0.4508 0.047*
C17 0.0401 (3) −0.1193 (2) 0.4027 (2) 0.0458 (5)
H17 −0.0082 −0.1480 0.4826 0.055*
C18 −0.0494 (3) −0.1347 (2) 0.3035 (2) 0.0482 (6)
H18 −0.1589 −0.1727 0.3166 0.058*
C19 0.0212 (3) −0.0946 (2) 0.1843 (2) 0.0473 (5)
H19 −0.0408 −0.1052 0.1178 0.057*
C20 0.1835 (3) −0.0388 (2) 0.1641 (2) 0.0405 (5)
H20 0.2332 −0.0135 0.0845 0.049*
O1 0.55980 (19) 0.02188 (14) 0.13545 (14) 0.0426 (4)
O2 0.56255 (19) 0.02622 (14) 0.35412 (13) 0.0423 (4)
S1 0.13085 (7) 0.70590 (5) −0.05968 (6) 0.04557 (17)
S2 0.47505 (6) 0.05704 (5) 0.23770 (5) 0.03323 (14)
N1 0.4252 (2) 0.23071 (16) 0.19079 (14) 0.0332 (4)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0662 (15) 0.0380 (12) 0.0332 (12) −0.0017 (10) −0.0041 (11) −0.0091 (9)
C2 0.094 (2) 0.0533 (14) 0.0340 (12) −0.0060 (13) 0.0035 (13) −0.0189 (11)
C3 0.095 (2) 0.0454 (14) 0.0500 (15) −0.0002 (13) 0.0092 (14) −0.0256 (12)
C4 0.0623 (15) 0.0344 (11) 0.0468 (13) 0.0051 (10) 0.0037 (11) −0.0143 (10)
C5 0.0353 (11) 0.0284 (9) 0.0352 (11) −0.0037 (8) 0.0016 (8) −0.0105 (8)
C6 0.0376 (11) 0.0299 (10) 0.0331 (10) −0.0034 (8) 0.0006 (8) −0.0111 (8)
C7 0.0332 (10) 0.0278 (9) 0.0313 (10) −0.0025 (7) −0.0018 (8) −0.0060 (8)
C8 0.0289 (10) 0.0267 (9) 0.0345 (10) −0.0039 (7) 0.0000 (8) −0.0091 (8)
C9 0.0520 (13) 0.0321 (10) 0.0361 (11) 0.0008 (9) 0.0007 (10) −0.0138 (9)
C10 0.0570 (14) 0.0434 (12) 0.0312 (11) −0.0052 (10) −0.0007 (10) −0.0138 (9)
C11 0.0395 (12) 0.0363 (11) 0.0349 (11) −0.0065 (9) −0.0049 (9) −0.0053 (9)
C12 0.0315 (10) 0.0274 (9) 0.0394 (11) −0.0043 (8) −0.0022 (8) −0.0057 (8)
C13 0.0534 (15) 0.0415 (13) 0.0508 (14) 0.0009 (10) −0.0151 (11) 0.0051 (11)
C14 0.0554 (15) 0.0509 (14) 0.0369 (12) −0.0075 (11) −0.0106 (11) −0.0012 (10)
C15 0.0354 (11) 0.0243 (9) 0.0354 (11) 0.0050 (7) −0.0050 (8) −0.0095 (8)
C16 0.0436 (12) 0.0368 (11) 0.0365 (11) 0.0035 (9) −0.0044 (9) −0.0111 (9)
C17 0.0472 (13) 0.0432 (12) 0.0455 (13) −0.0025 (10) 0.0070 (11) −0.0116 (10)
C18 0.0366 (12) 0.0391 (12) 0.0694 (16) −0.0011 (9) 0.0007 (11) −0.0173 (11)
C19 0.0470 (13) 0.0443 (12) 0.0546 (14) −0.0018 (10) −0.0144 (11) −0.0199 (11)
C20 0.0470 (13) 0.0366 (11) 0.0373 (11) 0.0013 (9) −0.0045 (10) −0.0106 (9)
O1 0.0446 (9) 0.0362 (8) 0.0472 (9) 0.0064 (6) 0.0048 (7) −0.0150 (6)
O2 0.0417 (8) 0.0387 (8) 0.0427 (9) 0.0048 (6) −0.0145 (7) −0.0066 (6)
S1 0.0462 (3) 0.0317 (3) 0.0526 (4) 0.0048 (2) −0.0053 (3) −0.0043 (2)
S2 0.0342 (3) 0.0271 (2) 0.0365 (3) 0.00447 (18) −0.0042 (2) −0.0077 (2)
N1 0.0429 (10) 0.0271 (8) 0.0287 (8) 0.0026 (7) −0.0039 (7) −0.0077 (7)

Geometric parameters (Å, º)

C1—C2 1.380 (3) C11—C14 1.437 (3)
C1—C6 1.385 (3) C12—S1 1.7323 (19)
C1—H1 0.9300 C13—C14 1.338 (3)
C2—C3 1.386 (4) C13—S1 1.722 (3)
C2—H2 0.9300 C13—H13 0.9300
C3—C4 1.374 (3) C14—H14 0.9300
C3—H3 0.9300 C15—C20 1.387 (3)
C4—C5 1.392 (3) C15—C16 1.387 (3)
C4—H4 0.9300 C15—S2 1.760 (2)
C5—C6 1.401 (3) C16—C17 1.382 (3)
C5—C8 1.435 (3) C16—H16 0.9300
C6—N1 1.428 (2) C17—C18 1.374 (3)
C7—C8 1.392 (3) C17—H17 0.9300
C7—C9 1.397 (3) C18—C19 1.382 (3)
C7—N1 1.429 (2) C18—H18 0.9300
C8—C12 1.399 (3) C19—C20 1.378 (3)
C9—C10 1.373 (3) C19—H19 0.9300
C9—H9 0.9300 C20—H20 0.9300
C10—C11 1.401 (3) O1—S2 1.4233 (15)
C10—H10 0.9300 O2—S2 1.4236 (15)
C11—C12 1.399 (3) S2—N1 1.6572 (16)
C2—C1—C6 117.0 (2) C8—C12—S1 128.08 (16)
C2—C1—H1 121.5 C14—C13—S1 113.43 (17)
C6—C1—H1 121.5 C14—C13—H13 123.3
C1—C2—C3 122.1 (2) S1—C13—H13 123.3
C1—C2—H2 118.9 C13—C14—C11 112.8 (2)
C3—C2—H2 118.9 C13—C14—H14 123.6
C4—C3—C2 120.5 (2) C11—C14—H14 123.6
C4—C3—H3 119.8 C20—C15—C16 121.34 (19)
C2—C3—H3 119.8 C20—C15—S2 119.11 (16)
C3—C4—C5 119.1 (2) C16—C15—S2 119.55 (16)
C3—C4—H4 120.5 C17—C16—C15 118.7 (2)
C5—C4—H4 120.5 C17—C16—H16 120.6
C4—C5—C6 119.44 (19) C15—C16—H16 120.6
C4—C5—C8 132.60 (19) C18—C17—C16 120.2 (2)
C6—C5—C8 107.96 (16) C18—C17—H17 119.9
C1—C6—C5 121.89 (18) C16—C17—H17 119.9
C1—C6—N1 130.16 (18) C17—C18—C19 120.8 (2)
C5—C6—N1 107.91 (17) C17—C18—H18 119.6
C8—C7—C9 122.62 (18) C19—C18—H18 119.6
C8—C7—N1 108.02 (16) C20—C19—C18 120.0 (2)
C9—C7—N1 129.33 (17) C20—C19—H19 120.0
C7—C8—C12 118.03 (17) C18—C19—H19 120.0
C7—C8—C5 108.38 (16) C19—C20—C15 119.0 (2)
C12—C8—C5 133.58 (18) C19—C20—H20 120.5
C10—C9—C7 117.95 (19) C15—C20—H20 120.5
C10—C9—H9 121.0 C13—S1—C12 91.09 (11)
C7—C9—H9 121.0 O1—S2—O2 120.14 (9)
C9—C10—C11 121.76 (19) O1—S2—N1 106.94 (8)
C9—C10—H10 119.1 O2—S2—N1 106.82 (8)
C11—C10—H10 119.1 O1—S2—C15 108.46 (9)
C12—C11—C10 119.05 (18) O2—S2—C15 108.51 (9)
C12—C11—C14 111.32 (19) N1—S2—C15 104.96 (9)
C10—C11—C14 129.6 (2) C6—N1—C7 107.66 (15)
C11—C12—C8 120.57 (18) C6—N1—S2 124.02 (13)
C11—C12—S1 111.34 (15) C7—N1—S2 124.80 (13)
C6—C1—C2—C3 0.5 (4) C12—C11—C14—C13 0.1 (3)
C1—C2—C3—C4 −0.5 (4) C10—C11—C14—C13 −178.9 (2)
C2—C3—C4—C5 0.2 (4) C20—C15—C16—C17 −0.4 (3)
C3—C4—C5—C6 0.1 (3) S2—C15—C16—C17 178.53 (15)
C3—C4—C5—C8 −179.2 (2) C15—C16—C17—C18 −0.8 (3)
C2—C1—C6—C5 −0.2 (3) C16—C17—C18—C19 0.9 (3)
C2—C1—C6—N1 176.9 (2) C17—C18—C19—C20 0.2 (3)
C4—C5—C6—C1 −0.1 (3) C18—C19—C20—C15 −1.4 (3)
C8—C5—C6—C1 179.39 (19) C16—C15—C20—C19 1.6 (3)
C4—C5—C6—N1 −177.79 (18) S2—C15—C20—C19 −177.40 (15)
C8—C5—C6—N1 1.7 (2) C14—C13—S1—C12 0.00 (19)
C9—C7—C8—C12 −0.6 (3) C11—C12—S1—C13 0.04 (16)
N1—C7—C8—C12 177.62 (16) C8—C12—S1—C13 179.58 (19)
C9—C7—C8—C5 −179.87 (18) C20—C15—S2—O1 −30.91 (17)
N1—C7—C8—C5 −1.6 (2) C16—C15—S2—O1 150.12 (15)
C4—C5—C8—C7 179.3 (2) C20—C15—S2—O2 −162.97 (15)
C6—C5—C8—C7 0.0 (2) C16—C15—S2—O2 18.06 (18)
C4—C5—C8—C12 0.2 (4) C20—C15—S2—N1 83.12 (16)
C6—C5—C8—C12 −179.1 (2) C16—C15—S2—N1 −95.86 (16)
C8—C7—C9—C10 −0.4 (3) C1—C6—N1—C7 179.9 (2)
N1—C7—C9—C10 −178.23 (19) C5—C6—N1—C7 −2.7 (2)
C7—C9—C10—C11 0.9 (3) C1—C6—N1—S2 20.2 (3)
C9—C10—C11—C12 −0.5 (3) C5—C6—N1—S2 −162.32 (14)
C9—C10—C11—C14 178.4 (2) C8—C7—N1—C6 2.7 (2)
C10—C11—C12—C8 −0.6 (3) C9—C7—N1—C6 −179.27 (19)
C14—C11—C12—C8 −179.65 (18) C8—C7—N1—S2 162.11 (14)
C10—C11—C12—S1 179.00 (16) C9—C7—N1—S2 −19.8 (3)
C14—C11—C12—S1 −0.1 (2) O1—S2—N1—C6 −166.71 (15)
C7—C8—C12—C11 1.1 (3) O2—S2—N1—C6 −36.89 (18)
C5—C8—C12—C11 −179.87 (19) C15—S2—N1—C6 78.21 (17)
C7—C8—C12—S1 −178.41 (14) O1—S2—N1—C7 37.08 (18)
C5—C8—C12—S1 0.6 (3) O2—S2—N1—C7 166.91 (15)
S1—C13—C14—C11 0.0 (3) C15—S2—N1—C7 −78.00 (17)

Hydrogen-bond geometry (Å, º)

Cg5 is the centroid of the C15–C20 ring.

D—H···A D—H H···A D···A D—H···A
C1—H1···O2 0.93 2.34 2.935 (3) 121
C1—H1···O2i 0.93 2.62 3.443 (3) 148
C9—H9···O1 0.93 2.35 2.949 (3) 122
C9—H9···O1ii 0.93 2.57 3.382 (2) 146
C13—H13···Cg5iii 0.93 2.82 3.604 (2) 143

Symmetry codes: (i) −x+1, −y, −z+1; (ii) −x+1, −y, −z; (iii) −x, −y+1, −z.

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bassindale, A. (1984). The Third Dimension in Organic Chemistry, ch. 1, p. 11. New York: John Wiley and Sons.
  3. Bruker (2012). APEX2, SAINT, XPREP and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Chakraborty, D. P., Barman, B. K. & Bose, P. K. (1965). Tetrahedron, 21, 681–685.
  5. Chakraborty, D. P., Bhattacharyya, P., Roy, S., Bhattacharyya, S. P. & Biswas, A. K. (1978). Phytochemistry, 17, 834–835.
  6. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  7. Giraud, F., Bourhis, M., Nauton, L., Théry, V., Herfindal, L., Døskeland, S. O., Anizon, F. & Moreau, P. (2014). Bioorg. Chem. 57, 108–115. [DOI] [PubMed]
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Gu, W., Qiao, C., Wang, S. F., Hao, Y. & Miao, T. T. (2014). Bioorg. Med. Chem. Lett. 24, 328–331. [DOI] [PubMed]
  10. Itoigawa, M., Kashiwada, Y., Ito, C., Furukawa, H., Tachibana, Y., Bastow, K. F. & Lee, K. H. (2000). J. Nat. Prod. 63, 893–897. [DOI] [PubMed]
  11. Jayatilaka, D., Grimwood, D. J., Lee, A., Lemay, A., Russel, A. J., Taylor, C., Wolff, S. K., Cassam-Chenai, P. & Whitton, A. (2005). TONTO -- A System for Computational Chemistry. Available at: http://hirshfeldsurface.net/
  12. Karmakar, A. C., Kar, G. K. & Ray, J. K. (1991). J. Chem. Soc. Perkin Trans. 1, pp. 1997–2002.
  13. Mackenzie, C. F., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). IUCrJ, 4, 575–587. [DOI] [PMC free article] [PubMed]
  14. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  15. Ramsewak, R. S., Nair, M. G., Strasburg, G. M., DeWitt, D. L. & Nitiss, J. L. (1999). J. Agric. Food Chem. 47, 444–447. [DOI] [PubMed]
  16. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  17. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  18. Spackman, M. A., McKinnon, J. J. & Jayatilaka, D. (2008). CrystEngComm, 10, 377–388.
  19. Tachibana, Y., Kikuzaki, H., Lajis, N. H. & Nakatani, N. (2001). J. Agric. Food Chem. 49, 5589–5594. [DOI] [PubMed]
  20. Thiratmatrakul, S., Yenjai, C., Waiwut, P., Vajragupta, O., Reubroycharoen, P., Tohda, M. & Boonyarat, C. (2014). Eur. J. Med. Chem. 75, 21–30. [DOI] [PubMed]
  21. Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Spackman, P. R., Jayatilaka, D. & Spackman, M. A. (2017). CrystalExplorer. The University of Western Australia.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018007971/fy2128sup1.cif

e-74-00878-sup1.cif (629.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018007971/fy2128Isup2.hkl

e-74-00878-Isup2.hkl (247.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018007971/fy2128Isup3.cml

CCDC reference: 1825258

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES