Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jun 19;74(Pt 7):981–986. doi: 10.1107/S2056989018008538

Structure of copper(II) complexes grown from ionic liquids – 1-ethyl-3-methyl­imidazolium acetate or chloride

Nikita Yu Serov a,*, Valery G Shtyrlin a, Daut R Islamov a, Olga N Kataeva b, Dmitry B Krivolapov b
PMCID: PMC6038647  PMID: 30002899

Crystals of four new copper(II) complexes containing Cu2(AcO)4 paddle-wheel units and 1-ethyl-3-methyl­imidazolium cations have been grown from ionic liquid–water mixtures and characterized by X-ray analysis. Two of the synthesized complexes are one-dimensional coordination polymers with anionic chains and counter-ions between them.

Keywords: crystal structure, copper(II) complexes, ionic liquids, paddle-wheel

Abstract

Crystals of four new copper(II) complexes have been grown from copper(II) acetate/chloride–1-ethyl-3-methyl­imidazolium acetate/chloride–water systems and characterized by X-ray analysis. The first complex, bis­(1-ethyl-3-methyl­imidazolium) tetra-μ-acetato-bis[chloridocuprate(II)], [Emim]2[Cu2(C2H3O2)4Cl2] (1) (Emim is 1-ethyl-3-methyl­imidazolium, C6H11N2), contains [Cu2(C2H3O2)4Cl2]2− coordination anions with a paddle-wheel structure and ionic liquid cations. Two of the synthesized complexes are one-dimensional polymers, namely catena-poly[1-ethyl-3-methyl­imidazolium [[tetra-μ-acetato-dicuprate(II)]-μ-chlorido] monohydrate], {[Emim][Cu2(C2H3O2)4Cl]·H2O}n (2), and catena-poly[1-ethyl-3-methyl­imidazolium [[tetra-μ-acetato-dicuprate(II)]-μ-acetato]], {[Emim][Cu2(C2H3O2)5]}n (3). In these compounds, the Cu2(C2H3O2)4 units with a paddle-wheel structure are connected to each other through chloride (in 2) or acetate (in 3) anions to form parallel chains, between which cations of ionic liquid are situated. The last compound, bis­(1-ethyl-3-methyl­imidazolium) tetra-μ-acetato-bis[aquacopper(II)] tetra-μ-acetato-bis[acetatocuprate(II)] dihydrate, [Emim]2[Cu2(C2H3O2)4(H2O)2][Cu2(C2H3O2)6]·2H2O (4), contains two different binuclear coordination units (neutral and anionic), connected through hydrogen bonds between water mol­ecules and acetate ions.

Chemical context  

Ionic liquids (ILs) with melting point below 373 K were discovered in 1888 (Gabriel & Weiner, 1888), but have been specific laboratory substances for a long time. However, over the past two decades ionic liquids have been of increased inter­est for researchers owing to the awareness of their unique properties, such as low dielectric permeability, low movability, wide range of liquid states, high ionic density, high ionic conductivity, good solubility for many substances, very low volatility among others (Buszewski et al., 2006; Hallett & Welton, 2011). It is important that the properties of ionic liquids can be varied not only by structural design, but also by mixing with other substances, especially with water (Kohno & Ohno, 2012). The use of ILs as unique solvents for the replacement of traditional solvents and the synthesis of new substances from ionic liquids are the goals of many investigations. The application of ILs has already allowed the synthesis of new polyoxometallates, transition metal clusters, main-group element clusters and nanomaterials; the most important catalytic organic syntheses have also been performed in ionic liquids under mild conditions (Sasaki et al., 2005; Ahmed & Ruck, 2011; Betz et al., 2011; Jlassi et al., 2014). Importantly, many oxidation reactions in organic syntheses are catalysed by copper(II) compounds, which is why the synthesis and structural investigation of copper(II) complexes grown from ILs are real scientific tasks. Of particular importance are polynuclear compounds as materials with inter­esting magnetic and electric properties.graphic file with name e-74-00981-scheme1.jpg

Copper(II) complexes, containing the products of ionic liquid cation C—H bond activation, have previously been isolated from the 1-ethyl-3-methyl­imidazolium acetate (EmimAcO)–copper(II) acetate [Cu(AcO)2]–water–air (O2) system in the 323–358 K temperature range (Shtyrlin et al., 2014). In the present work, the new complexes 1-4 have been obtained from the same and similar (where the acetate ion is replaced by chloride) systems and their structures investigated by single crystal X-ray analysis.

Structural commentary  

Compound 1 consists of two 1-ethyl-3-methyl­imidazolium cations and a binuclear complex anion [Cu2(AcO)4Cl2]2− in which two copper(II) atoms are bonded through four bridging acetate ions. Two chloride ions are situated in the axial positions of both metal atoms, forming the axis of a paddle-wheel structure with the copper(II) ions (Fig. 1).

Figure 1.

Figure 1

Compound 1 with displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x, 1 − y, 2 − z.]

Compound 2 is a polymer; in the main chain chloride ions and the two copper(II) ions, connected by four acetate ions, alternate with each other (Fig. 2). Disordered 1-ethyl-3-methyl­imidazolium cations and water mol­ecules are present in the regions between the polyanionic chains. The inter­atomic Cu⋯Cu distances in the clusters decrease (Table 1) with the transition from the binuclear compound 1 to the polymer 2.

Figure 2.

Figure 2

Compound 2 with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 2 − x, 1 − y, −z; (ii) 2 − x, 1 − y, 1 − z; (iii) x, y, −1 + z; (iv) 1 − x, 1 − y, 1 − z.]

Table 1. Metal–metal distances (Å) in complexes 14 .

Compound Cu—Cu distance
Complex 1 2.7173 (7)
Complex 2 2.657 (3) and 2.669 (3)
Complex 3 2.6571 (6) and 2.6685 (6)
Complex 4 2.6469 (7) and 2.6592 (8)

Compounds 24 each contain two crystallographically independent clusters.

Compound 3 is also a polymer, but differs from 2 in the bridging ligand between clusters and the absence of water mol­ecules (Fig. 3). It is evident that the replacement of the chloride ion by acetate leads to a significant increase in the copper–copper distances between neighboring cluster units. However, the inter­atomic metal–metal distances in the clusters are practically unchanged (Table 1).

Figure 3.

Figure 3

Compound 3 with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 2 − x, 2 − y, 2 − z; (ii) 1 − x, 2 − y, 1 − z.]

Compound 4 has the most inter­esting structure because it contains two different clusters (Fig. 4). One of them is anionic and comprises two copper(II) ions and six acetate ions, four of which act as bridges between metal atoms. The other cluster is not charged and differs from the first by the non-bridging ligands (in this case they are water mol­ecules). Furthermore, compound 4 contains 1-ethyl-3-methyl­imidazolium ions and water mol­ecules. The metal–metal distances in the clusters in 4 are somewhat shorter than in the polymeric compounds 2 and 3 (Table 1).

Figure 4.

Figure 4

Compound 4 with displacement ellipsoids drawn at the 50% probability level. [Symmetry codes: (i) 2 − x, 1 − y, −z; (ii) −x, −y, 1 − z.]

Supra­molecular features  

In the crystal of 1, weak inter­actions are found between the [Cu2(AcO)4Cl2]2− anion and the surrounding six 1-ethyl-3-methyl­imidazolium cations, namely C1—H1⋯O2, C2—H2⋯O5 and C3—H3⋯O3 contacts (see Table 2 for details). The last contact is relatively short and probably the strongest of them. Two different orientations of the paddle-wheels units form herringbone motif (Fig. 5).

Table 2. Hydrogen-bond geometry (Å, °) for 1 .

D—H⋯A D—H H⋯A DA D—H⋯A
C8—H8C⋯Cl1i 0.98 2.83 3.550 (3) 131
C4—H4B⋯Cl1 0.98 2.95 3.731 (3) 137
C4—H4A⋯Cl1ii 0.98 2.84 3.651 (3) 141
C5—H5A⋯Cl1iii 0.99 2.91 3.808 (3) 151
C2—H2⋯O5iii 0.95 2.57 3.295 (3) 134
C3—H3⋯O3ii 0.95 2.20 3.115 (3) 160
C1—H1⋯O2 0.95 2.55 3.182 (3) 124
C1—H1⋯Cl1 0.95 2.95 3.619 (3) 128

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic.

Figure 5.

Figure 5

The packing of compound 1, viewed along the a and b axes.

Polymeric chains in 2 propagate along the c-axis direction (Fig. 6). The water mol­ecule forms hydrogen bonds with oxygen atoms of the acetate residues of two neighbouring clusters in one chain (see Table 3). Those inter­actions decrease the Cu—Cl—Cu angle from 180° to 169.5° on the side of water mol­ecule and distort the linearity of the polymeric chains.

Figure 6.

Figure 6

The packing of compound 2, viewed along the a and c axes.

Table 3. Hydrogen-bond geometry (Å, °) for 2 .

D—H⋯A D—H H⋯A DA D—H⋯A
O9B—H2WB⋯O4 0.91 (2) 2.01 (2) 2.91 (2) 172 (18)
O9A—H1WA⋯O6i 0.90 (2) 2.3 (2) 2.94 (3) 131 (23)
O9A—H2WA⋯O4 0.90 (2) 2.19 (5) 3.08 (2) 172 (18)
C14B—H14D⋯O6ii 0.98 2.65 3.49 (2) 144
C12B—H12B⋯O9B iii 0.95 2.27 3.16 (3) 155
C10B—H10D⋯Cl1iv 0.98 2.85 3.78 (5) 158
C9B—H9B⋯Cl1iv 0.95 2.84 3.67 (2) 147
C14A—H14B⋯Cl1 0.98 2.82 3.72 (3) 154
C12A—H12A⋯O9A iii 0.95 2.19 3.13 (3) 168
C11A—H11A⋯Cl1v 0.95 2.88 3.77 (3) 155
C10A—H10B⋯O9A vi 0.98 2.26 2.82 (4) 115
C10A—H10A⋯O3iv 0.98 2.56 3.50 (5) 161
C9A—H9A⋯O2vii 0.95 2.48 3.11 (3) 124
C9A—H9A⋯Cl1iv 0.95 2.65 3.51 (2) 151
C2—H2C⋯O9B vii 0.98 2.52 3.48 (3) 165

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic; (vi) Inline graphic; (vii) Inline graphic.

In 3, the polymeric chains are not linear because neighbouring Cu2(AcO)4 fragments are connected by acetate ions (Fig. 7). The C—H⋯O inter­actions (see Table 4) between 1-ethyl-3-methyl­imidazolium cations and the anionic chains additionally stabilize the polymeric structure of 3.

Figure 7.

Figure 7

The packing of compound 3, viewed along the b axis.

Table 4. Hydrogen-bond geometry (Å, °) for 3 .

D—H⋯A D—H H⋯A DA D—H⋯A
C6—H6A⋯O7 0.98 2.50 3.320 (4) 141
C14—H14A⋯O5i 0.99 2.47 3.329 (3) 145
C13—H13⋯O8ii 0.95 2.38 3.229 (4) 148
C8—H8C⋯O7iii 0.98 2.55 3.522 (4) 170
C11—H11⋯O1iv 0.95 2.40 3.317 (3) 162
C11—H11⋯O5 0.95 2.55 3.192 (3) 125

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic.

The crystal structure of 4 contains ordered layers (Fig. 8). Chains are formed by the alternating binuclear clusters, bonded by O—H⋯O hydrogen bonds between the coordin­ated water mol­ecules and acetate ions as ligands (O5—H5B⋯O11, see Table 5). The other water mol­ecule, which is not coordinated to copper(II), also plays an important role in crystal lattice formation – this water mol­ecule connects two neighbouring chains through the O5—H5⋯O12, O12—H1O⋯O7 and O12—H2O⋯O10 hydrogen bonds. The C—H⋯O inter­actions (see Table 5) between the 1-ethyl-3-methyl­imidazolium cations and acetate residues are also relevant for binding the polymeric chains.

Figure 8.

Figure 8

The packing of compound 4, viewed along the b axis.

Table 5. Hydrogen-bond geometry (Å, °) for 4 .

D—H⋯A D—H H⋯A DA D—H⋯A
O12—H1O⋯O7i 0.91 (3) 2.21 (3) 3.034 (4) 150 (4)
O12—H2O⋯O10 0.87 (18) 2.09 (3) 2.910 (4) 158 (4)
O5—H5⋯O12ii 0.84 1.95 2.786 (5) 171
O5—H5B⋯O11 0.88 (3) 1.84 (3) 2.696 (3) 165 (4)
C2—H2A⋯O11iii 0.98 2.56 3.390 (4) 142
C2—H2C⋯O1iii 0.98 2.39 3.370 (4) 174
C10—H10B⋯O6 0.98 2.46 3.229 (4) 135
C11—H11⋯O10iv 0.95 2.43 3.364 (4) 166
C11—H11⋯O11iv 0.95 2.59 3.291 (4) 131
C12—H12⋯O1 0.95 2.31 3.234 (5) 163
C14—H14B⋯O7v 0.99 2.57 3.522 (7) 162
C16—H16C⋯O11iv 0.98 2.54 3.232 (6) 127
C16—H16B⋯O3 0.98 2.64 3.598 (5) 162

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Database survey  

A search in the Cambridge Structural Database (CSD, Version 5.58; Groom et al., 2016) revealed 258 structures with the Cu2(AcO)4 fragment. In many of these structures such clusters are included several times. The distribution of Cu⋯Cu distances in such fragments is shown in Fig. 9. From a comparison of Fig. 9 and Table 1, it can be seen that the Cu⋯Cu distances in the title compounds are longer than the mean value of other structures deposited in the CSD. It should be mentioned that in 1 the Cu⋯Cu distance is very close to the maximum distance shown in Fig. 9. This long Cu⋯Cu distance can be explained by the strong inter­action between the copper(II) atoms and the chloride ions.

Figure 9.

Figure 9

Histogram of the distribution of Cu⋯Cu distances in the Cu2(AcO)4 fragment based on a fragment search in the CSD.

Synthesis and crystallization  

Synthesis of 1:

A mixture of 1-ethyl-3-methyl­imidazolium acetate (0.70 g, 4.1 mmol), copper(II) chloride dihydrate (0.14 g, 0.82 mmol) and water (0.037 g, 2.05 mmol) was stirred in a closed vial at 333 K for 40 h. After several weeks, green crystals (yield 51%) were formed from the solution.

Synthesis of 2:

A mixture of 1-ethyl-3-methyl­imidazolium chloride (0.60 g, 4.1 mmol), copper(II) acetate hydrate (0.40 g, 2 mmol) and water (0.60 g, 33 mmol) was stirred in a closed vial at 343 K for 20 h. After several weeks, a green precipitate had formed from the solution. This precipitate consisted of crystals of compounds 1 and 2 with 1 predominant (and hence the yield of 2 was not determined).

Synthesis of 3:

A mixture of 1-ethyl-3-methyl­imidazolium acetate (0.70 g, 4.1 mmol) and copper(II) acetate hydrate (0.16 g, 0.80 mmol) was stirred in a closed vial at 323 K for 20 h. After several weeks, blue crystals (yield 41%) were formed from the solution.

Synthesis of 4:

A mixture of 1-ethyl-3-methyl­imidazolium acetate (1.0 g, 5.9 mmol), copper(II) acetate hydrate (0.078 g, 0.39 mmol) and copper(II) chloride dihydrate (0.133 g, 0.78 mmol) was stirred in a closed vial at 323 K for 30 h. After several weeks, blue crystals were formed from the solution. The yield was not determined because the precipitate additionally contained small green crystals of complex 1. In the absence of copper(II) chloride, compound 3 was grown from the solution.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 6. In 2, the Emim cations and water mol­ecules are disordered over two positions with an occupancy ratio of 0.513 (12):0.487 (12) and were refined with constraints and restraints. In 4, the water mol­ecules refined using restraints. Water H atoms were located in difference-Fourier maps and refined using constraints with U iso(H) = 1.2U eq(O). C-bound H atoms were positioned geometrically and refined using a riding model with C—H = 0.95 (aromatic), 0.98 (methyl or 0.99 Å (methyl­ene bridges) with U iso(H) = 1.2U eq(C) or 1.5U eq(Cmeth­yl).

Table 6. Experimental details.

  1 2 3 4
Crystal data
Chemical formula (C6H11N2)2[Cu2(C2H3O2)4Cl2] (C6H11N2)[Cu2(C2H3O2)4Cl]·H2O (C6H11N2)[Cu2(C2H3O2)5] (C6H11N2)2[Cu2(C2H3O2)6][Cu2(C2H3O2)4(H2O)2]·2H2O
M r 656.49 527.89 533.47 1139.00
Crystal system, space group Monoclinic, P21/n Monoclinic, P21/c Triclinic, P Inline graphic Triclinic, P Inline graphic
Temperature (K) 150 198 198 198
a, b, c (Å) 8.2264 (14), 12.956 (2), 13.173 (2) 8.438 (4), 16.315 (7), 15.131 (7) 8.0542 (9), 8.1633 (9), 16.7195 (19) 7.9526 (5), 8.0951 (5), 18.8886 (11)
α, β, γ (°) 90, 96.471 (3), 90 90, 96.53 (1), 90 98.126 (3), 94.745 (3), 92.964 (3) 79.1770 (16), 78.9500 (16), 89.9320 (15)
V3) 1395.0 (4) 2069.7 (16) 1082.3 (2) 1171.46 (12)
Z 2 4 2 1
Radiation type Mo Kα Mo Kα Mo Kα Mo Kα
μ (mm−1) 1.76 2.23 2.02 1.88
Crystal size (mm) 0.30 × 0.20 × 0.20 0.11 × 0.08 × 0.07 0.30 × 0.20 × 0.20 0.30 × 0.27 × 0.22
 
Data collection
Diffractometer Bruker Kappa APEX DUO CCD Bruker SMART APEX II CCD Bruker Kappa APEX DUO CCD Bruker Kappa APEX DUO CCD
Absorption correction Multi-scan (SADABS; Bruker, 2015) Multi-scan (SADABS; Bruker, 2015) Multi-scan (SADABS; Bruker, 2015) Multi-scan (SADABS; Bruker, 2015)
T min, T max 0.620, 0.719 0.795, 0.858 0.583, 0.688 0.605, 0.685
No. of measured, independent and observed [I > 2σ(I)] reflections 9428, 4275, 2956 35161, 4229, 2504 11652, 4343, 3662 20914, 4775, 3593
R int 0.039 0.105 0.025 0.037
(sin θ/λ)max−1) 0.717 0.625 0.625 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.041, 0.094, 1.02 0.082, 0.265, 1.08 0.029, 0.107, 0.81 0.034, 0.101, 1.42
No. of reflections 4275 4229 4343 4775
No. of parameters 167 319 278 307
No. of restraints 0 93 0 72
H-atom treatment H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement H-atom parameters constrained H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.56, −0.56 1.70, −0.94 0.38, −0.46 0.40, −0.57

Computer programs: APEX2 and SAINT (Bruker, 2015), SHELXS97 (Sheldrick, 2008) and SHELXL2014 (Sheldrick, 2015).

Supplementary Material

Crystal structure: contains datablock(s) global, 1, 2, 3, 4. DOI: 10.1107/S2056989018008538/zp2028sup1.cif

e-74-00981-sup1.cif (2.8MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989018008538/zp20281sup2.hkl

e-74-00981-1sup2.hkl (340.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018008538/zp20281sup6.cdx

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989018008538/zp20282sup3.hkl

e-74-00981-2sup3.hkl (337.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018008538/zp20282sup7.cdx

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989018008538/zp20283sup4.hkl

e-74-00981-3sup4.hkl (345.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018008538/zp20283sup8.cdx

Structure factors: contains datablock(s) 4. DOI: 10.1107/S2056989018008538/zp20284sup5.hkl

e-74-00981-4sup5.hkl (380.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018008538/zp20284sup9.cdx

CCDC references: 1585836, 1585835, 1585834, 1585833

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[chloridocuprate(II)] (1). Crystal data

(C6H11N2)2[Cu2(C2H3O2)4Cl2] F(000) = 676
Mr = 656.49 Dx = 1.563 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 8.2264 (14) Å Cell parameters from 1837 reflections
b = 12.956 (2) Å θ = 3.0–27.3°
c = 13.173 (2) Å µ = 1.76 mm1
β = 96.471 (3)° T = 150 K
V = 1395.0 (4) Å3 Prism, green
Z = 2 0.30 × 0.20 × 0.20 mm

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[chloridocuprate(II)] (1). Data collection

Bruker Kappa APEX DUO CCD diffractometer 4275 independent reflections
Radiation source: fine-focus sealed tube 2956 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.039
φ and ω scans θmax = 30.6°, θmin = 2.2°
Absorption correction: multi-scan (SADABS; Bruker, 2015) h = −11→11
Tmin = 0.620, Tmax = 0.719 k = −10→18
9428 measured reflections l = −18→18

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[chloridocuprate(II)] (1). Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.041 H-atom parameters constrained
wR(F2) = 0.094 w = 1/[σ2(Fo2) + (0.041P)2] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max < 0.001
4275 reflections Δρmax = 0.56 e Å3
167 parameters Δρmin = −0.56 e Å3

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[chloridocuprate(II)] (1). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[chloridocuprate(II)] (1). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.01642 (4) 0.45929 (2) 0.90665 (2) 0.01685 (9)
Cl1 0.04928 (8) 0.39420 (5) 0.73731 (4) 0.02395 (15)
C1 0.4413 (3) 0.5224 (2) 0.74431 (19) 0.0231 (6)
H1 0.3838 0.4770 0.7842 0.028*
C3 0.4986 (3) 0.6537 (2) 0.64963 (19) 0.0225 (5)
H3 0.4899 0.7163 0.6119 0.027*
C2 0.5964 (3) 0.5110 (2) 0.72166 (18) 0.0213 (5)
H2 0.6691 0.4563 0.7432 0.026*
C5 0.7800 (3) 0.6095 (2) 0.6145 (2) 0.0288 (6)
H5A 0.8726 0.5765 0.6570 0.035*
H5B 0.8027 0.6844 0.6115 0.035*
C4 0.2199 (3) 0.6570 (2) 0.7028 (2) 0.0371 (7)
H4A 0.2306 0.7253 0.7349 0.056*
H4B 0.1562 0.6119 0.7431 0.056*
H4C 0.1639 0.6637 0.6334 0.056*
C6 0.7667 (5) 0.5654 (3) 0.5090 (3) 0.0567 (11)
H6A 0.7434 0.4914 0.5118 0.085*
H6B 0.8701 0.5760 0.4800 0.085*
H6C 0.6780 0.6000 0.4661 0.085*
N2 0.6290 (3) 0.59310 (17) 0.66186 (15) 0.0197 (4)
N1 0.3825 (3) 0.61269 (18) 0.69846 (16) 0.0229 (5)
C7 −0.1284 (3) 0.6607 (2) 0.91709 (19) 0.0202 (5)
C8 −0.1941 (4) 0.7589 (2) 0.8675 (2) 0.0356 (7)
H8A −0.1342 0.7751 0.8093 0.053*
H8B −0.1806 0.8154 0.9172 0.053*
H8C −0.3105 0.7503 0.8436 0.053*
O2 0.2268 (2) 0.53434 (15) 0.93042 (13) 0.0275 (4)
O1 −0.0893 (2) 0.58958 (14) 0.86038 (13) 0.0247 (4)
O5 −0.1994 (2) 0.39387 (15) 0.91833 (13) 0.0259 (4)
O3 0.1164 (2) 0.34246 (14) 0.98635 (13) 0.0269 (4)
C9 0.2752 (3) 0.5904 (2) 1.00540 (19) 0.0198 (5)
C10 0.4370 (3) 0.6439 (2) 1.0025 (2) 0.0310 (6)
H10A 0.5123 0.5981 0.9714 0.047*
H10B 0.4833 0.6613 1.0722 0.047*
H10C 0.4208 0.7073 0.9620 0.047*

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[chloridocuprate(II)] (1). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01653 (14) 0.01755 (17) 0.01630 (13) −0.00107 (13) 0.00116 (10) 0.00019 (12)
Cl1 0.0271 (3) 0.0263 (4) 0.0192 (3) −0.0040 (3) 0.0056 (2) −0.0033 (2)
C1 0.0252 (13) 0.0205 (14) 0.0240 (12) 0.0004 (11) 0.0042 (10) 0.0053 (10)
C3 0.0234 (13) 0.0223 (14) 0.0214 (12) −0.0019 (11) 0.0011 (10) 0.0031 (10)
C2 0.0263 (13) 0.0184 (13) 0.0192 (11) 0.0010 (11) 0.0019 (10) 0.0007 (10)
C5 0.0235 (13) 0.0382 (18) 0.0261 (13) 0.0003 (13) 0.0091 (10) 0.0058 (12)
C4 0.0233 (14) 0.0389 (19) 0.0506 (18) 0.0063 (14) 0.0103 (13) 0.0048 (15)
C6 0.059 (2) 0.078 (3) 0.0387 (18) −0.010 (2) 0.0296 (17) −0.0144 (19)
N2 0.0214 (10) 0.0201 (12) 0.0179 (9) −0.0024 (9) 0.0029 (8) 0.0016 (8)
N1 0.0218 (11) 0.0228 (12) 0.0245 (10) 0.0015 (10) 0.0045 (8) 0.0037 (9)
C7 0.0172 (11) 0.0171 (13) 0.0252 (12) −0.0012 (11) −0.0022 (9) 0.0018 (10)
C8 0.0506 (19) 0.0222 (16) 0.0320 (15) 0.0109 (14) −0.0052 (13) 0.0056 (12)
O2 0.0181 (9) 0.0361 (12) 0.0288 (9) −0.0099 (9) 0.0053 (7) −0.0080 (9)
O1 0.0305 (10) 0.0208 (10) 0.0225 (9) 0.0058 (9) 0.0018 (7) 0.0022 (8)
O5 0.0225 (9) 0.0322 (12) 0.0235 (9) −0.0080 (9) 0.0041 (7) −0.0014 (8)
O3 0.0359 (11) 0.0205 (10) 0.0230 (9) 0.0067 (9) −0.0030 (8) −0.0012 (8)
C9 0.0142 (11) 0.0172 (13) 0.0276 (12) 0.0010 (10) 0.0006 (9) 0.0043 (11)
C10 0.0185 (13) 0.0301 (16) 0.0458 (16) −0.0052 (12) 0.0097 (11) −0.0057 (14)

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[chloridocuprate(II)] (1). Geometric parameters (Å, º)

Cu1—O1 1.9642 (18) C4—H4B 0.9800
Cu1—O3 1.9685 (18) C4—H4C 0.9800
Cu1—O2 1.9788 (18) C6—H6A 0.9800
Cu1—O5 1.9887 (18) C6—H6B 0.9800
Cu1—Cl1 2.4282 (7) C6—H6C 0.9800
Cu1—Cu1i 2.7173 (7) C7—O1 1.251 (3)
C1—C2 1.351 (4) C7—O3i 1.265 (3)
C1—N1 1.379 (3) C7—C8 1.503 (4)
C1—H1 0.9500 C8—H8A 0.9800
C3—N1 1.322 (3) C8—H8B 0.9800
C3—N2 1.324 (3) C8—H8C 0.9800
C3—H3 0.9500 O2—C9 1.254 (3)
C2—N2 1.368 (3) O5—C9i 1.258 (3)
C2—H2 0.9500 O3—C7i 1.265 (3)
C5—N2 1.467 (3) C9—O5i 1.258 (3)
C5—C6 1.494 (4) C9—C10 1.505 (3)
C5—H5A 0.9900 C10—H10A 0.9800
C5—H5B 0.9900 C10—H10B 0.9800
C4—N1 1.463 (3) C10—H10C 0.9800
C4—H4A 0.9800
O1—Cu1—O3 165.96 (7) H4B—C4—H4C 109.5
O1—Cu1—O2 88.59 (8) C5—C6—H6A 109.5
O3—Cu1—O2 89.32 (8) C5—C6—H6B 109.5
O1—Cu1—O5 91.28 (8) H6A—C6—H6B 109.5
O3—Cu1—O5 87.37 (8) C5—C6—H6C 109.5
O2—Cu1—O5 165.81 (7) H6A—C6—H6C 109.5
O1—Cu1—Cl1 96.00 (5) H6B—C6—H6C 109.5
O3—Cu1—Cl1 98.04 (6) C3—N2—C2 108.8 (2)
O2—Cu1—Cl1 97.48 (5) C3—N2—C5 125.1 (2)
O5—Cu1—Cl1 96.65 (5) C2—N2—C5 126.0 (2)
O1—Cu1—Cu1i 82.04 (5) C3—N1—C1 108.5 (2)
O3—Cu1—Cu1i 83.92 (5) C3—N1—C4 125.1 (2)
O2—Cu1—Cu1i 80.81 (5) C1—N1—C4 126.4 (2)
O5—Cu1—Cu1i 85.11 (5) O1—C7—O3i 125.4 (2)
Cl1—Cu1—Cu1i 177.41 (3) O1—C7—C8 117.9 (2)
C2—C1—N1 106.8 (2) O3i—C7—C8 116.7 (2)
C2—C1—H1 126.6 C7—C8—H8A 109.5
N1—C1—H1 126.6 C7—C8—H8B 109.5
N1—C3—N2 108.8 (2) H8A—C8—H8B 109.5
N1—C3—H3 125.6 C7—C8—H8C 109.5
N2—C3—H3 125.6 H8A—C8—H8C 109.5
C1—C2—N2 107.1 (2) H8B—C8—H8C 109.5
C1—C2—H2 126.5 C9—O2—Cu1 127.14 (16)
N2—C2—H2 126.5 C7—O1—Cu1 125.64 (16)
N2—C5—C6 111.3 (2) C9i—O5—Cu1 121.34 (17)
N2—C5—H5A 109.4 C7i—O3—Cu1 122.82 (17)
C6—C5—H5A 109.4 O2—C9—O5i 125.5 (2)
N2—C5—H5B 109.4 O2—C9—C10 116.8 (2)
C6—C5—H5B 109.4 O5i—C9—C10 117.7 (2)
H5A—C5—H5B 108.0 C9—C10—H10A 109.5
N1—C4—H4A 109.5 C9—C10—H10B 109.5
N1—C4—H4B 109.5 H10A—C10—H10B 109.5
H4A—C4—H4B 109.5 C9—C10—H10C 109.5
N1—C4—H4C 109.5 H10A—C10—H10C 109.5
H4A—C4—H4C 109.5 H10B—C10—H10C 109.5

Symmetry code: (i) −x, −y+1, −z+2.

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[chloridocuprate(II)] (1). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C8—H8C···Cl1ii 0.98 2.83 3.550 (3) 131
C4—H4B···Cl1 0.98 2.95 3.731 (3) 137
C4—H4A···Cl1iii 0.98 2.84 3.651 (3) 141
C5—H5A···Cl1iv 0.99 2.91 3.808 (3) 151
C2—H2···O5iv 0.95 2.57 3.295 (3) 134
C3—H3···O3iii 0.95 2.20 3.115 (3) 160
C1—H1···O2 0.95 2.55 3.182 (3) 124
C1—H1···Cl1 0.95 2.95 3.619 (3) 128

Symmetry codes: (ii) −x−1/2, y+1/2, −z+3/2; (iii) −x+1/2, y+1/2, −z+3/2; (iv) x+1, y, z.

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-chlorido] monohydrate] (2) . Crystal data

(C6H11N2)[Cu2(C2H3O2)4Cl]·H2O F(000) = 1080
Mr = 527.89 Dx = 1.694 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 8.438 (4) Å Cell parameters from 718 reflections
b = 16.315 (7) Å θ = 2.4–21.6°
c = 15.131 (7) Å µ = 2.23 mm1
β = 96.53 (1)° T = 198 K
V = 2069.7 (16) Å3 Prism, green
Z = 4 0.11 × 0.08 × 0.07 mm

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-chlorido] monohydrate] (2) . Data collection

Bruker Smart APEX II CCD diffractometer 4229 independent reflections
Radiation source: fine-focus sealed tube 2504 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.105
φ and ω scans θmax = 26.4°, θmin = 1.8°
Absorption correction: multi-scan (SADABS; Bruker, 2015) h = −10→10
Tmin = 0.795, Tmax = 0.858 k = −20→20
35161 measured reflections l = −16→18

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-chlorido] monohydrate] (2) . Refinement

Refinement on F2 93 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.082 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.265 w = 1/[σ2(Fo2) + (0.1024P)2 + 19.8459P] where P = (Fo2 + 2Fc2)/3
S = 1.08 (Δ/σ)max < 0.001
4229 reflections Δρmax = 1.70 e Å3
319 parameters Δρmin = −0.94 e Å3

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-chlorido] monohydrate] (2) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-chlorido] monohydrate] (2) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
C1 0.7268 (11) 0.5647 (5) 0.4896 (7) 0.035 (2)
C2 0.5618 (11) 0.6017 (6) 0.4836 (8) 0.045 (3)
H2A 0.5704 0.6610 0.4938 0.067*
H2B 0.5025 0.5769 0.5289 0.067*
H2C 0.5055 0.5913 0.4245 0.067*
C3 0.8705 (10) 0.3595 (5) 0.5044 (7) 0.0313 (19)
C4 0.7916 (12) 0.2770 (6) 0.5083 (8) 0.044 (3)
H4A 0.7423 0.2618 0.4488 0.067*
H4B 0.7096 0.2796 0.5491 0.067*
H4C 0.8717 0.2359 0.5295 0.067*
C5 0.7238 (11) 0.4373 (6) −0.0335 (8) 0.039 (2)
C6 0.5583 (11) 0.4033 (6) −0.0541 (8) 0.047 (3)
H6A 0.4831 0.4484 −0.0686 0.070*
H6B 0.5286 0.3735 −0.0023 0.070*
H6C 0.5553 0.3659 −0.1050 0.070*
C7 1.1261 (10) 0.3598 (5) 0.0057 (6) 0.0283 (18)
C8 1.2080 (12) 0.2769 (5) 0.0107 (7) 0.039 (2)
H8A 1.1734 0.2453 0.0601 0.059*
H8B 1.3239 0.2846 0.0203 0.059*
H8C 1.1796 0.2472 −0.0452 0.059*
N1A 0.142 (3) 0.2561 (15) 0.263 (3) 0.035 (4) 0.513 (12)
N2A 0.382 (2) 0.3105 (12) 0.2719 (13) 0.033 (3) 0.513 (12)
C9A 0.230 (2) 0.3252 (13) 0.2752 (17) 0.030 (4) 0.513 (12)
H9A 0.1871 0.3779 0.2847 0.036* 0.513 (12)
C10A −0.029 (3) 0.248 (3) 0.264 (3) 0.050 (7) 0.513 (12)
H10A −0.0673 0.2935 0.2989 0.075* 0.513 (12)
H10B −0.0523 0.1960 0.2920 0.075* 0.513 (12)
H10C −0.0817 0.2502 0.2034 0.075* 0.513 (12)
C11A 0.247 (3) 0.1942 (17) 0.246 (4) 0.048 (5) 0.513 (12)
H11A 0.2197 0.1383 0.2352 0.058* 0.513 (12)
C12A 0.391 (3) 0.2268 (14) 0.248 (5) 0.049 (5) 0.513 (12)
H12A 0.4850 0.1988 0.2357 0.059* 0.513 (12)
C13A 0.505 (3) 0.3747 (17) 0.2777 (16) 0.059 (7) 0.513 (12)
H13A 0.5941 0.3585 0.3224 0.071* 0.513 (12)
H13B 0.4592 0.4264 0.2980 0.071* 0.513 (12)
C14A 0.569 (4) 0.390 (2) 0.1885 (19) 0.105 (14) 0.513 (12)
H14A 0.6144 0.3386 0.1681 0.157* 0.513 (12)
H14B 0.6516 0.4320 0.1956 0.157* 0.513 (12)
H14C 0.4816 0.4077 0.1445 0.157* 0.513 (12)
N1B 0.193 (3) 0.2668 (17) 0.257 (4) 0.035 (4) 0.487 (12)
N2B 0.429 (2) 0.3195 (12) 0.2470 (14) 0.033 (3) 0.487 (12)
C9B 0.280 (3) 0.3363 (14) 0.2557 (18) 0.030 (4) 0.487 (12)
H9B 0.2379 0.3900 0.2605 0.036* 0.487 (12)
C10B 0.023 (3) 0.261 (3) 0.261 (4) 0.054 (9) 0.487 (12)
H10D −0.0221 0.3163 0.2634 0.081* 0.487 (12)
H10E 0.0026 0.2302 0.3138 0.081* 0.487 (12)
H10F −0.0270 0.2328 0.2075 0.081* 0.487 (12)
C11B 0.302 (4) 0.2041 (17) 0.251 (4) 0.048 (5) 0.487 (12)
H11B 0.2753 0.1475 0.2496 0.058* 0.487 (12)
C12B 0.448 (4) 0.2333 (15) 0.247 (6) 0.049 (5) 0.487 (12)
H12B 0.5438 0.2031 0.2453 0.059* 0.487 (12)
C13B 0.564 (3) 0.3763 (13) 0.246 (2) 0.052 (6) 0.487 (12)
H13C 0.6156 0.3674 0.1909 0.062* 0.487 (12)
H13D 0.6435 0.3656 0.2975 0.062* 0.487 (12)
C14B 0.506 (2) 0.4652 (12) 0.2484 (14) 0.042 (5) 0.487 (12)
H14D 0.3952 0.4686 0.2213 0.063* 0.487 (12)
H14E 0.5732 0.5001 0.2154 0.063* 0.487 (12)
H14F 0.5131 0.4837 0.3103 0.063* 0.487 (12)
Cl1 0.9622 (3) 0.49055 (16) 0.24814 (16) 0.0444 (6)
Cu1 0.98839 (12) 0.49546 (7) 0.41183 (7) 0.0314 (3)
Cu2 0.98635 (12) 0.49562 (7) 0.08689 (7) 0.0303 (3)
O1 0.7800 (8) 0.5456 (5) 0.4194 (5) 0.0452 (17)
O2 0.7991 (8) 0.5550 (4) 0.5671 (5) 0.0444 (17)
O3 0.8907 (8) 0.3873 (4) 0.4302 (5) 0.0419 (16)
O4 0.9075 (9) 0.3949 (4) 0.5780 (4) 0.0430 (17)
O5 0.7770 (8) 0.4478 (5) 0.0462 (5) 0.0471 (18)
O6 0.7989 (8) 0.4548 (5) −0.0980 (5) 0.053 (2)
O7 1.0869 (8) 0.3877 (4) 0.0774 (4) 0.0406 (16)
O9A 0.715 (3) 0.3631 (15) 0.7359 (15) 0.056 (5) 0.513 (12)
H2WA 0.77 (2) 0.367 (12) 0.689 (10) 0.067* 0.513 (12)
H1WA 0.72 (3) 0.413 (7) 0.761 (16) 0.067* 0.513 (12)
O9B 0.691 (3) 0.4074 (14) 0.7142 (16) 0.056 (5) 0.487 (12)
H2WB 0.766 (18) 0.406 (14) 0.675 (9) 0.067* 0.487 (12)
H1WB 0.72 (4) 0.367 (19) 0.75 (2) 0.067* 0.487 (12)
O8 1.1090 (8) 0.3948 (4) −0.0674 (4) 0.0392 (16)

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-chlorido] monohydrate] (2) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.030 (4) 0.019 (4) 0.054 (6) 0.004 (3) −0.003 (4) −0.001 (4)
C2 0.025 (4) 0.027 (5) 0.080 (8) −0.001 (4) 0.001 (4) 0.013 (5)
C3 0.025 (4) 0.024 (4) 0.043 (5) 0.002 (3) −0.002 (4) −0.005 (4)
C4 0.042 (6) 0.022 (5) 0.068 (8) −0.004 (4) 0.003 (5) −0.002 (5)
C5 0.025 (4) 0.024 (5) 0.067 (6) 0.005 (3) −0.007 (4) −0.014 (5)
C6 0.023 (4) 0.041 (6) 0.075 (8) 0.000 (4) −0.004 (4) −0.022 (5)
C7 0.025 (4) 0.019 (4) 0.041 (5) −0.001 (3) 0.003 (4) −0.007 (4)
C8 0.041 (5) 0.019 (4) 0.059 (7) 0.004 (4) 0.010 (5) 0.000 (4)
N1A 0.043 (12) 0.036 (7) 0.029 (8) −0.007 (7) 0.008 (15) −0.001 (7)
N2A 0.034 (8) 0.048 (5) 0.018 (10) 0.000 (5) 0.009 (5) 0.011 (6)
C9A 0.036 (9) 0.028 (6) 0.029 (11) 0.000 (6) 0.016 (8) 0.009 (7)
C10A 0.047 (13) 0.08 (2) 0.029 (14) −0.018 (12) 0.010 (15) 0.008 (14)
C11A 0.058 (17) 0.035 (6) 0.046 (9) 0.006 (7) −0.02 (2) −0.008 (8)
C12A 0.046 (16) 0.049 (6) 0.049 (8) 0.023 (7) −0.01 (3) 0.009 (9)
C13A 0.051 (14) 0.077 (13) 0.050 (15) −0.023 (12) 0.010 (11) 0.029 (13)
C14A 0.11 (3) 0.15 (3) 0.07 (2) −0.07 (2) 0.035 (18) 0.02 (2)
N1B 0.043 (12) 0.036 (7) 0.029 (8) −0.007 (7) 0.008 (15) −0.001 (7)
N2B 0.034 (8) 0.048 (5) 0.018 (10) 0.000 (5) 0.009 (5) 0.011 (6)
C9B 0.036 (9) 0.028 (6) 0.029 (11) 0.000 (6) 0.016 (8) 0.009 (7)
C10B 0.045 (14) 0.066 (19) 0.056 (19) −0.021 (13) 0.03 (2) 0.005 (16)
C11B 0.058 (17) 0.035 (6) 0.046 (9) 0.006 (7) −0.02 (2) −0.008 (8)
C12B 0.046 (16) 0.049 (6) 0.049 (8) 0.023 (7) −0.01 (3) 0.009 (9)
C13B 0.029 (11) 0.074 (11) 0.052 (19) −0.008 (9) 0.004 (11) 0.018 (15)
C14B 0.017 (8) 0.067 (9) 0.041 (12) −0.018 (8) −0.002 (8) 0.005 (11)
Cl1 0.0558 (14) 0.0398 (13) 0.0342 (12) 0.0062 (11) −0.0095 (10) −0.0070 (11)
Cu1 0.0339 (6) 0.0200 (6) 0.0380 (7) 0.0020 (4) −0.0066 (4) −0.0041 (5)
Cu2 0.0289 (6) 0.0233 (6) 0.0370 (7) 0.0035 (4) −0.0035 (4) −0.0095 (5)
O1 0.030 (3) 0.059 (4) 0.044 (4) 0.013 (3) −0.007 (3) −0.006 (4)
O2 0.038 (4) 0.049 (4) 0.046 (4) 0.009 (3) 0.003 (3) −0.003 (3)
O3 0.055 (4) 0.028 (3) 0.042 (4) −0.009 (3) 0.003 (3) −0.009 (3)
O4 0.062 (5) 0.028 (4) 0.038 (4) −0.009 (3) −0.001 (3) −0.003 (3)
O5 0.029 (3) 0.053 (5) 0.057 (4) −0.011 (3) −0.006 (3) −0.007 (4)
O6 0.031 (4) 0.074 (6) 0.053 (4) −0.005 (4) 0.000 (3) −0.025 (4)
O7 0.056 (4) 0.029 (3) 0.036 (4) 0.015 (3) 0.002 (3) 0.000 (3)
O9A 0.056 (8) 0.061 (12) 0.054 (11) −0.032 (10) 0.016 (7) −0.023 (10)
O9B 0.056 (8) 0.061 (12) 0.054 (11) −0.032 (10) 0.016 (7) −0.023 (10)
O8 0.057 (4) 0.025 (3) 0.038 (4) 0.013 (3) 0.015 (3) 0.001 (3)

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-chlorido] monohydrate] (2) . Geometric parameters (Å, º)

C1—O1 1.240 (12) C14A—H14B 0.9800
C1—O2 1.269 (12) C14A—H14C 0.9800
C1—C2 1.511 (12) N1B—C9B 1.348 (17)
C2—H2A 0.9800 N1B—C11B 1.382 (17)
C2—H2B 0.9800 N1B—C10B 1.45 (2)
C2—H2C 0.9800 N2B—C9B 1.309 (18)
C3—O3 1.241 (11) N2B—C12B 1.42 (2)
C3—O4 1.261 (11) N2B—C13B 1.47 (2)
C3—C4 1.506 (12) C9B—H9B 0.9500
C4—H4A 0.9800 C10B—H10D 0.9800
C4—H4B 0.9800 C10B—H10E 0.9800
C4—H4C 0.9800 C10B—H10F 0.9800
C5—O5 1.250 (12) C11B—C12B 1.33 (2)
C5—O6 1.256 (13) C11B—H11B 0.9500
C5—C6 1.502 (12) C12B—H12B 0.9500
C6—H6A 0.9800 C13B—C14B 1.531 (18)
C6—H6B 0.9800 C13B—H13C 0.9900
C6—H6C 0.9800 C13B—H13D 0.9900
C7—O8 1.239 (11) C14B—H14D 0.9800
C7—O7 1.255 (11) C14B—H14E 0.9800
C7—C8 1.518 (11) C14B—H14F 0.9800
C8—H8A 0.9800 Cl1—Cu1 2.463 (3)
C8—H8B 0.9800 Cl1—Cu2 2.473 (3)
C8—H8C 0.9800 Cu1—O1 1.954 (7)
N1A—C9A 1.350 (17) Cu1—O2i 1.966 (7)
N1A—C11A 1.383 (17) Cu1—O3 1.981 (7)
N1A—C10A 1.45 (2) Cu1—O4i 1.990 (7)
N2A—C9A 1.308 (18) Cu1—Cu1i 2.657 (3)
N2A—C12A 1.42 (2) Cu2—O5 1.965 (6)
N2A—C13A 1.47 (2) Cu2—O7 1.967 (6)
C9A—H9A 0.9500 Cu2—O8ii 1.969 (6)
C10A—H10A 0.9800 Cu2—O6ii 1.974 (7)
C10A—H10B 0.9800 Cu2—Cu2ii 2.669 (3)
C10A—H10C 0.9800 O2—Cu1i 1.966 (7)
C11A—C12A 1.33 (2) O4—Cu1i 1.990 (7)
C11A—H11A 0.9500 O6—Cu2ii 1.974 (7)
C12A—H12A 0.9500 O9A—H2WA 0.90 (2)
C13A—C14A 1.529 (16) O9A—H1WA 0.90 (2)
C13A—H13A 0.9900 O9B—H2WB 0.909 (19)
C13A—H13B 0.9900 O9B—H1WB 0.90 (2)
C14A—H14A 0.9800 O8—Cu2ii 1.969 (6)
O1—C1—O2 125.3 (8) C9B—N2B—C12B 108.6 (17)
O1—C1—C2 118.1 (9) C9B—N2B—C13B 128.7 (18)
O2—C1—C2 116.6 (9) C12B—N2B—C13B 122.5 (19)
C1—C2—H2A 109.5 N2B—C9B—N1B 110.6 (16)
C1—C2—H2B 109.5 N2B—C9B—H9B 124.7
H2A—C2—H2B 109.5 N1B—C9B—H9B 124.7
C1—C2—H2C 109.5 N1B—C10B—H10D 109.5
H2A—C2—H2C 109.5 N1B—C10B—H10E 109.5
H2B—C2—H2C 109.5 H10D—C10B—H10E 109.5
O3—C3—O4 125.9 (9) N1B—C10B—H10F 109.5
O3—C3—C4 117.9 (9) H10D—C10B—H10F 109.5
O4—C3—C4 116.2 (9) H10E—C10B—H10F 109.5
C3—C4—H4A 109.5 C12B—C11B—N1B 111.2 (19)
C3—C4—H4B 109.5 C12B—C11B—H11B 124.4
H4A—C4—H4B 109.5 N1B—C11B—H11B 124.4
C3—C4—H4C 109.5 C11B—C12B—N2B 104.4 (19)
H4A—C4—H4C 109.5 C11B—C12B—H12B 127.8
H4B—C4—H4C 109.5 N2B—C12B—H12B 127.8
O5—C5—O6 124.2 (9) N2B—C13B—C14B 110.3 (18)
O5—C5—C6 118.3 (10) N2B—C13B—H13C 109.6
O6—C5—C6 117.5 (10) C14B—C13B—H13C 109.6
C5—C6—H6A 109.5 N2B—C13B—H13D 109.6
C5—C6—H6B 109.5 C14B—C13B—H13D 109.6
H6A—C6—H6B 109.5 H13C—C13B—H13D 108.1
C5—C6—H6C 109.5 C13B—C14B—H14D 109.5
H6A—C6—H6C 109.5 C13B—C14B—H14E 109.5
H6B—C6—H6C 109.5 H14D—C14B—H14E 109.5
O8—C7—O7 126.2 (8) C13B—C14B—H14F 109.5
O8—C7—C8 117.4 (8) H14D—C14B—H14F 109.5
O7—C7—C8 116.3 (8) H14E—C14B—H14F 109.5
C7—C8—H8A 109.5 Cu1—Cl1—Cu2 169.49 (13)
C7—C8—H8B 109.5 O1—Cu1—O2i 167.4 (3)
H8A—C8—H8B 109.5 O1—Cu1—O3 88.4 (3)
C7—C8—H8C 109.5 O2i—Cu1—O3 89.5 (3)
H8A—C8—H8C 109.5 O1—Cu1—O4i 90.7 (3)
H8B—C8—H8C 109.5 O2i—Cu1—O4i 88.7 (3)
C9A—N1A—C11A 106.5 (17) O3—Cu1—O4i 167.6 (3)
C9A—N1A—C10A 127.1 (18) O1—Cu1—Cl1 95.4 (2)
C11A—N1A—C10A 126 (2) O2i—Cu1—Cl1 97.2 (2)
C9A—N2A—C12A 105.8 (17) O3—Cu1—Cl1 96.9 (2)
C9A—N2A—C13A 123.7 (19) O4i—Cu1—Cl1 95.5 (2)
C12A—N2A—C13A 129.8 (19) O1—Cu1—Cu1i 83.2 (2)
N2A—C9A—N1A 111.4 (16) O2i—Cu1—Cu1i 84.2 (2)
N2A—C9A—H9A 124.3 O3—Cu1—Cu1i 83.9 (2)
N1A—C9A—H9A 124.3 O4i—Cu1—Cu1i 83.7 (2)
N1A—C10A—H10A 109.5 Cl1—Cu1—Cu1i 178.39 (9)
N1A—C10A—H10B 109.5 O5—Cu2—O7 90.1 (3)
H10A—C10A—H10B 109.5 O5—Cu2—O8ii 88.6 (3)
N1A—C10A—H10C 109.5 O7—Cu2—O8ii 167.0 (3)
H10A—C10A—H10C 109.5 O5—Cu2—O6ii 166.7 (3)
H10B—C10A—H10C 109.5 O7—Cu2—O6ii 88.5 (3)
C12A—C11A—N1A 107.8 (19) O8ii—Cu2—O6ii 89.8 (3)
C12A—C11A—H11A 126.1 O5—Cu2—Cl1 97.1 (2)
N1A—C11A—H11A 126.1 O7—Cu2—Cl1 97.3 (2)
C11A—C12A—N2A 108.2 (19) O8ii—Cu2—Cl1 95.7 (2)
C11A—C12A—H12A 125.9 O6ii—Cu2—Cl1 96.2 (2)
N2A—C12A—H12A 125.9 O5—Cu2—Cu2ii 83.6 (2)
N2A—C13A—C14A 112 (2) O7—Cu2—Cu2ii 83.7 (2)
N2A—C13A—H13A 109.2 O8ii—Cu2—Cu2ii 83.3 (2)
C14A—C13A—H13A 109.2 O6ii—Cu2—Cu2ii 83.2 (2)
N2A—C13A—H13B 109.2 Cl1—Cu2—Cu2ii 178.82 (9)
C14A—C13A—H13B 109.2 C1—O1—Cu1 124.9 (6)
H13A—C13A—H13B 107.9 C1—O2—Cu1i 122.4 (6)
C13A—C14A—H14A 109.5 C3—O3—Cu1 123.6 (6)
C13A—C14A—H14B 109.5 C3—O4—Cu1i 122.9 (6)
H14A—C14A—H14B 109.5 C5—O5—Cu2 124.6 (7)
C13A—C14A—H14C 109.5 C5—O6—Cu2ii 124.5 (6)
H14A—C14A—H14C 109.5 C7—O7—Cu2 123.0 (6)
H14B—C14A—H14C 109.5 H2WA—O9A—H1WA 105 (5)
C9B—N1B—C11B 105.1 (17) H2WB—O9B—H1WB 105 (5)
C9B—N1B—C10B 126.4 (19) C7—O8—Cu2ii 123.8 (6)
C11B—N1B—C10B 128 (2)

Symmetry codes: (i) −x+2, −y+1, −z+1; (ii) −x+2, −y+1, −z.

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-chlorido] monohydrate] (2) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O9B—H2WB···O4 0.91 (2) 2.01 (2) 2.91 (2) 172 (18)
O9A—H1WA···O6iii 0.90 (2) 2.3 (2) 2.94 (3) 131 (23)
O9A—H2WA···O4 0.90 (2) 2.19 (5) 3.08 (2) 172 (18)
C14B—H14D···O6iv 0.98 2.65 3.49 (2) 144
C12B—H12B···O9Bv 0.95 2.27 3.16 (3) 155
C10B—H10D···Cl1vi 0.98 2.85 3.78 (5) 158
C9B—H9B···Cl1vi 0.95 2.84 3.67 (2) 147
C14A—H14B···Cl1 0.98 2.82 3.72 (3) 154
C12A—H12A···O9Av 0.95 2.19 3.13 (3) 168
C11A—H11A···Cl1vii 0.95 2.88 3.77 (3) 155
C10A—H10B···O9Aviii 0.98 2.26 2.82 (4) 115
C10A—H10A···O3vi 0.98 2.56 3.50 (5) 161
C9A—H9A···O2ix 0.95 2.48 3.11 (3) 124
C9A—H9A···Cl1vi 0.95 2.65 3.51 (2) 151
C2—H2C···O9Bix 0.98 2.52 3.48 (3) 165

Symmetry codes: (iii) x, y, z+1; (iv) −x+1, −y+1, −z; (v) x, −y+1/2, z−1/2; (vi) x−1, y, z; (vii) −x+1, y−1/2, −z+1/2; (viii) x−1, −y+1/2, z−1/2; (ix) −x+1, −y+1, −z+1.

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-acetato]] (3) . Crystal data

(C6H11N2)[Cu2(C2H3O2)5] Z = 2
Mr = 533.47 F(000) = 548
Triclinic, P1 Dx = 1.637 Mg m3
a = 8.0542 (9) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.1633 (9) Å Cell parameters from 4553 reflections
c = 16.7195 (19) Å θ = 2.5–30.5°
α = 98.126 (3)° µ = 2.02 mm1
β = 94.745 (3)° T = 198 K
γ = 92.964 (3)° Prism, blue
V = 1082.3 (2) Å3 0.30 × 0.20 × 0.20 mm

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-acetato]] (3) . Data collection

Bruker Kappa APEX DUO CCD diffractometer 4343 independent reflections
Radiation source: fine-focus sealed tube 3662 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.025
φ and ω scans θmax = 26.4°, θmin = 1.2°
Absorption correction: multi-scan (SADABS; Bruker, 2015) h = −7→10
Tmin = 0.583, Tmax = 0.688 k = −10→10
11652 measured reflections l = −20→20

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-acetato]] (3) . Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.029 H-atom parameters constrained
wR(F2) = 0.107 w = 1/[σ2(Fo2) + (0.1P)2] where P = (Fo2 + 2Fc2)/3
S = 0.81 (Δ/σ)max = 0.044
4343 reflections Δρmax = 0.38 e Å3
278 parameters Δρmin = −0.46 e Å3

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-acetato]] (3) . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-acetato]] (3) . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.92345 (4) 0.99123 (3) 0.92550 (2) 0.01579 (11)
Cu2 0.56051 (4) 0.98913 (3) 0.57530 (2) 0.01600 (11)
O7 0.7481 (2) 0.8938 (2) 0.52154 (11) 0.0256 (4)
O5 0.7615 (3) 0.9983 (2) 0.82103 (10) 0.0239 (4)
O2 1.1356 (2) 1.0928 (2) 0.89944 (11) 0.0269 (4)
O8 0.6506 (2) 0.9156 (2) 0.39488 (10) 0.0254 (4)
O4 0.8587 (2) 1.2104 (2) 0.97397 (10) 0.0266 (4)
O6 0.6474 (2) 1.0114 (2) 0.69902 (11) 0.0261 (4)
O9 0.4417 (2) 0.7682 (2) 0.55935 (11) 0.0287 (5)
O10 0.3447 (2) 0.7862 (2) 0.43204 (11) 0.0272 (4)
O1 1.2610 (2) 1.1154 (2) 1.02491 (11) 0.0315 (5)
O3 0.9849 (3) 1.2283 (2) 1.09893 (11) 0.0291 (5)
N1 0.6086 (3) 0.4848 (3) 0.78982 (12) 0.0236 (5)
N2 0.4357 (3) 0.6683 (3) 0.76515 (14) 0.0281 (5)
C7 0.7587 (3) 0.8778 (3) 0.44641 (15) 0.0176 (5)
C1 1.2586 (3) 1.1306 (3) 0.95090 (15) 0.0209 (5)
C9 0.3605 (3) 0.7127 (3) 0.49278 (16) 0.0217 (5)
C3 0.8935 (3) 1.2817 (3) 1.04474 (15) 0.0197 (5)
C11 0.5724 (3) 0.6410 (3) 0.80908 (16) 0.0253 (6)
H11 0.6350 0.7209 0.8484 0.030*
C4 0.8185 (4) 1.4451 (3) 1.06738 (17) 0.0302 (6)
H4A 0.9004 1.5360 1.0633 0.045*
H4B 0.7874 1.4537 1.1232 0.045*
H4C 0.7190 1.4522 1.0304 0.045*
C5 0.7598 (3) 0.9663 (3) 0.74538 (13) 0.0191 (5)
C8 0.9154 (3) 0.8103 (3) 0.41572 (18) 0.0305 (6)
H8A 0.8967 0.7734 0.3571 0.046*
H8B 0.9454 0.7162 0.4432 0.046*
H8C 1.0064 0.8971 0.4268 0.046*
C2 1.4171 (4) 1.1998 (4) 0.92301 (19) 0.0323 (7)
H2A 1.5008 1.1168 0.9223 0.048*
H2B 1.4593 1.2996 0.9602 0.048*
H2C 1.3944 1.2280 0.8683 0.048*
C13 0.4900 (4) 0.4082 (4) 0.73099 (17) 0.0360 (7)
H13 0.4849 0.2961 0.7057 0.043*
C14 0.7545 (4) 0.4061 (4) 0.82256 (17) 0.0331 (7)
H14A 0.7178 0.2979 0.8376 0.040*
H14B 0.8061 0.4770 0.8723 0.040*
C15 0.8825 (4) 0.3799 (4) 0.76169 (19) 0.0360 (7)
H15A 0.8301 0.3149 0.7113 0.054*
H15B 0.9740 0.3201 0.7838 0.054*
H15C 0.9267 0.4876 0.7504 0.054*
C12 0.3825 (4) 0.5232 (4) 0.71625 (18) 0.0410 (8)
H12 0.2863 0.5066 0.6784 0.049*
C10 0.2743 (4) 0.5423 (3) 0.4847 (2) 0.0415 (8)
H10A 0.3418 0.4724 0.5158 0.062*
H10B 0.2605 0.4930 0.4274 0.062*
H10C 0.1644 0.5506 0.5056 0.062*
C6 0.8976 (5) 0.8706 (5) 0.71030 (18) 0.0480 (9)
H6A 0.8610 0.8196 0.6546 0.072*
H6B 0.9253 0.7838 0.7432 0.072*
H6C 0.9964 0.9458 0.7102 0.072*
C16 0.3528 (4) 0.8234 (4) 0.7685 (2) 0.0467 (9)
H16A 0.2508 0.8140 0.7961 0.070*
H16B 0.3242 0.8465 0.7133 0.070*
H16C 0.4278 0.9139 0.7984 0.070*

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-acetato]] (3) . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.01738 (19) 0.01679 (18) 0.01239 (18) 0.00049 (13) −0.00352 (12) 0.00242 (13)
Cu2 0.01685 (19) 0.01832 (18) 0.01209 (18) 0.00081 (13) −0.00266 (13) 0.00212 (13)
O7 0.0227 (10) 0.0340 (10) 0.0206 (10) 0.0092 (8) 0.0008 (8) 0.0035 (8)
O5 0.0274 (10) 0.0272 (10) 0.0155 (9) 0.0027 (8) −0.0073 (7) 0.0024 (7)
O2 0.0239 (11) 0.0349 (11) 0.0221 (10) −0.0033 (8) 0.0013 (8) 0.0069 (8)
O8 0.0207 (10) 0.0351 (10) 0.0193 (9) 0.0049 (8) −0.0002 (8) 0.0001 (8)
O4 0.0345 (12) 0.0228 (9) 0.0204 (10) 0.0101 (8) −0.0057 (8) −0.0020 (8)
O6 0.0273 (11) 0.0355 (11) 0.0144 (9) 0.0051 (8) −0.0071 (8) 0.0040 (8)
O9 0.0337 (12) 0.0232 (9) 0.0291 (10) −0.0033 (8) −0.0020 (9) 0.0082 (8)
O10 0.0321 (11) 0.0216 (9) 0.0261 (10) −0.0046 (8) −0.0020 (8) 0.0028 (8)
O1 0.0248 (11) 0.0426 (12) 0.0262 (10) −0.0107 (9) −0.0023 (8) 0.0093 (9)
O3 0.0421 (13) 0.0211 (9) 0.0221 (10) 0.0089 (8) −0.0072 (9) −0.0008 (8)
N1 0.0285 (13) 0.0216 (11) 0.0193 (11) −0.0012 (9) 0.0016 (9) −0.0006 (9)
N2 0.0268 (13) 0.0292 (12) 0.0292 (12) 0.0016 (10) 0.0068 (10) 0.0048 (10)
C7 0.0158 (13) 0.0113 (11) 0.0236 (13) −0.0017 (9) 0.0005 (10) −0.0032 (9)
C1 0.0198 (14) 0.0170 (12) 0.0259 (14) 0.0004 (10) 0.0021 (11) 0.0036 (10)
C9 0.0199 (13) 0.0169 (12) 0.0287 (14) 0.0022 (10) 0.0028 (11) 0.0038 (10)
C3 0.0192 (13) 0.0184 (12) 0.0218 (13) 0.0004 (10) 0.0023 (10) 0.0043 (10)
C11 0.0234 (15) 0.0242 (13) 0.0265 (14) −0.0063 (11) 0.0040 (11) −0.0005 (11)
C4 0.0350 (17) 0.0220 (13) 0.0331 (15) 0.0093 (12) 0.0015 (13) 0.0000 (12)
C5 0.0247 (14) 0.0169 (11) 0.0150 (13) −0.0028 (10) −0.0038 (11) 0.0050 (9)
C8 0.0193 (15) 0.0312 (15) 0.0406 (17) 0.0043 (12) 0.0075 (12) 0.0005 (13)
C2 0.0230 (16) 0.0332 (15) 0.0423 (17) −0.0027 (12) 0.0096 (13) 0.0085 (13)
C13 0.0410 (19) 0.0334 (16) 0.0273 (15) −0.0029 (14) −0.0010 (13) −0.0122 (12)
C14 0.0397 (18) 0.0304 (15) 0.0307 (15) 0.0070 (13) 0.0022 (13) 0.0085 (12)
C15 0.0322 (17) 0.0310 (15) 0.0429 (18) −0.0018 (13) 0.0015 (14) 0.0013 (13)
C12 0.0364 (19) 0.054 (2) 0.0273 (16) −0.0020 (15) −0.0063 (13) −0.0040 (14)
C10 0.043 (2) 0.0216 (14) 0.057 (2) −0.0115 (13) −0.0064 (16) 0.0083 (14)
C6 0.053 (2) 0.073 (2) 0.0240 (15) 0.0370 (19) 0.0071 (15) 0.0124 (15)
C16 0.0346 (19) 0.048 (2) 0.065 (2) 0.0147 (15) 0.0178 (17) 0.0199 (17)

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-acetato]] (3) . Geometric parameters (Å, º)

Cu1—O2 1.9684 (19) C1—C2 1.505 (4)
Cu1—O4 1.9714 (18) C9—C10 1.505 (4)
Cu1—O3i 1.9755 (17) C3—C4 1.506 (3)
Cu1—O1i 1.9811 (19) C11—H11 0.9500
Cu1—O5 2.1012 (17) C4—H4A 0.9800
Cu1—Cu1i 2.6685 (6) C4—H4B 0.9800
Cu2—O7 1.9607 (19) C4—H4C 0.9800
Cu2—O9 1.9706 (18) C5—C6 1.501 (4)
Cu2—O10ii 1.9742 (18) C8—H8A 0.9800
Cu2—O8ii 1.9774 (18) C8—H8B 0.9800
Cu2—O6 2.1077 (18) C8—H8C 0.9800
Cu2—Cu2ii 2.6571 (6) C2—H2A 0.9800
O7—C7 1.255 (3) C2—H2B 0.9800
O5—C5 1.254 (3) C2—H2C 0.9800
O2—C1 1.253 (3) C13—C12 1.344 (4)
O8—C7 1.255 (3) C13—H13 0.9500
O8—Cu2ii 1.9774 (18) C14—C15 1.510 (4)
O4—C3 1.246 (3) C14—H14A 0.9900
O6—C5 1.247 (3) C14—H14B 0.9900
O9—C9 1.256 (3) C15—H15A 0.9800
O10—C9 1.251 (3) C15—H15B 0.9800
O10—Cu2ii 1.9742 (18) C15—H15C 0.9800
O1—C1 1.260 (3) C12—H12 0.9500
O1—Cu1i 1.9811 (19) C10—H10A 0.9800
O3—C3 1.260 (3) C10—H10B 0.9800
O3—Cu1i 1.9755 (17) C10—H10C 0.9800
N1—C11 1.324 (3) C6—H6A 0.9800
N1—C13 1.371 (4) C6—H6B 0.9800
N1—C14 1.471 (3) C6—H6C 0.9800
N2—C11 1.319 (3) C16—H16A 0.9800
N2—C12 1.368 (4) C16—H16B 0.9800
N2—C16 1.458 (4) C16—H16C 0.9800
C7—C8 1.503 (4)
O2—Cu1—O4 90.22 (9) N2—C11—H11 125.3
O2—Cu1—O3i 88.50 (9) N1—C11—H11 125.3
O4—Cu1—O3i 167.17 (7) C3—C4—H4A 109.5
O2—Cu1—O1i 167.09 (7) C3—C4—H4B 109.5
O4—Cu1—O1i 89.57 (9) H4A—C4—H4B 109.5
O3i—Cu1—O1i 88.85 (9) C3—C4—H4C 109.5
O2—Cu1—O5 103.44 (8) H4A—C4—H4C 109.5
O4—Cu1—O5 90.86 (7) H4B—C4—H4C 109.5
O3i—Cu1—O5 101.85 (7) O6—C5—O5 121.9 (3)
O1i—Cu1—O5 89.47 (8) O6—C5—C6 119.6 (2)
O2—Cu1—Cu1i 84.72 (5) O5—C5—C6 118.5 (2)
O4—Cu1—Cu1i 80.15 (5) C7—C8—H8A 109.5
O3i—Cu1—Cu1i 87.02 (5) C7—C8—H8B 109.5
O1i—Cu1—Cu1i 82.53 (5) H8A—C8—H8B 109.5
O5—Cu1—Cu1i 167.97 (6) C7—C8—H8C 109.5
O7—Cu2—O9 89.95 (8) H8A—C8—H8C 109.5
O7—Cu2—O10ii 89.75 (8) H8B—C8—H8C 109.5
O9—Cu2—O10ii 167.61 (7) C1—C2—H2A 109.5
O7—Cu2—O8ii 167.52 (7) C1—C2—H2B 109.5
O9—Cu2—O8ii 88.09 (8) H2A—C2—H2B 109.5
O10ii—Cu2—O8ii 89.52 (8) C1—C2—H2C 109.5
O7—Cu2—O6 102.37 (8) H2A—C2—H2C 109.5
O9—Cu2—O6 100.56 (7) H2B—C2—H2C 109.5
O10ii—Cu2—O6 91.60 (7) C12—C13—N1 106.4 (3)
O8ii—Cu2—O6 90.10 (7) C12—C13—H13 126.8
O7—Cu2—Cu2ii 83.53 (5) N1—C13—H13 126.8
O9—Cu2—Cu2ii 86.21 (5) N1—C14—C15 111.6 (2)
O10ii—Cu2—Cu2ii 81.44 (5) N1—C14—H14A 109.3
O8ii—Cu2—Cu2ii 84.05 (5) C15—C14—H14A 109.3
O6—Cu2—Cu2ii 170.92 (5) N1—C14—H14B 109.3
C7—O7—Cu2 124.17 (16) C15—C14—H14B 109.3
C5—O5—Cu1 139.44 (18) H14A—C14—H14B 108.0
C1—O2—Cu1 122.82 (16) C14—C15—H15A 109.5
C7—O8—Cu2ii 122.70 (17) C14—C15—H15B 109.5
C3—O4—Cu1 127.95 (15) H15A—C15—H15B 109.5
C5—O6—Cu2 141.70 (19) C14—C15—H15C 109.5
C9—O9—Cu2 120.40 (15) H15A—C15—H15C 109.5
C9—O10—Cu2ii 126.01 (17) H15B—C15—H15C 109.5
C1—O1—Cu1i 124.53 (17) C13—C12—N2 108.1 (3)
C3—O3—Cu1i 119.18 (17) C13—C12—H12 125.9
C11—N1—C13 108.5 (2) N2—C12—H12 125.9
C11—N1—C14 126.6 (2) C9—C10—H10A 109.5
C13—N1—C14 124.9 (2) C9—C10—H10B 109.5
C11—N2—C12 107.7 (2) H10A—C10—H10B 109.5
C11—N2—C16 126.7 (3) C9—C10—H10C 109.5
C12—N2—C16 125.6 (3) H10A—C10—H10C 109.5
O8—C7—O7 125.5 (2) H10B—C10—H10C 109.5
O8—C7—C8 117.3 (2) C5—C6—H6A 109.5
O7—C7—C8 117.2 (2) C5—C6—H6B 109.5
O2—C1—O1 125.2 (2) H6A—C6—H6B 109.5
O2—C1—C2 118.1 (2) C5—C6—H6C 109.5
O1—C1—C2 116.7 (2) H6A—C6—H6C 109.5
O10—C9—O9 125.9 (2) H6B—C6—H6C 109.5
O10—C9—C10 116.6 (2) N2—C16—H16A 109.5
O9—C9—C10 117.5 (2) N2—C16—H16B 109.5
O4—C3—O3 125.6 (2) H16A—C16—H16B 109.5
O4—C3—C4 116.9 (2) N2—C16—H16C 109.5
O3—C3—C4 117.4 (2) H16A—C16—H16C 109.5
N2—C11—N1 109.4 (2) H16B—C16—H16C 109.5
Cu2ii—O8—C7—O7 0.4 (3) C12—N2—C11—N1 0.3 (3)
Cu2ii—O8—C7—C8 −178.57 (17) C16—N2—C11—N1 179.2 (2)
Cu2—O7—C7—O8 −2.0 (4) C13—N1—C11—N2 0.0 (3)
Cu2—O7—C7—C8 176.93 (17) C14—N1—C11—N2 177.5 (2)
Cu1—O2—C1—O1 −2.9 (4) Cu2—O6—C5—O5 −174.30 (18)
Cu1—O2—C1—C2 177.00 (18) Cu2—O6—C5—C6 5.5 (4)
Cu1i—O1—C1—O2 5.8 (4) Cu1—O5—C5—O6 −167.95 (18)
Cu1i—O1—C1—C2 −174.07 (18) Cu1—O5—C5—C6 12.2 (4)
Cu2ii—O10—C9—O9 −1.2 (4) C11—N1—C13—C12 −0.2 (3)
Cu2ii—O10—C9—C10 179.0 (2) C14—N1—C13—C12 −177.8 (3)
Cu2—O9—C9—O10 −0.4 (4) C11—N1—C14—C15 −105.3 (3)
Cu2—O9—C9—C10 179.4 (2) C13—N1—C14—C15 71.8 (4)
Cu1—O4—C3—O3 3.2 (4) N1—C13—C12—N2 0.4 (4)
Cu1—O4—C3—C4 −176.27 (19) C11—N2—C12—C13 −0.4 (3)
Cu1i—O3—C3—O4 −2.8 (4) C16—N2—C12—C13 −179.3 (3)
Cu1i—O3—C3—C4 176.66 (19)

Symmetry codes: (i) −x+2, −y+2, −z+2; (ii) −x+1, −y+2, −z+1.

catena-Poly[1-ethyl-3-methylimidazolium [[tetra-µ-acetato-dicuprate(II)]-µ-acetato]] (3) . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C6—H6A···O7 0.98 2.50 3.320 (4) 141
C14—H14A···O5iii 0.99 2.47 3.329 (3) 145
C13—H13···O8iv 0.95 2.38 3.229 (4) 148
C8—H8C···O7v 0.98 2.55 3.522 (4) 170
C11—H11···O1i 0.95 2.40 3.317 (3) 162
C11—H11···O5 0.95 2.55 3.192 (3) 125

Symmetry codes: (i) −x+2, −y+2, −z+2; (iii) x, y−1, z; (iv) −x+1, −y+1, −z+1; (v) −x+2, −y+2, −z+1.

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[aquacopper(II)] tetra-µ-acetato-bis[acetatocuprate(II)] dihydrate (4). Crystal data

(C6H11N2)2[Cu2(C2H3O2)6][Cu2(C2H3O2)4(H2O)2]·2H2O Z = 1
Mr = 1139.00 F(000) = 588
Triclinic, P1 Dx = 1.615 Mg m3
a = 7.9526 (5) Å Mo Kα radiation, λ = 0.71073 Å
b = 8.0951 (5) Å Cell parameters from 4961 reflections
c = 18.8886 (11) Å θ = 2.6–29.6°
α = 79.1770 (16)° µ = 1.88 mm1
β = 78.9500 (16)° T = 198 K
γ = 89.9320 (15)° Prism, blue
V = 1171.46 (12) Å3 0.30 × 0.27 × 0.22 mm

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[aquacopper(II)] tetra-µ-acetato-bis[acetatocuprate(II)] dihydrate (4). Data collection

Bruker Kappa APEX DUO CCD diffractometer 4775 independent reflections
Radiation source: fine-focus sealed tube 3593 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.037
φ and ω scans θmax = 26.4°, θmin = 1.1°
Absorption correction: multi-scan (SADABS; Bruker, 2015) h = −9→9
Tmin = 0.605, Tmax = 0.685 k = −10→10
20914 measured reflections l = −23→23

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[aquacopper(II)] tetra-µ-acetato-bis[acetatocuprate(II)] dihydrate (4). Refinement

Refinement on F2 72 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.034 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.101 w = 1/[σ2(Fo2) + (0.038P)2] where P = (Fo2 + 2Fc2)/3
S = 1.42 (Δ/σ)max = 0.001
4775 reflections Δρmax = 0.40 e Å3
307 parameters Δρmin = −0.56 e Å3

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[aquacopper(II)] tetra-µ-acetato-bis[acetatocuprate(II)] dihydrate (4). Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[aquacopper(II)] tetra-µ-acetato-bis[acetatocuprate(II)] dihydrate (4). Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Cu1 0.91056 (4) 0.44336 (4) 0.06690 (2) 0.01957 (12)
Cu2 0.09960 (5) 0.06109 (5) 0.43531 (2) 0.02361 (12)
O1 0.7251 (3) 0.5696 (3) 0.02852 (12) 0.0273 (5)
O2 0.8722 (3) 0.6597 (3) −0.08616 (12) 0.0277 (5)
O3 0.9897 (3) 0.6526 (3) 0.09078 (13) 0.0316 (6)
O4 1.1418 (3) 0.7477 (3) −0.02273 (13) 0.0289 (5)
O11 0.4649 (3) 0.2016 (3) 0.23534 (13) 0.0355 (6)
O6 0.2604 (3) 0.1127 (3) 0.49611 (13) 0.0356 (6)
O5 0.7795 (3) 0.3431 (3) 0.17670 (13) 0.0354 (6)
H5 0.8414 0.2734 0.1976 0.053*
O9 −0.1846 (3) 0.1702 (3) 0.55415 (14) 0.0366 (6)
O7 0.0942 (3) 0.0128 (3) 0.60447 (12) 0.0333 (6)
O8 −0.0205 (3) 0.2707 (3) 0.44485 (14) 0.0386 (6)
O10 0.2485 (3) 0.1352 (3) 0.32793 (13) 0.0378 (6)
C1 0.7382 (4) 0.6483 (4) −0.03698 (18) 0.0220 (7)
N2 0.4809 (4) 0.7850 (4) 0.19273 (18) 0.0449 (8)
C3 1.0864 (4) 0.7590 (4) 0.04339 (19) 0.0256 (7)
N1 0.2327 (5) 0.6858 (4) 0.25088 (17) 0.0476 (9)
C5 0.2322 (4) 0.0782 (4) 0.56465 (18) 0.0246 (7)
O12 0.0083 (5) 0.1154 (5) 0.23115 (18) 0.0715 (10)
C9 0.3888 (4) 0.2120 (4) 0.29812 (18) 0.0259 (7)
C7 −0.1375 (4) 0.2826 (4) 0.4983 (2) 0.0317 (8)
C2 0.5825 (4) 0.7351 (4) −0.0578 (2) 0.0310 (8)
H2A 0.6105 0.7943 −0.1090 0.046*
H2B 0.5461 0.8161 −0.0258 0.046*
H2C 0.4896 0.6514 −0.0520 0.046*
C4 1.1405 (5) 0.9151 (4) 0.0676 (2) 0.0367 (9)
H4A 1.2383 0.9718 0.0315 0.055*
H4B 1.1735 0.8834 0.1156 0.055*
H4C 1.0447 0.9913 0.0713 0.055*
C6 0.3746 (5) 0.1154 (5) 0.6017 (2) 0.0392 (9)
H6A 0.4806 0.0680 0.5794 0.059*
H6B 0.3451 0.0651 0.6541 0.059*
H6C 0.3911 0.2375 0.5960 0.059*
C10 0.4686 (5) 0.3206 (5) 0.3413 (2) 0.0465 (10)
H10A 0.5846 0.3585 0.3149 0.070*
H10B 0.4743 0.2547 0.3899 0.070*
H10C 0.3985 0.4186 0.3471 0.070*
C12 0.4448 (6) 0.6441 (5) 0.1662 (2) 0.0482 (10)
H12 0.5179 0.5991 0.1290 0.058*
C13 0.2902 (6) 0.5817 (5) 0.2016 (2) 0.0490 (10)
H13 0.2315 0.4858 0.1944 0.059*
C11 0.3486 (5) 0.8073 (5) 0.2436 (2) 0.0471 (10)
H11 0.3385 0.8960 0.2705 0.056*
C8 −0.2333 (5) 0.4447 (5) 0.4944 (2) 0.0477 (10)
H8A −0.3362 0.4323 0.4742 0.072*
H8B −0.1591 0.5367 0.4627 0.072*
H8C −0.2665 0.4698 0.5438 0.072*
C16 0.6413 (5) 0.8940 (6) 0.1651 (3) 0.0675 (14)
H16A 0.6340 0.9661 0.1180 0.101*
H16B 0.7406 0.8228 0.1584 0.101*
H16C 0.6539 0.9644 0.2008 0.101*
C14 0.0722 (6) 0.6606 (8) 0.3061 (3) 0.0893 (19)
H14A 0.0901 0.5741 0.3483 0.107*
H14B 0.0479 0.7670 0.3242 0.107*
C15 −0.0685 (7) 0.6127 (11) 0.2825 (3) 0.140 (4)
H15A −0.0972 0.7036 0.2451 0.209*
H15B −0.1654 0.5886 0.3242 0.209*
H15C −0.0442 0.5115 0.2615 0.209*
H5B 0.678 (3) 0.307 (5) 0.202 (2) 0.062 (14)*
H1O −0.052 (5) 0.106 (6) 0.2779 (14) 0.074*
H2O 0.090 (4) 0.146 (6) 0.251 (2) 0.074*

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[aquacopper(II)] tetra-µ-acetato-bis[acetatocuprate(II)] dihydrate (4). Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Cu1 0.0164 (2) 0.0196 (2) 0.0217 (2) −0.00175 (15) −0.00105 (16) −0.00408 (16)
Cu2 0.0196 (2) 0.0277 (2) 0.0207 (2) −0.00132 (16) 0.00128 (16) −0.00271 (17)
O1 0.0197 (12) 0.0294 (12) 0.0302 (13) 0.0025 (9) −0.0013 (10) −0.0033 (10)
O2 0.0187 (12) 0.0347 (13) 0.0275 (13) 0.0010 (10) −0.0030 (10) −0.0025 (10)
O3 0.0368 (14) 0.0260 (12) 0.0329 (14) −0.0069 (10) −0.0032 (11) −0.0115 (10)
O4 0.0296 (13) 0.0234 (12) 0.0345 (14) −0.0046 (10) −0.0049 (11) −0.0088 (10)
O11 0.0304 (13) 0.0434 (15) 0.0287 (14) −0.0085 (11) 0.0083 (11) −0.0109 (11)
O6 0.0279 (13) 0.0488 (16) 0.0276 (14) −0.0085 (11) −0.0039 (11) −0.0026 (11)
O5 0.0292 (14) 0.0439 (16) 0.0265 (14) −0.0061 (12) 0.0031 (11) 0.0011 (11)
O9 0.0312 (14) 0.0347 (14) 0.0415 (16) 0.0082 (11) 0.0008 (12) −0.0087 (12)
O7 0.0253 (13) 0.0492 (16) 0.0243 (13) −0.0052 (11) −0.0029 (10) −0.0063 (11)
O8 0.0412 (15) 0.0295 (14) 0.0399 (16) 0.0062 (11) 0.0000 (12) −0.0020 (11)
O10 0.0242 (13) 0.0605 (17) 0.0232 (13) −0.0128 (12) 0.0036 (10) −0.0027 (12)
C1 0.0207 (16) 0.0183 (16) 0.0291 (18) −0.0031 (12) −0.0061 (14) −0.0085 (13)
N2 0.045 (2) 0.049 (2) 0.046 (2) 0.0203 (16) −0.0117 (16) −0.0194 (17)
C3 0.0210 (17) 0.0214 (17) 0.039 (2) 0.0035 (13) −0.0130 (15) −0.0093 (15)
N1 0.056 (2) 0.053 (2) 0.035 (2) 0.0090 (17) 0.0004 (16) −0.0206 (16)
C5 0.0262 (18) 0.0208 (16) 0.0271 (19) 0.0037 (13) −0.0051 (14) −0.0056 (13)
O12 0.087 (3) 0.080 (2) 0.057 (2) 0.012 (2) −0.0423 (19) −0.0094 (19)
C9 0.0269 (18) 0.0246 (17) 0.0231 (18) 0.0011 (14) −0.0010 (15) −0.0006 (14)
C7 0.0274 (19) 0.0299 (19) 0.040 (2) 0.0013 (15) −0.0101 (16) −0.0091 (16)
C2 0.0200 (17) 0.0293 (18) 0.043 (2) 0.0009 (14) −0.0094 (15) −0.0026 (16)
C4 0.040 (2) 0.0249 (18) 0.051 (2) −0.0036 (16) −0.0151 (19) −0.0178 (17)
C6 0.030 (2) 0.050 (2) 0.041 (2) 0.0032 (17) −0.0139 (17) −0.0107 (18)
C10 0.057 (3) 0.045 (2) 0.033 (2) −0.021 (2) 0.0052 (19) −0.0097 (18)
C12 0.060 (3) 0.047 (2) 0.044 (3) 0.027 (2) −0.013 (2) −0.022 (2)
C13 0.067 (3) 0.043 (2) 0.041 (2) 0.016 (2) −0.009 (2) −0.0196 (19)
C11 0.049 (2) 0.051 (3) 0.048 (3) 0.0108 (19) −0.012 (2) −0.025 (2)
C8 0.048 (3) 0.034 (2) 0.062 (3) 0.0153 (18) −0.009 (2) −0.0132 (19)
C16 0.040 (3) 0.059 (3) 0.110 (4) 0.009 (2) −0.012 (3) −0.032 (3)
C14 0.067 (3) 0.121 (5) 0.079 (4) −0.023 (3) 0.024 (3) −0.055 (4)
C15 0.068 (4) 0.289 (11) 0.072 (4) −0.041 (5) 0.008 (3) −0.082 (6)

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[aquacopper(II)] tetra-µ-acetato-bis[acetatocuprate(II)] dihydrate (4). Geometric parameters (Å, º)

Cu1—O3 1.967 (2) N1—C14 1.473 (5)
Cu1—O1 1.968 (2) C5—C6 1.499 (4)
Cu1—O4i 1.970 (2) O12—H1O 0.910 (18)
Cu1—O2i 1.984 (2) O12—H2O 0.874 (19)
Cu1—O5 2.142 (2) C9—C10 1.520 (5)
Cu1—Cu1i 2.6469 (7) C7—C8 1.513 (5)
Cu2—O8 1.967 (2) C2—H2A 0.9800
Cu2—O6 1.968 (2) C2—H2B 0.9800
Cu2—O9ii 1.978 (2) C2—H2C 0.9800
Cu2—O7ii 1.978 (2) C4—H4A 0.9800
Cu2—O10 2.121 (2) C4—H4B 0.9800
Cu2—Cu2ii 2.6592 (8) C4—H4C 0.9800
O1—C1 1.266 (4) C6—H6A 0.9800
O2—C1 1.263 (4) C6—H6B 0.9800
O2—Cu1i 1.984 (2) C6—H6C 0.9800
O3—C3 1.258 (4) C10—H10A 0.9800
O4—C3 1.263 (4) C10—H10B 0.9800
O4—Cu1i 1.970 (2) C10—H10C 0.9800
O11—C9 1.242 (4) C12—C13 1.331 (6)
O6—C5 1.248 (4) C12—H12 0.9500
O5—H5 0.8400 C13—H13 0.9500
O5—H5B 0.878 (18) C11—H11 0.9500
O9—C7 1.253 (4) C8—H8A 0.9800
O9—Cu2ii 1.978 (2) C8—H8B 0.9800
O7—C5 1.259 (4) C8—H8C 0.9800
O7—Cu2ii 1.978 (2) C16—H16A 0.9800
O8—C7 1.253 (4) C16—H16B 0.9800
O10—C9 1.256 (4) C16—H16C 0.9800
C1—C2 1.504 (4) C14—C15 1.363 (6)
N2—C11 1.319 (5) C14—H14A 0.9900
N2—C12 1.381 (5) C14—H14B 0.9900
N2—C16 1.501 (5) C15—H15A 0.9800
C3—C4 1.511 (4) C15—H15B 0.9800
N1—C11 1.318 (5) C15—H15C 0.9800
N1—C13 1.385 (5)
O3—Cu1—O1 88.30 (10) O8—C7—O9 125.6 (3)
O3—Cu1—O4i 168.28 (10) O8—C7—C8 117.4 (3)
O1—Cu1—O4i 90.23 (9) O9—C7—C8 117.0 (3)
O3—Cu1—O2i 88.82 (10) C1—C2—H2A 109.5
O1—Cu1—O2i 168.07 (9) C1—C2—H2B 109.5
O4i—Cu1—O2i 90.24 (9) H2A—C2—H2B 109.5
O3—Cu1—O5 94.73 (10) C1—C2—H2C 109.5
O1—Cu1—O5 99.95 (9) H2A—C2—H2C 109.5
O4i—Cu1—O5 96.98 (10) H2B—C2—H2C 109.5
O2i—Cu1—O5 91.83 (9) C3—C4—H4A 109.5
O3—Cu1—Cu1i 85.55 (7) C3—C4—H4B 109.5
O1—Cu1—Cu1i 83.63 (7) H4A—C4—H4B 109.5
O4i—Cu1—Cu1i 82.74 (7) C3—C4—H4C 109.5
O2i—Cu1—Cu1i 84.60 (7) H4A—C4—H4C 109.5
O5—Cu1—Cu1i 176.41 (7) H4B—C4—H4C 109.5
O8—Cu2—O6 91.32 (11) C5—C6—H6A 109.5
O8—Cu2—O9ii 167.41 (10) C5—C6—H6B 109.5
O6—Cu2—O9ii 88.28 (10) H6A—C6—H6B 109.5
O8—Cu2—O7ii 87.89 (10) C5—C6—H6C 109.5
O6—Cu2—O7ii 167.25 (10) H6A—C6—H6C 109.5
O9ii—Cu2—O7ii 89.73 (10) H6B—C6—H6C 109.5
O8—Cu2—O10 99.52 (10) C9—C10—H10A 109.5
O6—Cu2—O10 101.45 (9) C9—C10—H10B 109.5
O9ii—Cu2—O10 92.89 (10) H10A—C10—H10B 109.5
O7ii—Cu2—O10 91.22 (9) C9—C10—H10C 109.5
O8—Cu2—Cu2ii 84.34 (7) H10A—C10—H10C 109.5
O6—Cu2—Cu2ii 83.49 (7) H10B—C10—H10C 109.5
O9ii—Cu2—Cu2ii 83.11 (7) C13—C12—N2 108.5 (4)
O7ii—Cu2—Cu2ii 83.77 (7) C13—C12—H12 125.8
O10—Cu2—Cu2ii 173.59 (7) N2—C12—H12 125.8
C1—O1—Cu1 124.3 (2) C12—C13—N1 105.6 (4)
C1—O2—Cu1i 122.4 (2) C12—C13—H13 127.2
C3—O3—Cu1 121.4 (2) N1—C13—H13 127.2
C3—O4—Cu1i 124.4 (2) N1—C11—N2 108.6 (4)
C5—O6—Cu2 124.5 (2) N1—C11—H11 125.7
Cu1—O5—H5 109.5 N2—C11—H11 125.7
Cu1—O5—H5B 142 (3) C7—C8—H8A 109.5
H5—O5—H5B 100.1 C7—C8—H8B 109.5
C7—O9—Cu2ii 123.8 (2) H8A—C8—H8B 109.5
C5—O7—Cu2ii 123.4 (2) C7—C8—H8C 109.5
C7—O8—Cu2 122.9 (2) H8A—C8—H8C 109.5
C9—O10—Cu2 137.9 (2) H8B—C8—H8C 109.5
O2—C1—O1 125.0 (3) N2—C16—H16A 109.5
O2—C1—C2 117.5 (3) N2—C16—H16B 109.5
O1—C1—C2 117.5 (3) H16A—C16—H16B 109.5
C11—N2—C12 107.8 (4) N2—C16—H16C 109.5
C11—N2—C16 127.5 (4) H16A—C16—H16C 109.5
C12—N2—C16 124.7 (4) H16B—C16—H16C 109.5
O3—C3—O4 125.9 (3) C15—C14—N1 115.7 (5)
O3—C3—C4 117.1 (3) C15—C14—H14A 108.3
O4—C3—C4 117.0 (3) N1—C14—H14A 108.3
C11—N1—C13 109.4 (4) C15—C14—H14B 108.3
C11—N1—C14 124.7 (4) N1—C14—H14B 108.3
C13—N1—C14 125.7 (4) H14A—C14—H14B 107.4
O6—C5—O7 124.8 (3) C14—C15—H15A 109.5
O6—C5—C6 117.2 (3) C14—C15—H15B 109.5
O7—C5—C6 118.0 (3) H15A—C15—H15B 109.5
H1O—O12—H2O 82 (3) C14—C15—H15C 109.5
O11—C9—O10 122.7 (3) H15A—C15—H15C 109.5
O11—C9—C10 119.0 (3) H15B—C15—H15C 109.5
O10—C9—C10 118.3 (3)

Symmetry codes: (i) −x+2, −y+1, −z; (ii) −x, −y, −z+1.

Bis(1-ethyl-3-methylimidazolium) tetra-µ-acetato-bis[aquacopper(II)] tetra-µ-acetato-bis[acetatocuprate(II)] dihydrate (4). Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O12—H2O···O10 0.84 (2) 2.14 (3) 2.912 (4) 152 (4)
O5—H5B···O11 0.85 (2) 1.86 (2) 2.695 (3) 171 (4)
C14—H14B···O7iii 0.99 2.57 3.530 (6) 162
C16—H16C···O11iv 0.98 2.56 3.239 (5) 126
C16—H16B···O3 0.98 2.65 3.598 (5) 162
C11—H11···O10iv 0.95 2.44 3.365 (4) 166
C11—H11···O11iv 0.95 2.59 3.291 (4) 131
C12—H12···O1 0.95 2.30 3.224 (4) 163
C10—H10B···O6 0.98 2.47 3.241 (4) 136
C2—H2C···O1v 0.98 2.40 3.371 (3) 173
C2—H2A···O11v 0.98 2.58 3.387 (4) 140
O5—H5···O12vi 0.84 1.96 2.789 (4) 170

Symmetry codes: (iii) −x, −y+1, −z+1; (iv) x, y+1, z; (v) −x+1, −y+1, −z; (vi) x+1, y, z.

Funding Statement

This work was funded by Russian Foundation for Basic Research grant 16-33-00641.

References

  1. Ahmed, E. & Ruck, M. (2011). Dalton Trans. 40, 9347–9357. [DOI] [PubMed]
  2. Betz, D., Altmann, P., Cokoja, M., Herrmann, W. A. & Kühn, F. E. (2011). Coord. Chem. Rev. 255, 1518–1540.
  3. Bruker (2015). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Buszewski, B., Kowalska, S. & Stepnowski, P. (2006). J. Sep. Sci. 29, 1116–1125. [DOI] [PubMed]
  5. Gabriel, S. & Weiner, J. (1888). Ber. Dtsch. Chem. Ges. 21, 2669–2679.
  6. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  7. Hallett, J. P. & Welton, T. (2011). Chem. Rev. 111, 3508–3576. [DOI] [PubMed]
  8. Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550.
  9. Kohno, Y. & Ohno, H. (2012). Chem. Commun. 48, 7119–7130. [DOI] [PubMed]
  10. Sasaki, T., Zhong, C., Tada, M. & Iwasawa, Y. (2005). Chem. Commun. pp. 2506–2508. [DOI] [PubMed]
  11. Sheldrick, G. M. (2008). Acta Cryst A64, 112–122. [DOI] [PubMed]
  12. Sheldrick, G. M. (2015). Acta Cryst C71, 3–8.
  13. Shtyrlin, V. G., Serov, N. Y., Islamov, D. R., Konkin, A. L., Bukharov, M. S., Gnezdilov, O. I., Krivolapov, D. B., Kataeva, O. N., Nazmutdinova, G. A. & Wendler, F. (2014). Dalton Trans. 43, 799–805. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, 1, 2, 3, 4. DOI: 10.1107/S2056989018008538/zp2028sup1.cif

e-74-00981-sup1.cif (2.8MB, cif)

Structure factors: contains datablock(s) 1. DOI: 10.1107/S2056989018008538/zp20281sup2.hkl

e-74-00981-1sup2.hkl (340.7KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018008538/zp20281sup6.cdx

Structure factors: contains datablock(s) 2. DOI: 10.1107/S2056989018008538/zp20282sup3.hkl

e-74-00981-2sup3.hkl (337.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018008538/zp20282sup7.cdx

Structure factors: contains datablock(s) 3. DOI: 10.1107/S2056989018008538/zp20283sup4.hkl

e-74-00981-3sup4.hkl (345.9KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018008538/zp20283sup8.cdx

Structure factors: contains datablock(s) 4. DOI: 10.1107/S2056989018008538/zp20284sup5.hkl

e-74-00981-4sup5.hkl (380.1KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018008538/zp20284sup9.cdx

CCDC references: 1585836, 1585835, 1585834, 1585833

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES