Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jun 28;74(Pt 7):1021–1025. doi: 10.1107/S2056989018009118

Crystal structure and Hirshfeld surface analysis of ethane-1,2-diaminium 3-[2-(1,3-dioxo-1,3-di­phenyl­propan-2-yl­idene)hydrazin­yl]-5-nitro-2-oxido­benzene­sulfonate dihydrate

Zeliha Atioğlu a, Mehmet Akkurt b, Flavien A A Toze c,*, Fatali E Huseynov d, Sarvinaz F Hajiyeva e
PMCID: PMC6038648  PMID: 30002908

The title compound has a nonplanar conformation. In the crystal, the anions are linked to the cations and the water mol­ecules by N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network. Face-to-face π–π stacking inter­actions are also observed.

Keywords: crystal structure, 5-nitro-2-oxido­benzene­sulfonate group, hydrogen bond, π–π stacking, Hirshfeld surface analysis

Abstract

In the anion of the title hydrated salt, C2H10N2 2+·C21H13N3O8S2−·2H2O, the planes of the phenyl rings and the benzene ring of the 5-nitro-2-oxido­benzene­sulfonate group are inclined to one another by 44.42 (11), 56.87 (11) and 77.70 (12)°. In the crystal, the anions are linked to the cations and the water mol­ecules by N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network. Furthermore, there are face-to-face π–π stacking inter­actions between the centroids of one phenyl ring and the benzene ring of the 5-nitro-2-oxido­benzene­sulfonate group [centroid–centroid distance = 3.8382 (13) Å and slippage = 1.841 Å]. A Hirshfeld surface analysis was conducted to verify the contributions of the different inter­molecular inter­actions.

Chemical context  

Aryl­hydrazones of β-diketones (AHBD) and their complexes have attracted much attention due to their synthetic potential for organic and inorganic chemistries and diverse useful properties (Gurbanov et al., 2017a ,b ; Jlassi et al., 2014, 2018; Ma et al., 2017a ,b ; Mahmudov & Pombeiro, 2016; Mahmudov et al., 2014, 2017a ,b ). Usually, AHBDs have strong intra­molecular resonance-assisted hydrogen bonding (RAHB), which has a more profound effect on their reactivity (Mahmudov et al., 2016) than regular hydrogen bonding and other types of noncovalent inter­actions (Ledenyova et al., 2018; Mahmoudi et al., 2016, 2018; Nasirova et al., 2017; Politzer et al., 2017; Scheiner, 2013; Shixaliyev et al., 2018; Vandyshev et al., 2017).graphic file with name e-74-01021-scheme1.jpg

Herein we found the strong RAHB and inter­molecular charge-assisted hydrogen bonding that was expected in the title hydrated salt ethane-1,2-diaminium 3-[2-(1,3-dioxo-1,3-di­phenyl­propan-2-yl­idene)hydrazin­yl]-5-nitro-2-oxido­benzene­sulfonate dihydrate.

Structural commentary  

In the anion of the title salt (Fig. 1), the planes of the phenyl rings (C9–C14 and C16–C21) and the benzene ring (C1–C6) of the 5-nitro-2-oxido­benzene­sulfonate group are inclined to one another by 44.42 (11), 56.87 (11) and 77.70 (12)°, respectively. The torsion angles O1—C2—C1—N1, C1—N1—N2—C7, N1—N2—C7—C8, N2—C7—C8—O7, N2—C7—C8—C9, N2—C7—C15—O8, N2—C7—C15—C16, C7—C15—C16—C17 and O8—C15—C16—C17 are 2.7 (3), −178.65 (19), −2.0 (3), −9.5 (3), 166.9 (2), 133.9 (2), −44.9 (3), −21.3 (3) and 159.9 (2)°, respectively. Therefore, the mol­ecular conformation of the title compound is not planar. The values of the geometric parameters of the title compound are within normal ranges (Allen et al., 1987).

Figure 1.

Figure 1

The mol­ecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms are shown as spheres of arbitrary radius.

Supra­molecular features and Hirshfeld surface analysis  

In the crystal structure of the title compound, the anions are linked to the cations and two water mol­ecules by N—H⋯O and O—H⋯O hydrogen bonds, forming a three-dimensional network (Table 1 and Fig. 2). Furthermore, there are face-to-face π–π stacking inter­actions between the centroids of one phenyl ring (atoms C1–C6, Cg1) and the benzene ring of the 5-nitro-2-oxido­benzene­sulfonate group (Cg2) [Cg1⋯Cg2a = 3.8382 (13) Å and slippage = 1.841 Å; symmetry code: (a) x + 1, −y + Inline graphic, z + Inline graphic].

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O10—H10A⋯O8i 0.85 2.10 2.928 (2) 165
O9—H9A⋯O4 0.85 1.99 2.827 (2) 169
O9—H9B⋯O2ii 0.85 2.03 2.866 (2) 170
O10—H10B⋯O4iii 0.85 2.36 3.139 (3) 152
N1—H1N⋯O7 0.90 1.92 2.568 (2) 127
N4—H4A⋯O1ii 0.90 1.94 2.826 (2) 167
N4—H4B⋯O6iv 0.90 2.30 2.960 (2) 130
N4—H4B⋯O7ii 0.90 2.24 2.797 (2) 119
N5—H5B⋯O1ii 0.90 2.01 2.864 (2) 158
N4—H4B⋯O6iv 0.90 2.30 2.960 (2) 130
N4—H4B⋯O7ii 0.90 2.24 2.797 (2) 119
N4—H4C⋯O3 0.90 1.86 2.756 (2) 177
N5—H5A⋯O10ii 0.90 1.98 2.775 (3) 146
N5—H5B⋯O3ii 0.90 2.32 2.778 (2) 112
N5—H5C⋯O9v 0.90 1.98 2.835 (3) 159

Symmetry codes: (i) Inline graphic; (ii) Inline graphic; (iii) Inline graphic; (iv) Inline graphic; (v) Inline graphic.

Figure 2.

Figure 2

A view along the a axis of the packing and hydrogen bonding of the title compound.

The Hirshfeld surface mapped over d norm (McKinnon et al., 2004; Spackman & Jayatilaka, 2009) for the title compound is depicted in Fig. 3. The red areas on the surface indicate short contacts as compared to the sum of the van der Waals radii, the blue areas indicate long contacts and the white areas indicate contacts with distances equal to the sum of the van der Waals radii. The highlighted red area shows the O—H⋯O hydrogen bonding, which is responsible for connecting anions and cations to each other.

Figure 3.

Figure 3

The Hirshfeld surface of the title compound mapped with d norm.

The overall two-dimensional fingerprint plot for the title compound and those delineated into O⋯H/H⋯O, H⋯H, C⋯H/H⋯C, C⋯C and C⋯O/O⋯C contacts are illustrated in Fig. 4; the percentage contributions from the different inter­atomic contacts to the Hirshfeld surfaces are as follows: O⋯H/H⋯O (39.5%), H⋯H (33.8%), C⋯H/H⋯C (14.5%), C⋯C (4.3%) and C⋯O/O⋯C (2.4%). The contributions of the other weak inter­molecular contacts to the Hirshfeld surfaces are listed in Table 2. The large number of O⋯H/H⋯O, H⋯H, C⋯H/H⋯C, C⋯C and C⋯O/O⋯C inter­actions suggest that van der Waals inter­actions and hydrogen bonding play the greatest roles in the crystal packing (Hathwar et al., 2015). A view of the Hirshfeld surface of the title complex plotted over the shape index is given in Fig. 5.

Figure 4.

Figure 4

The two-dimensional fingerprint plots of the title compound, showing (a) all inter­actions, and delineated into (b) H⋯H, (c) O⋯H/H⋯O, (d) H⋯N/N⋯H, (e) C⋯O/O⋯C and (f) C⋯H/H⋯C inter­actions [d e and d i represent the distances from a point on the Hirshfeld surface to the nearest atoms outside (external) and inside (inter­nal) the surface, respectively].

Table 2. Percentage contributions of inter­atomic contacts to the Hirshfeld surface for the title compound.

Contact Percentage contribution
O⋯H/H⋯H 39.5
H⋯H 33.8
C⋯H/H⋯C 14.5
C⋯C 4.3
C⋯O/O⋯C 2.4
N⋯O/O⋯N 1.8
C⋯N/N⋯C 1.5
N⋯H/H⋯N 1.1
O⋯O 1.1

Figure 5.

Figure 5

View of the three-dimensional Hirshfeld surface of the title complex plotted over shape index.

Synthesis and crystallization  

Synthesis of 3-[2-(1,3-dioxo-1,3-di­phenyl­propan-2-yl­idene)hydrazine­yl]-2-hy­droxy-5-nitrobenzene­sulfonic acid (H3 L) and its characterization by elemental analysis, 1H/13C NMR and IR was reported in Kuznik et al. (2011). 469 mg (1 mmol) of H3 L was dissolved in 30 ml of methanol and 0.06 ml (1 mmol) of ethyl­enedi­amine was added, with stirring for 5 min at room temperature (rt). The reaction mixture was then kept in air at rt for slow evaporation. After ca 2–3 d, orange crystals of the title compound were formed (yield 84%, based on H3 L). The final product was soluble in acetone, dimethyl sulfoxide (DMSO), ethanol and di­methyl­formamide (DMF), and insoluble in non-polar solvents. Elemental analysis for C23H27N5O10S, found (calculated) (%): C 48.79 (48.85), H 4.77 (4.81), N 12.27 (12.38). IR (KBr): 3470 ν(OH), 2989 ν(NH), 1667 ν(C=O), 1613 ν(C=O⋯H), 1576 ν(C=N) cm−1. 1H NMR (DMSO, inter­nal TMS): δ 3.86 (4H, 2CH2), 7.32–8.43 (12H, Ar—H), 10.13 (6H, 2NH3), 14.36 (s, 1H, N—H). 13C NMR (DMSO, inter­nal TMS): δ 41.18 (2CH2), 109.43 (2Ar—H), 123.01 (2Ar—H), 127.72 (2Ar—H), 128.28 (2Ar—H), 130.35 (Ar—H), 132.52 (Ar—H), 132.67 (Ar—H), 132.88 (Ar—H), 133.13 (Ar—H), 133.57 (Ar—CO), 133.80 (Ar—CO), 134.25 (C=N), 137.89 (Ar—SO3 ), 143.38 (Ar—NH—N), 146.15 (Ar-NO2), 160.72 (Ar—O), 191.37 (C=O), 191.89 (C=O).

Refinement details  

Crystal data, data collection and structure refinement details are summarized in Table 3. All H atoms were placed in geometrically idealized positions and constrained to ride on their parent atoms, with O—H = 0.85 Å, N—H = 0.90 Å and C—H = 0.93–0.97 Å, and U iso(H) = 1.5U eq(O) and 1.2U eq(C,N).

Table 3. Experimental details.

Crystal data
Chemical formula C2H10N2 2+·C21H13N3O8S2−·2H2O
M r 565.55
Crystal system, space group Monoclinic, P21/c
Temperature (K) 296
a, b, c (Å) 7.0590 (6), 23.851 (2), 15.3622 (13)
β (°) 93.337 (3)
V3) 2582.1 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.19
Crystal size (mm) 0.26 × 0.15 × 0.08
 
Data collection
Diffractometer Bruker APEXII CCD
Absorption correction Multi-scan (SADABS; Bruker, 2007)
T min, T max 0.946, 0.975
No. of measured, independent and observed [I > 2σ(I)] reflections 41494, 4930, 3559
R int 0.083
(sin θ/λ)max−1) 0.611
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.043, 0.112, 1.02
No. of reflections 4930
No. of parameters 352
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.34

Computer programs: APEX2 and SAINT (Bruker, 2007), SHELXS97 (Sheldrick, 2008), SHELXL2018 (Sheldrick, 2015), ORTEP-3 for Windows (Farrugia, 2012) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018009118/qm2125sup1.cif

e-74-01021-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018009118/qm2125Isup2.hkl

e-74-01021-Isup2.hkl (392.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018009118/qm2125Isup3.cml

CCDC reference: 1851087

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

This work has been partially supported by Baku State University.

supplementary crystallographic information

Crystal data

C2H10N22+·C21H13N3O8S2·2H2O F(000) = 1184
Mr = 565.55 Dx = 1.455 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 7.0590 (6) Å Cell parameters from 7684 reflections
b = 23.851 (2) Å θ = 2.7–25.0°
c = 15.3622 (13) Å µ = 0.19 mm1
β = 93.337 (3)° T = 296 K
V = 2582.1 (4) Å3 Plate, orange
Z = 4 0.26 × 0.15 × 0.08 mm

Data collection

Bruker APEXII CCD diffractometer 3559 reflections with I > 2σ(I)
φ and ω scans Rint = 0.083
Absorption correction: multi-scan (SADABS; Bruker, 2007) θmax = 25.8°, θmin = 2.7°
Tmin = 0.946, Tmax = 0.975 h = −8→8
41494 measured reflections k = −29→29
4930 independent reflections l = −18→17

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.043 H-atom parameters constrained
wR(F2) = 0.112 w = 1/[σ2(Fo2) + (0.053P)2 + 0.9465P] where P = (Fo2 + 2Fc2)/3
S = 1.02 (Δ/σ)max = 0.001
4930 reflections Δρmax = 0.37 e Å3
352 parameters Δρmin = −0.34 e Å3

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.1741 (3) 0.76729 (8) 0.65426 (13) 0.0333 (5)
C2 0.2217 (3) 0.82248 (8) 0.62626 (12) 0.0288 (4)
C3 0.3962 (3) 0.84445 (8) 0.66401 (12) 0.0299 (4)
C4 0.5152 (3) 0.81269 (10) 0.71878 (13) 0.0375 (5)
H4 0.630239 0.827277 0.740985 0.045*
C5 0.4612 (3) 0.75882 (10) 0.74031 (14) 0.0411 (5)
C6 0.2903 (3) 0.73575 (9) 0.70886 (14) 0.0408 (5)
H6 0.255832 0.699667 0.724575 0.049*
C7 −0.2184 (3) 0.67860 (9) 0.59205 (13) 0.0364 (5)
C8 −0.3471 (3) 0.71352 (9) 0.53687 (14) 0.0374 (5)
C9 −0.5092 (3) 0.68929 (9) 0.48251 (13) 0.0369 (5)
C10 −0.5022 (3) 0.63658 (10) 0.44507 (15) 0.0451 (6)
H10 −0.397420 0.613599 0.456841 0.054*
C11 −0.6522 (4) 0.61810 (11) 0.38988 (17) 0.0572 (7)
H11 −0.646209 0.583020 0.363766 0.069*
C12 −0.8086 (4) 0.65112 (12) 0.37366 (17) 0.0595 (7)
H12 −0.909617 0.638138 0.337620 0.071*
C13 −0.8166 (4) 0.70340 (12) 0.41054 (17) 0.0566 (7)
H13 −0.923465 0.725723 0.399761 0.068*
C14 −0.6665 (3) 0.72290 (10) 0.46357 (15) 0.0450 (6)
H14 −0.670797 0.758854 0.486795 0.054*
C15 −0.2678 (3) 0.62089 (9) 0.62050 (13) 0.0379 (5)
C16 −0.1207 (3) 0.57670 (8) 0.62333 (13) 0.0365 (5)
C17 0.0414 (3) 0.57992 (10) 0.57562 (16) 0.0489 (6)
H17 0.060741 0.611197 0.541097 0.059*
C18 0.1726 (4) 0.53723 (11) 0.57924 (19) 0.0602 (7)
H18 0.278000 0.539226 0.545767 0.072*
C19 0.1484 (4) 0.49156 (11) 0.63225 (18) 0.0587 (7)
H19 0.239317 0.463295 0.635947 0.070*
C20 −0.0099 (4) 0.48781 (10) 0.67960 (16) 0.0499 (6)
H20 −0.025764 0.456967 0.715476 0.060*
C21 −0.1450 (3) 0.52920 (9) 0.67446 (14) 0.0414 (5)
H21 −0.253732 0.525567 0.705362 0.050*
C22 0.8316 (3) 0.90536 (10) 0.39177 (16) 0.0473 (6)
H22A 0.824565 0.944179 0.410147 0.057*
H22B 0.740222 0.900097 0.342811 0.057*
C23 1.0255 (3) 0.89378 (11) 0.36299 (15) 0.0492 (6)
H23A 1.044320 0.853556 0.359854 0.059*
H23B 1.036856 0.909075 0.305023 0.059*
N1 −0.0004 (3) 0.74786 (7) 0.61817 (11) 0.0383 (4)
H1N −0.064888 0.772475 0.583317 0.046*
N2 −0.0546 (3) 0.69610 (7) 0.62829 (11) 0.0385 (4)
N3 0.5811 (4) 0.72606 (10) 0.79974 (13) 0.0586 (6)
N4 0.7806 (2) 0.86879 (8) 0.46401 (12) 0.0400 (4)
H4A 0.877010 0.865031 0.504591 0.048*
H4B 0.740870 0.835741 0.441351 0.048*
H4C 0.684390 0.883711 0.492181 0.048*
N5 1.1737 (2) 0.91827 (8) 0.42271 (12) 0.0439 (5)
H5A 1.285858 0.920295 0.397881 0.053*
H5B 1.185958 0.899605 0.473641 0.053*
H5C 1.149575 0.954525 0.433951 0.053*
O1 0.11362 (19) 0.84871 (6) 0.57058 (9) 0.0358 (3)
O2 0.3021 (2) 0.94939 (7) 0.66294 (12) 0.0558 (5)
O3 0.4796 (2) 0.91527 (7) 0.54483 (10) 0.0464 (4)
O4 0.6324 (2) 0.92621 (8) 0.68812 (11) 0.0623 (5)
O5 0.7429 (3) 0.74247 (10) 0.81985 (14) 0.0839 (7)
O6 0.5162 (4) 0.68241 (9) 0.83004 (13) 0.0827 (7)
O7 −0.3171 (2) 0.76438 (6) 0.53110 (11) 0.0495 (4)
O8 −0.4290 (2) 0.61161 (7) 0.64236 (12) 0.0555 (5)
O9 0.9258 (2) 0.96664 (7) 0.58733 (11) 0.0505 (4)
H9A 0.846428 0.950189 0.618111 0.076*
H9B 1.031219 0.959099 0.614351 0.076*
O10 0.4185 (3) 0.94367 (8) 0.29341 (12) 0.0612 (5)
H10A 0.441072 0.925449 0.247559 0.092*
H10B 0.432662 0.978519 0.284149 0.092*
S1 0.45667 (7) 0.91402 (2) 0.63830 (3) 0.03736 (16)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0437 (12) 0.0288 (11) 0.0265 (10) −0.0023 (9) −0.0048 (9) 0.0007 (8)
C2 0.0316 (10) 0.0282 (10) 0.0261 (10) 0.0006 (8) −0.0018 (8) 0.0003 (8)
C3 0.0301 (10) 0.0344 (11) 0.0249 (10) 0.0002 (8) −0.0014 (8) −0.0032 (8)
C4 0.0336 (11) 0.0518 (14) 0.0264 (11) 0.0056 (10) −0.0044 (8) −0.0058 (10)
C5 0.0521 (13) 0.0422 (13) 0.0278 (11) 0.0167 (11) −0.0074 (10) 0.0016 (9)
C6 0.0630 (15) 0.0269 (11) 0.0314 (11) 0.0034 (10) −0.0058 (10) 0.0037 (9)
C7 0.0476 (13) 0.0301 (11) 0.0315 (11) −0.0094 (9) 0.0016 (9) 0.0021 (9)
C8 0.0470 (12) 0.0313 (12) 0.0343 (11) −0.0081 (9) 0.0062 (9) 0.0000 (9)
C9 0.0461 (12) 0.0358 (12) 0.0292 (11) −0.0096 (10) 0.0061 (9) −0.0004 (9)
C10 0.0550 (14) 0.0399 (13) 0.0403 (13) −0.0071 (11) 0.0027 (11) −0.0053 (10)
C11 0.0754 (19) 0.0482 (15) 0.0479 (15) −0.0201 (14) 0.0010 (13) −0.0089 (12)
C12 0.0593 (17) 0.0687 (19) 0.0493 (16) −0.0245 (15) −0.0060 (13) 0.0022 (13)
C13 0.0438 (14) 0.0718 (19) 0.0539 (16) −0.0033 (13) 0.0015 (12) 0.0090 (14)
C14 0.0511 (14) 0.0435 (13) 0.0409 (13) −0.0033 (11) 0.0062 (11) −0.0002 (10)
C15 0.0503 (13) 0.0337 (12) 0.0297 (11) −0.0117 (10) 0.0021 (9) 0.0032 (9)
C16 0.0492 (12) 0.0280 (11) 0.0319 (11) −0.0118 (9) −0.0014 (9) 0.0005 (9)
C17 0.0588 (15) 0.0391 (13) 0.0495 (14) −0.0103 (11) 0.0094 (12) 0.0042 (11)
C18 0.0558 (16) 0.0540 (17) 0.0721 (19) −0.0030 (13) 0.0160 (14) −0.0007 (14)
C19 0.0655 (17) 0.0432 (15) 0.0666 (18) 0.0051 (13) −0.0044 (14) −0.0056 (13)
C20 0.0708 (17) 0.0320 (13) 0.0455 (14) −0.0066 (12) −0.0066 (12) 0.0025 (10)
C21 0.0564 (14) 0.0310 (12) 0.0366 (12) −0.0124 (10) 0.0018 (10) 0.0020 (9)
C22 0.0426 (13) 0.0460 (14) 0.0513 (14) −0.0101 (10) −0.0159 (11) 0.0175 (11)
C23 0.0549 (15) 0.0589 (15) 0.0330 (12) −0.0100 (12) −0.0057 (10) 0.0049 (11)
N1 0.0505 (11) 0.0254 (9) 0.0376 (10) −0.0106 (8) −0.0093 (8) 0.0062 (7)
N2 0.0524 (11) 0.0290 (9) 0.0339 (10) −0.0095 (8) −0.0003 (8) 0.0043 (8)
N3 0.0747 (16) 0.0610 (15) 0.0377 (12) 0.0342 (13) −0.0185 (11) −0.0060 (11)
N4 0.0350 (9) 0.0419 (11) 0.0417 (10) −0.0091 (8) −0.0088 (8) 0.0025 (8)
N5 0.0325 (9) 0.0538 (12) 0.0448 (11) −0.0005 (8) −0.0036 (8) 0.0119 (9)
O1 0.0338 (7) 0.0317 (8) 0.0402 (8) −0.0044 (6) −0.0130 (6) 0.0089 (6)
O2 0.0625 (11) 0.0325 (9) 0.0735 (12) −0.0020 (8) 0.0133 (9) −0.0145 (8)
O3 0.0416 (9) 0.0621 (11) 0.0353 (9) −0.0095 (8) −0.0007 (7) 0.0085 (7)
O4 0.0527 (10) 0.0841 (14) 0.0479 (10) −0.0380 (9) −0.0151 (8) 0.0087 (9)
O5 0.0624 (13) 0.1168 (19) 0.0691 (14) 0.0341 (13) −0.0251 (11) 0.0068 (13)
O6 0.132 (2) 0.0472 (12) 0.0640 (13) 0.0276 (12) −0.0364 (13) 0.0117 (10)
O7 0.0617 (10) 0.0296 (9) 0.0552 (10) −0.0094 (7) −0.0123 (8) 0.0046 (7)
O8 0.0529 (11) 0.0488 (10) 0.0659 (12) −0.0097 (8) 0.0134 (9) 0.0171 (9)
O9 0.0475 (9) 0.0469 (10) 0.0573 (10) −0.0050 (7) 0.0047 (8) 0.0065 (8)
O10 0.0683 (12) 0.0507 (11) 0.0672 (12) 0.0072 (9) 0.0248 (9) 0.0019 (9)
S1 0.0352 (3) 0.0414 (3) 0.0351 (3) −0.0143 (2) −0.0016 (2) −0.0014 (2)

Geometric parameters (Å, º)

C1—C6 1.365 (3) C17—H17 0.9300
C1—N1 1.400 (3) C18—C19 1.377 (4)
C1—C2 1.431 (3) C18—H18 0.9300
C2—O1 1.276 (2) C19—C20 1.371 (4)
C2—C3 1.430 (3) C19—H19 0.9300
C3—C4 1.380 (3) C20—C21 1.372 (3)
C3—S1 1.764 (2) C20—H20 0.9300
C4—C5 1.386 (3) C21—H21 0.9300
C4—H4 0.9300 C22—N4 1.473 (3)
C5—C6 1.387 (3) C22—C23 1.489 (3)
C5—N3 1.439 (3) C22—H22A 0.9700
C6—H6 0.9300 C22—H22B 0.9700
C7—N2 1.321 (3) C23—N5 1.472 (3)
C7—C8 1.466 (3) C23—H23A 0.9700
C7—C15 1.492 (3) C23—H23B 0.9700
C8—O7 1.236 (2) N1—N2 1.305 (2)
C8—C9 1.493 (3) N1—H1N 0.8999
C9—C10 1.385 (3) N3—O5 1.230 (3)
C9—C14 1.387 (3) N3—O6 1.239 (3)
C10—C11 1.389 (3) N4—H4A 0.9000
C10—H10 0.9300 N4—H4B 0.9000
C11—C12 1.367 (4) N4—H4C 0.8999
C11—H11 0.9300 N5—H5A 0.8999
C12—C13 1.372 (4) N5—H5B 0.9000
C12—H12 0.9300 N5—H5C 0.8999
C13—C14 1.379 (4) O2—S1 1.4468 (17)
C13—H13 0.9300 O3—S1 1.4546 (16)
C14—H14 0.9300 O4—S1 1.4484 (16)
C15—O8 1.225 (3) O9—H9A 0.8500
C15—C16 1.479 (3) O9—H9B 0.8498
C16—C21 1.395 (3) O10—H10A 0.8505
C16—C17 1.396 (3) O10—H10B 0.8502
C17—C18 1.376 (4)
C6—C1—N1 123.00 (19) C17—C18—C19 120.2 (3)
C6—C1—C2 123.24 (19) C17—C18—H18 119.9
N1—C1—C2 113.73 (17) C19—C18—H18 119.9
O1—C2—C3 124.02 (18) C20—C19—C18 119.9 (3)
O1—C2—C1 120.68 (17) C20—C19—H19 120.1
C3—C2—C1 115.29 (17) C18—C19—H19 120.1
C4—C3—C2 121.70 (19) C19—C20—C21 120.5 (2)
C4—C3—S1 120.40 (16) C19—C20—H20 119.7
C2—C3—S1 117.90 (14) C21—C20—H20 119.7
C3—C4—C5 119.2 (2) C20—C21—C16 120.6 (2)
C3—C4—H4 120.4 C20—C21—H21 119.7
C5—C4—H4 120.4 C16—C21—H21 119.7
C4—C5—C6 122.05 (19) N4—C22—C23 112.52 (19)
C4—C5—N3 119.7 (2) N4—C22—H22A 109.1
C6—C5—N3 118.2 (2) C23—C22—H22A 109.1
C1—C6—C5 118.4 (2) N4—C22—H22B 109.1
C1—C6—H6 120.8 C23—C22—H22B 109.1
C5—C6—H6 120.8 H22A—C22—H22B 107.8
N2—C7—C8 124.18 (19) N5—C23—C22 111.9 (2)
N2—C7—C15 112.46 (19) N5—C23—H23A 109.2
C8—C7—C15 123.10 (19) C22—C23—H23A 109.2
O7—C8—C7 119.8 (2) N5—C23—H23B 109.2
O7—C8—C9 117.9 (2) C22—C23—H23B 109.2
C7—C8—C9 122.19 (19) H23A—C23—H23B 107.9
C10—C9—C14 119.0 (2) N2—N1—C1 121.57 (18)
C10—C9—C8 122.6 (2) N2—N1—H1N 123.1
C14—C9—C8 118.2 (2) C1—N1—H1N 115.0
C9—C10—C11 119.8 (2) N1—N2—C7 120.29 (18)
C9—C10—H10 120.1 O5—N3—O6 122.1 (2)
C11—C10—H10 120.1 O5—N3—C5 119.4 (3)
C12—C11—C10 120.5 (3) O6—N3—C5 118.5 (2)
C12—C11—H11 119.8 C22—N4—H4A 111.9
C10—C11—H11 119.8 C22—N4—H4B 108.2
C11—C12—C13 120.0 (2) H4A—N4—H4B 112.8
C11—C12—H12 120.0 C22—N4—H4C 110.6
C13—C12—H12 120.0 H4A—N4—H4C 105.5
C12—C13—C14 120.1 (3) H4B—N4—H4C 107.8
C12—C13—H13 120.0 C23—N5—H5A 111.6
C14—C13—H13 120.0 C23—N5—H5B 112.0
C13—C14—C9 120.5 (2) H5A—N5—H5B 110.6
C13—C14—H14 119.8 C23—N5—H5C 111.4
C9—C14—H14 119.8 H5A—N5—H5C 102.2
O8—C15—C16 121.69 (19) H5B—N5—H5C 108.6
O8—C15—C7 118.9 (2) H9A—O9—H9B 102.6
C16—C15—C7 119.36 (19) H10A—O10—H10B 109.4
C21—C16—C17 118.1 (2) O2—S1—O4 112.35 (11)
C21—C16—C15 119.1 (2) O2—S1—O3 112.05 (11)
C17—C16—C15 122.75 (19) O4—S1—O3 112.11 (10)
C18—C17—C16 120.6 (2) O2—S1—C3 107.09 (10)
C18—C17—H17 119.7 O4—S1—C3 106.34 (10)
C16—C17—H17 119.7 O3—S1—C3 106.41 (9)
C6—C1—C2—O1 175.3 (2) N2—C7—C15—O8 133.9 (2)
N1—C1—C2—O1 −2.7 (3) C8—C7—C15—O8 −40.5 (3)
C6—C1—C2—C3 −3.9 (3) N2—C7—C15—C16 −44.9 (3)
N1—C1—C2—C3 178.05 (17) C8—C7—C15—C16 140.7 (2)
O1—C2—C3—C4 −174.87 (19) O8—C15—C16—C21 −19.0 (3)
C1—C2—C3—C4 4.3 (3) C7—C15—C16—C21 159.75 (19)
O1—C2—C3—S1 5.0 (3) O8—C15—C16—C17 159.9 (2)
C1—C2—C3—S1 −175.82 (14) C7—C15—C16—C17 −21.3 (3)
C2—C3—C4—C5 −2.4 (3) C21—C16—C17—C18 0.1 (3)
S1—C3—C4—C5 177.78 (16) C15—C16—C17—C18 −178.8 (2)
C3—C4—C5—C6 −0.3 (3) C16—C17—C18—C19 −2.1 (4)
C3—C4—C5—N3 −177.87 (19) C17—C18—C19—C20 2.0 (4)
N1—C1—C6—C5 179.35 (19) C18—C19—C20—C21 0.2 (4)
C2—C1—C6—C5 1.5 (3) C19—C20—C21—C16 −2.2 (4)
C4—C5—C6—C1 0.8 (3) C17—C16—C21—C20 2.0 (3)
N3—C5—C6—C1 178.33 (19) C15—C16—C21—C20 −179.0 (2)
N2—C7—C8—O7 −9.5 (3) N4—C22—C23—N5 −77.7 (3)
C15—C7—C8—O7 164.2 (2) C6—C1—N1—N2 −6.5 (3)
N2—C7—C8—C9 166.9 (2) C2—C1—N1—N2 171.52 (18)
C15—C7—C8—C9 −19.4 (3) C1—N1—N2—C7 −178.65 (19)
O7—C8—C9—C10 143.6 (2) C8—C7—N2—N1 2.0 (3)
C7—C8—C9—C10 −32.9 (3) C15—C7—N2—N1 −172.29 (18)
O7—C8—C9—C14 −31.3 (3) C4—C5—N3—O5 −11.5 (3)
C7—C8—C9—C14 152.3 (2) C6—C5—N3—O5 170.9 (2)
C14—C9—C10—C11 −0.4 (3) C4—C5—N3—O6 167.5 (2)
C8—C9—C10—C11 −175.2 (2) C6—C5—N3—O6 −10.2 (3)
C9—C10—C11—C12 −1.4 (4) C4—C3—S1—O2 −123.34 (17)
C10—C11—C12—C13 1.4 (4) C2—C3—S1—O2 56.81 (18)
C11—C12—C13—C14 0.4 (4) C4—C3—S1—O4 −3.0 (2)
C12—C13—C14—C9 −2.2 (4) C2—C3—S1—O4 177.11 (16)
C10—C9—C14—C13 2.1 (3) C4—C3—S1—O3 116.66 (17)
C8—C9—C14—C13 177.2 (2) C2—C3—S1—O3 −63.19 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O10—H10A···O8i 0.85 2.10 2.928 (2) 165
O9—H9A···O4 0.85 1.99 2.827 (2) 169
O9—H9B···O2ii 0.85 2.03 2.866 (2) 170
O10—H10B···O4iii 0.85 2.36 3.139 (3) 152
N1—H1N···O7 0.90 1.92 2.568 (2) 127
N4—H4A···O1ii 0.90 1.94 2.826 (2) 167
N4—H4B···O6iv 0.90 2.30 2.960 (2) 130
N4—H4B···O7ii 0.90 2.24 2.797 (2) 119
N5—H5B···O1ii 0.90 2.01 2.864 (2) 158
N4—H4B···O6iv 0.90 2.30 2.960 (2) 130
N4—H4B···O7ii 0.90 2.24 2.797 (2) 119
N4—H4C···O3 0.90 1.86 2.756 (2) 177
N5—H5A···O10ii 0.90 1.98 2.775 (3) 146
N5—H5B···O3ii 0.90 2.32 2.778 (2) 112
N5—H5C···O9v 0.90 1.98 2.835 (3) 159

Symmetry codes: (i) x+1, −y+3/2, z−1/2; (ii) x+1, y, z; (iii) −x+1, −y+2, −z+1; (iv) x, −y+3/2, z−1/2; (v) −x+2, −y+2, −z+1.

References

  1. Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
  2. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  4. Gurbanov, A. V., Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C., Sutradhar, M., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017a). Dyes Pigm. 138, 107–111.
  5. Gurbanov, A. V., Mahmudov, K. T., Sutradhar, M., Guedes da Silva, M. F. C., Mahmudov, T. A., Guseinov, F. I., Zubkov, F. I., Maharramov, A. M. & Pombeiro, A. J. L. (2017b). J. Organomet. Chem. 834, 22–27.
  6. Hathwar, V. R., Sist, M., Jørgensen, M. R. V., Mamakhel, A. H., Wang, X., Hoffmann, C. M., Sugimoto, K., Overgaard, J. & Iversen, B. B. (2015). IUCrJ, 2, 563–574. [DOI] [PMC free article] [PubMed]
  7. Jlassi, R., Ribeiro, A. P. C., Alegria, E. C. B. A., Naïli, H., Tiago, G. A. O., Rüffer, T., Lang, H., Zubkov, F. I., Pombeiro, A. J. L. & Rekik, W. (2018). Inorg. Chim. Acta, 471, 658–663.
  8. Jlassi, R., Ribeiro, A. P. C., Guedes da Silva, M. F. C., Mahmudov, K. T., Kopylovich, M. N., Anisimova, T. B., Naïli, H., Tiago, G. A. O. & Pombeiro, A. J. L. (2014). Eur. J. Inorg. Chem. pp. 4541–4550.
  9. Kuznik, W., Kityk, I. V., Kopylovich, M. N., Mahmudov, K. T., Ozga, K., Lakshminarayana, G. & Pombeiro, A. J. L. (2011). Spectrochim. Acta Part A, 78, 1287–1294. [DOI] [PubMed]
  10. Ledenyova, I. V., Falaleev, A. V., Shikhaliev, Kh. S., Ryzhkova, E. A. & Zubkov, F. I. (2018). Russ. J. Gen. Chem. 88, 73–79.
  11. Ma, Z., Gurbanov, A. V., Maharramov, A. M., Guseinov, F. I., Kopylovich, M. N., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2017a). J. Mol. Catal. A, 426, 526–533.
  12. Ma, Z., Gurbanov, A. V., Sutradhar, M., Kopylovich, M. N., Mahmudov, K. T., Maharramov, A. M., Guseinov, F. I., Zubkov, F. I. & Pombeiro, A. J. L. (2017b). J. Mol. Catal. A, 428, 17–23.
  13. Mahmoudi, G., Bauza, A., Gurbanov, A. V., Zubkov, F. I., Maniukiewicz, W., Rodriguez-Dieguez, A., Lopez-Torres, E. & Frontera, A. (2016). CrystEngComm, 18, 9056–9066.
  14. Mahmoudi, G., Zangrando, E., Mitoraj, M. P., Gurbanov, A. V., Zubkov, F. I., Moosavifar, M., Konyaeva, I. A., Kirillov, A. M. & Safin, D. A. (2018). New J. Chem. 42, 4959–4971.
  15. Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017a). Coord. Chem. Rev. 345, 54–72.
  16. Mahmudov, K. T., Kopylovich, M. N., Guedes da Silva, M. F. C. & Pombeiro, A. J. L. (2017b). Dalton Trans. 46, 10121–10138. [DOI] [PubMed]
  17. Mahmudov, K. T., Kopylovich, M. N., Sabbatini, A., Drew, M. G. B., Martins, L. M. D. R. S., Pettinari, C. & Pombeiro, A. J. L. (2014). Inorg. Chem. 53, 9946–9958. [DOI] [PubMed]
  18. Mahmudov, K. T. & Pombeiro, A. J. L. (2016). Chem. Eur. J. 22, 16356–16398. [DOI] [PubMed]
  19. McKinnon, J. J., Spackman, M. A. & Mitchell, A. S. (2004). Acta Cryst. B60, 627–668. [DOI] [PubMed]
  20. Nasirova, D. K., Malkova, A. V., Polyanskii, K. B., Yankina, K. Y., Amoyaw, P. N.-A., Kolesnik, I. A., Kletskov, A. V., Godovikov, I. A., Nikitina, E. V. & Zubkov, F. I. (2017). Tetrahedron Lett. 58, 4384–438.
  21. Politzer, P., Murray, J. S., Clark, T. & Resnati, G. (2017). Phys. Chem. Chem. Phys. 19, 32166–32178. [DOI] [PubMed]
  22. Scheiner, S. (2013). Acc. Chem. Res. 46, 280–288. [DOI] [PubMed]
  23. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  24. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  25. Shixaliyev, N. Q., Ahmadova, N. E., Gurbanov, A. V., Maharramov, A. M., Mammadova, G. Z., Nenajdenko, V. G., Zubkov, F. I., Mahmudov, K. T. & Pombeiro, A. J. L. (2018). Dyes Pigm. 150, 377–381.
  26. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  27. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  28. Vandyshev, D. Y., Shikhaliev, K. S., Potapov, A. Y., Krysin, M. Y., Zubkov, F. I. & Sapronova, L. V. (2017). Beilstein J. Org. Chem. 13, 2561–2568. [DOI] [PMC free article] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018009118/qm2125sup1.cif

e-74-01021-sup1.cif (1.2MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018009118/qm2125Isup2.hkl

e-74-01021-Isup2.hkl (392.5KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018009118/qm2125Isup3.cml

CCDC reference: 1851087

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES