Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2018 Jun 8;74(Pt 7):910–914. doi: 10.1107/S2056989018008204

Crystal structure of (E)-N’-[1-(4-amino­phen­yl)ethyl­idene]-2-hy­droxy-5-iodo­benzohydrazide methanol monosolvate

Cong Nguyen Tien a, Huong Le Thi Thu a, Thin Nguyen Van b, Trung Vu Quoc c, Manh Vu Quoc d, Thang Pham Chien e, Luc Van Meervelt f,*
PMCID: PMC6038649  PMID: 30002884

The synthesis and crystal structure of a new N-substituted hydrazide are reported. In the crystal packing, O—H⋯O and N—H⋯O hydrogen bonds predominate together with π–π stacking inter­actions.

Keywords: crystal structure, N-substituted hydrazide, salicylic acid, Hirshfeld surface

Abstract

In the title compound, C15H14IN3O2·CH3OH, two aromatic rings are linked by an N-substituted hydrazide function. The dihedral angle between the aromatic rings is 10.53 (8)°. The stereochemistry about the imine function is E. The methanol mol­ecule forms an O—H⋯O hydrogen bond to the hydrazide O atom. In the crystal, chains of mol­ecules running along the c-axis direction are formed by O—H⋯O hydrogen bonds. Adjacent chains are linked through N—H⋯O hydrogen bonds and π–π stacking inter­actions. The inter­molecular inter­actions in the crystal packing were investigated using Hirshfeld surface analysis, which indicated that the most significant contacts are H⋯H (38.2%), followed by C⋯H/H⋯C (20.6%), O⋯H/H⋯O (11.1%) and I⋯H/H⋯I (9.7%).

Chemical context  

N-substituted hydrazides have been attracted much attention for their structures, coordination ability, biological activities and transformations to heterocyclic compounds (Majumdar et al., 2014; Asif & Husain, 2013; Khan et al., 2017). Derivatives of salicylic acid act as anti­bacterial (Kumar et al., 2012; Cui et al., 2014; Sarshira et al., 2016), anti­fungal (Wodnicka et al., 2017; Abbas et al., 2017) and anti­tumor (Murty et al., 2014) agents. In addition, some salicylhydrazones exhibit significant anti­trypanosomal activity with IC50 ranging from 1 to 34 µM. N-substituted hydrazides containing the typical –C(O)—NH—N=C< functional group can be prepared by a condensation reaction between a hydrazide and a carbonyl compound (an aldehyde or a ketone).graphic file with name e-74-00910-scheme1.jpg

As a continuation of our research work to synthesize derivatives of 5-iodo­salicylohydrazide (Nguyen et al., 2012), the new compound (E)-N’-[1-(4-amino­phen­yl)ethyl­idene]-2-hy­droxy-5-iodo­benzohydrazide methanol monosolvate was synthesized. The structure of the compound was determined by IR, 1H NMR, 13C NMR and HR–MS spectroscopy as well as X-ray diffraction and the crystal structure is reported herein.

Structural commentary  

The title compound (Fig. 1) crystallizes as a methanol monosolvate in the monoclinic space group P21/c with one hydrazide mol­ecule and a methanol solvate mol­ecule in the asymmetric unit. The OH group of methanol is hydrogen bonded to the hydrazide oxygen atom O4 (Fig. 1, Table 1). The dihedral angle between the aromatic rings is 10.53 (8)°. This relatively planar character of the mol­ecule is caused by an intra­molecular hydrogen bond, N2—H2⋯O11 (Table 1), and the presence of the hydrazide functional group and the C13=N1 double bond. The r.m.s. deviation from a plane through all 21 non-Hatoms is 0.291 Å [with a maximum deviation of 0.838 (1) Å observed for atom O4]. The torsion angles about the bonds of the hydrazide link between the two aromatic rings are: C15—C13=N1—N2 = −175.48 (15)°, C13=N1—N2—C3 = 178.71 (16)° and N1—N2—C3—C5 = −172.18 (15)°. The stereochemistry about the imine function C13=N1 is E. The planar character causes short contacts for the H atoms of methyl group C14 with the H atoms on atoms N2 and C20. As a consequence, this methyl group displays rotational disorder with occupancies of 0.66 (2) and 0.34 (2).

Figure 1.

Figure 1

View of the asymmetric unit of the title compound, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as small circles of arbitrary radii. Intra- and inter­molecular hydrogen bonds are shown as dashed lines.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
O23—H23⋯O4 0.80 (2) 1.97 (2) 2.7561 (18) 170 (3)
N2—H2⋯O11 0.82 (3) 2.02 (2) 2.665 (2) 134.4 (19)
O11—H11⋯O23i 0.76 (3) 1.88 (3) 2.6323 (18) 172 (2)
N21—H21A⋯O4ii 0.85 (2) 2.14 (2) 2.961 (2) 164 (2)

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Supra­molecular features  

In the crystal, chains of mol­ecules are formed along the c-axis direction by alternating O11—H11⋯O23i and O23—H23⋯O4 hydrogen bonds (Table 1 and Fig. 2). The inter­action of adjacent chains through N21—H21A⋯O4ii hydrogen bonds results in the formation of dimers with graph set Inline graphic(22) (Table 1 and Fig. 3). Both aromatic rings are involved in π–π stacking inter­actions [Cg1⋯Cg1i = 3.9769 (10) Å, slippage 2.042 Å and Cg1⋯Cg2ii = 3.8635 (11) Å, slippage 1.596 Å; Cg1 and Cg2 are the centroids of rings C5–C10 and C15–C20, respectively; Fig. 4]. The crystal packing contains no voids.

Figure 2.

Figure 2

Part of the crystal packing of the title compound, showing the chain along the c-axis direction formed by O—H⋯O hydrogen-bonding inter­actions [see Table 1; symmetry code: (i) x, y, z − 1]. Only the major component of the disordered methyl group C14 is shown.

Figure 3.

Figure 3

Ring of graph-set motif Inline graphic(22) formed by N—H⋯O hydrogen-bonding inter­actions [see Table 1; symmetry code: (i) x − 1, y − 1, z − 2].

Figure 4.

Figure 4

Part of the crystal packing of the title compound, showing the π–π stacking inter­actions between the amino­phenyl (blue) and iodo­phenyl (yellow) rings [symmetry codes: (i) −x + 1, −y + 1, −z + 1; (ii) −x, −y + 1, −z + 1].

Additional insight into the crystal packing forces was obtained from a Hirshfeld surface analysis using CrystalExplorer (McKinnon et al., 2007; Spackman & Jayatilaka, 2009). The largest bright-red spots on the Hirshfeld surface mapped over d norm correspond to the (N,O)—H⋯O hydrogen-bonding contacts (Fig. 5). The pale-red spots are the weaker C⋯H (C18⋯H20), H⋯H (H14F⋯H22B), I⋯H (I12⋯H21B) and I⋯O (I12⋯O23) inter­actions. The most important 2D fingerprint plots, decomposed to highlight particular close contacts of atom pairs and their contribution, are given in Fig. 6. The relative contributions of the different inter­molecular inter­actions to the Hirshfeld surface area in descending order are: H⋯H (38.2%), C⋯H/H⋯C (20.6%), O⋯H/H⋯O (11.1%), I⋯H/H⋯I (9.7%), N⋯H/H⋯N (7.2%) and C⋯C (5.7%). Contributions from the inter­molecular non- or low-polar inter­actions are much greater than the contributions from the O⋯H contacts. The weak I⋯H inter­actions contribute significantly to the crystal packing.

Figure 5.

Figure 5

Views of the Hirshfeld surface for the title compound mapped over d norm over the range −0.740 to 1.296 a.u. showing the closest methanol mol­ecules.

Figure 6.

Figure 6

Two-dimensional fingerprint plots delineated into different contact types (a)–(d) for the title compound. Each blue dot represents a 0.01 Å bin of points on the Hirshfeld surface, with coordinates corresponding to distances (Å) from the points to the nearest inter­ior (d i) and exterior (d e) nuclei. Increasing intensity of overlapping points is shown by a colour coding from blue to cyan. The grey background contours correspond to the plot integrated for all contact types.

Database survey  

A search of the Cambridge Structural Database (CSD, Version 5.39, last update November 2017; Groom et al., 2016) for the central N-substituted hydrazide moiety (Fig. 7 a) resulted in 461 hits. The histograms of the torsion angles show the distribution for torsion angles tor1 (Fig. 7 b) and tor3 (Fig. 7 d) as expected for a planar conjugated system. However, the histogram of torsion angle tor2 (Fig. 7 c) shows the presence of three non-planar entries with torsion angle values of −72.1 (refcode XIJTAN; Buzykin et al., 2012), −67.9 (refcode NIZTUM; Muniz-Miranda et al., 2008) and +68.6° (XIJTAN; Buzykin et al., 2012).

Figure 7.

Figure 7

(a) The N-substituted hydrazide fragment used for a search in the CSD (a refers to acyclic). (b)–(d) Histograms of torsion angles tor1, tor2 and tor3, respectively.

Synthesis and crystallization  

The reaction scheme used to synthesize the title compound, 5, is shown in Fig. 8. Methyl salicylate, methyl 2-hy­droxy-5-iodo­benzoate and 2-hy­droxy-5-iodo­benzohydrazide were prepared from salicylic acid according to the method described in our earlier work (Nguyen et al., 2012).

Figure 8.

Figure 8

Reaction scheme for the title compound.

Methyl salicylate, 2: liquid; b.p. 494-495 K, yield 73%.

Methyl 2-hy­droxy-5-iodo­benzoate (methyl 5-iodo­salicylate), 3: white needles, m.p. 347–348 K, yield 85%; IR (ν, cm−1): 3156, 3080, 2949, 1676, 1604, 527.

2-Hy­droxy-5-iodo­benzohydrazide, 4: white needles, m.p. 451 K, yield 79%; IR (ν, cm−1): 3405, 3322, 1626, 1574, 529; 1H NMR (δ, ppm): 12.41 (1H, br, OH), 10.12 (1H, br, NH), 8.12 (1H, d, 4 J = 2.0, ArH), 7.65 (1H, dd, 3 J = 9.0 Hz, 4 J = 2.0 Hz, ArH), 6.75 (1H, d, 3 J = 9.0 Hz, ArH), 4.80 (2H, br, NH2); 13C NMR: 166.1 (CO), 158.9, 141.3, 135.5, 119.9, 117.4, 80.5.

(E)-N’-[1-(4-amino­phen­yl)ethyl­idene]-2-hy­droxy-5-iodo­benzohydrazide, 5: A solution of 2-hy­droxy-5-iodo­benzohydrazide 4 and 4′-amino­aceto­phenone was refluxed for 2 h. The reaction mixture was cooled down to room temperature and the precipitate obtained was filtered off and crystallized from methanol to give 5 as yellow crystals in 78% yield. M.p. 515–516 K. IR (ν, cm−1): 3440, 3298, 3201 (OH, N—H), 2932 (Csp 3—H), 1634, 1577 (C=O, C=N); 1H NMR (δ, ppm and J, Hz): 11.11 (1H, s, NH), 8.23 (1H, s, ArH), 7.70 (1H, d, 3 J = 8.5, ArH), 7.59 (2H, d, 3 J = 8.5, ArH), 6.86 (1H, d, 3 J = 8.5, ArH), 6.59 (2H, d, 3 J = 8.5, ArH), 5.55 (2H, br, NH2), 2.22 (3H, s, –CH3); 13C NMR (δ, ppm): 161.1 (C=O), 157.0, 154.8, 150.9, 141.6, 138.7, 128.3, 125.2, 121.0, 120.1, 113.7, 82.0, 14.1; MS: m/z 396.0069 (M+H)+, calculated for C15H15IN3O2: 396.0209.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The H atoms attached to atoms N2, N21, O11 and O23 were found in a difference-Fourier map and refined freely. The other H atoms were placed at calculated positions and refined in riding mode, with C—H distances of 0.95 (aromatic) and 0.98 Å (CH3), and isotropic displacement parameters equal to 1.2U eq of the parent atoms (1.5U eq for CH3). The difference-Fourier map indicated disorder for the H atoms of methyl group C14. The final occupancy factors for the two sets of H atoms are 0.66 (2) and 0.34 (2). In the final cycles of refinement, two reflections showing very poor agreement were omitted as outliers.

Table 2. Experimental details.

Crystal data
Chemical formula C15H14IN3O2·CH4O
M r 427.23
Crystal system, space group Monoclinic, P21/c
Temperature (K) 100
a, b, c (Å) 12.9877 (10), 14.8982 (10), 8.5593 (6)
β (°) 91.806 (2)
V3) 1655.3 (2)
Z 4
Radiation type Mo Kα
μ (mm−1) 1.95
Crystal size (mm) 0.41 × 0.27 × 0.22
 
Data collection
Diffractometer Bruker D8 Quest CMOS
Absorption correction Multi-scan (SADABS; Bruker, 2014)
T min, T max 0.613, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 45415, 3394, 3086
R int 0.044
(sin θ/λ)max−1) 0.625
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.017, 0.041, 1.06
No. of reflections 3394
No. of parameters 231
No. of restraints 1
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.61, −0.24

Computer programs: APEX2 and SAINT (Bruker, 2013), SHELXS (Sheldrick, 2008), SHELXL2016 (Sheldrick, 2015) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018008204/sj5557sup1.cif

e-74-00910-sup1.cif (1,015.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018008204/sj5557Isup2.hkl

e-74-00910-Isup2.hkl (186.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018008204/sj5557Isup3.cml

CCDC reference: 1846971

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Crystal data

C15H14IN3O2·CH4O F(000) = 848
Mr = 427.23 Dx = 1.714 Mg m3
Monoclinic, P21/c Mo Kα radiation, λ = 0.71073 Å
a = 12.9877 (10) Å Cell parameters from 9842 reflections
b = 14.8982 (10) Å θ = 3.1–30.5°
c = 8.5593 (6) Å µ = 1.95 mm1
β = 91.806 (2)° T = 100 K
V = 1655.3 (2) Å3 Block, yellow
Z = 4 0.41 × 0.27 × 0.22 mm

Data collection

Bruker D8 Quest CMOS diffractometer 3086 reflections with I > 2σ(I)
φ and ω scans Rint = 0.044
Absorption correction: multi-scan (SADABS; Bruker, 2014) θmax = 26.4°, θmin = 3.1°
Tmin = 0.613, Tmax = 0.746 h = −16→16
45415 measured reflections k = −18→18
3394 independent reflections l = −10→10

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Hydrogen site location: mixed
R[F2 > 2σ(F2)] = 0.017 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.041 w = 1/[σ2(Fo2) + (0.0145P)2 + 1.4435P] where P = (Fo2 + 2Fc2)/3
S = 1.06 (Δ/σ)max = 0.001
3394 reflections Δρmax = 0.61 e Å3
231 parameters Δρmin = −0.24 e Å3
1 restraint

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq Occ. (<1)
N1 0.40946 (11) 0.57600 (10) 0.63743 (17) 0.0163 (3)
N2 0.33272 (11) 0.55807 (10) 0.52645 (18) 0.0161 (3)
H2 0.3379 (16) 0.5699 (15) 0.433 (3) 0.023 (6)*
C3 0.24587 (13) 0.51777 (11) 0.5728 (2) 0.0148 (3)
O4 0.22915 (10) 0.50292 (9) 0.71249 (14) 0.0199 (3)
C5 0.17050 (13) 0.48847 (12) 0.4474 (2) 0.0140 (3)
C6 0.16570 (13) 0.52242 (11) 0.2943 (2) 0.0145 (3)
C7 0.08776 (14) 0.49318 (12) 0.1909 (2) 0.0170 (4)
H7 0.081025 0.519641 0.090110 0.020*
C8 0.01991 (14) 0.42619 (12) 0.2326 (2) 0.0172 (4)
H8 −0.031928 0.405794 0.160228 0.021*
C9 0.02861 (13) 0.38912 (12) 0.3817 (2) 0.0150 (3)
C10 0.10096 (13) 0.42151 (12) 0.48894 (19) 0.0147 (3)
H10 0.103575 0.398069 0.592210 0.018*
O11 0.23620 (10) 0.58419 (9) 0.25082 (15) 0.0182 (3)
H11 0.233 (2) 0.5920 (18) 0.163 (3) 0.042 (8)*
I12 −0.06829 (2) 0.28322 (2) 0.44470 (2) 0.01876 (5)
C13 0.49324 (13) 0.61305 (12) 0.5921 (2) 0.0151 (3)
C14 0.51380 (15) 0.64301 (14) 0.4276 (2) 0.0217 (4)
H14A 0.454135 0.628694 0.359179 0.033* 0.66 (2)
H14B 0.574751 0.611872 0.390192 0.033* 0.66 (2)
H14C 0.525871 0.707940 0.426604 0.033* 0.66 (2)
H14D 0.506928 0.591666 0.356473 0.033* 0.34 (2)
H14E 0.583785 0.667320 0.423635 0.033* 0.34 (2)
H14F 0.464045 0.689520 0.395866 0.033* 0.34 (2)
C15 0.57516 (13) 0.62386 (12) 0.7151 (2) 0.0151 (3)
C16 0.56846 (14) 0.57802 (13) 0.8582 (2) 0.0187 (4)
H16 0.510394 0.540934 0.875386 0.022*
C17 0.64415 (14) 0.58565 (12) 0.9740 (2) 0.0183 (4)
H17 0.637198 0.554354 1.069845 0.022*
C18 0.73134 (13) 0.63918 (12) 0.9518 (2) 0.0156 (3)
C19 0.73773 (14) 0.68645 (12) 0.8117 (2) 0.0176 (4)
H19 0.795006 0.724630 0.795497 0.021*
C20 0.66115 (14) 0.67820 (12) 0.6957 (2) 0.0175 (4)
H20 0.667530 0.710410 0.600736 0.021*
N21 0.80719 (13) 0.64660 (12) 1.06816 (19) 0.0195 (3)
H21A 0.8080 (17) 0.6075 (16) 1.140 (3) 0.025 (6)*
H21B 0.8644 (19) 0.6701 (16) 1.040 (3) 0.028 (6)*
C22 0.31350 (17) 0.69396 (14) 0.9344 (3) 0.0285 (5)
H22A 0.294430 0.732318 0.845110 0.043*
H22B 0.380013 0.665329 0.916393 0.043*
H22C 0.318802 0.730503 1.029528 0.043*
O23 0.23658 (11) 0.62647 (9) 0.95224 (15) 0.0213 (3)
H23 0.242 (2) 0.5898 (15) 0.885 (3) 0.040 (8)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
N1 0.0147 (7) 0.0195 (8) 0.0143 (7) −0.0010 (6) −0.0037 (6) −0.0009 (6)
N2 0.0166 (8) 0.0217 (8) 0.0096 (7) −0.0024 (6) −0.0033 (6) 0.0005 (6)
C3 0.0170 (9) 0.0125 (8) 0.0147 (8) 0.0020 (7) −0.0012 (7) −0.0008 (7)
O4 0.0229 (7) 0.0257 (7) 0.0109 (6) −0.0068 (5) −0.0023 (5) 0.0014 (5)
C5 0.0140 (8) 0.0150 (8) 0.0128 (8) 0.0023 (7) −0.0015 (6) −0.0025 (7)
C6 0.0163 (8) 0.0131 (8) 0.0142 (8) 0.0010 (7) 0.0009 (7) −0.0009 (7)
C7 0.0216 (9) 0.0175 (9) 0.0117 (8) 0.0021 (7) −0.0031 (7) 0.0013 (7)
C8 0.0166 (9) 0.0193 (9) 0.0154 (8) 0.0010 (7) −0.0048 (7) −0.0025 (7)
C9 0.0135 (8) 0.0141 (8) 0.0175 (9) 0.0002 (7) 0.0009 (7) −0.0018 (7)
C10 0.0166 (8) 0.0155 (9) 0.0118 (8) 0.0031 (7) −0.0001 (7) 0.0004 (7)
O11 0.0225 (7) 0.0215 (7) 0.0104 (6) −0.0055 (5) −0.0012 (5) 0.0029 (5)
I12 0.01767 (7) 0.01657 (7) 0.02193 (7) −0.00289 (4) −0.00078 (4) 0.00057 (5)
C13 0.0166 (9) 0.0131 (8) 0.0155 (8) 0.0020 (7) 0.0000 (7) −0.0006 (7)
C14 0.0206 (9) 0.0279 (10) 0.0166 (9) −0.0017 (8) −0.0009 (7) 0.0053 (8)
C15 0.0143 (8) 0.0154 (8) 0.0155 (8) 0.0018 (7) 0.0000 (7) −0.0009 (7)
C16 0.0154 (9) 0.0216 (9) 0.0190 (9) −0.0051 (7) 0.0002 (7) 0.0021 (7)
C17 0.0180 (9) 0.0210 (9) 0.0160 (8) −0.0022 (7) 0.0009 (7) 0.0026 (7)
C18 0.0149 (8) 0.0157 (9) 0.0162 (8) 0.0027 (7) −0.0006 (7) −0.0050 (7)
C19 0.0150 (9) 0.0169 (9) 0.0210 (9) −0.0027 (7) 0.0012 (7) 0.0005 (7)
C20 0.0187 (9) 0.0172 (9) 0.0168 (9) 0.0007 (7) 0.0022 (7) 0.0017 (7)
N21 0.0170 (8) 0.0230 (9) 0.0182 (8) −0.0038 (7) −0.0019 (6) 0.0006 (7)
C22 0.0291 (11) 0.0251 (10) 0.0318 (11) −0.0050 (9) 0.0107 (9) −0.0034 (9)
O23 0.0277 (7) 0.0223 (7) 0.0140 (6) −0.0043 (6) 0.0014 (5) −0.0005 (6)

Geometric parameters (Å, º)

N1—N2 1.381 (2) C14—H14C 0.9800
N1—C13 1.291 (2) C14—H14D 0.9800
N2—H2 0.82 (2) C14—H14E 0.9800
N2—C3 1.349 (2) C14—H14F 0.9800
C3—O4 1.242 (2) C15—C16 1.407 (2)
C3—C5 1.495 (2) C15—C20 1.394 (3)
C5—C6 1.404 (2) C16—H16 0.9500
C5—C10 1.399 (2) C16—C17 1.379 (3)
C6—C7 1.394 (2) C17—H17 0.9500
C6—O11 1.359 (2) C17—C18 1.403 (3)
C7—H7 0.9500 C18—C19 1.396 (3)
C7—C8 1.386 (3) C18—N21 1.383 (2)
C8—H8 0.9500 C19—H19 0.9500
C8—C9 1.392 (2) C19—C20 1.388 (3)
C9—C10 1.380 (2) C20—H20 0.9500
C9—I12 2.0993 (17) N21—H21A 0.85 (2)
C10—H10 0.9500 N21—H21B 0.86 (2)
O11—H11 0.76 (3) C22—H22A 0.9800
C13—C14 1.509 (2) C22—H22B 0.9800
C13—C15 1.482 (2) C22—H22C 0.9800
C14—H14A 0.9800 C22—O23 1.429 (2)
C14—H14B 0.9800 O23—H23 0.800 (16)
C13—N1—N2 118.21 (15) C13—C14—H14A 109.5
N1—N2—H2 123.2 (15) C13—C14—H14B 109.5
C3—N2—N1 118.42 (15) C13—C14—H14C 109.5
C3—N2—H2 118.4 (15) C13—C14—H14D 109.5
N2—C3—C5 116.98 (15) C13—C14—H14E 109.5
O4—C3—N2 122.40 (16) C13—C14—H14F 109.5
O4—C3—C5 120.59 (16) C16—C15—C13 120.20 (16)
C6—C5—C3 125.00 (16) C20—C15—C13 122.59 (16)
C10—C5—C3 116.05 (15) C20—C15—C16 117.21 (16)
C10—C5—C6 118.94 (16) C15—C16—H16 119.2
H14Aa—C14—H14B 109.5 C17—C16—C15 121.57 (17)
H14Ba—C14—H14C 109.5 C17—C16—H16 119.2
H14Aa—C14—H14C 109.5 C16—C17—H17 119.7
H14Db—C14—H14E 109.5 C16—C17—C18 120.63 (17)
H14Eb—C14—H14F 109.5 C18—C17—H17 119.7
H14Db—C14—H14F 109.5 C19—C18—C17 118.27 (16)
C7—C6—C5 119.36 (16) N21—C18—C17 120.49 (17)
O11—C6—C5 119.30 (15) N21—C18—C19 121.22 (17)
O11—C6—C7 121.33 (16) C18—C19—H19 119.7
C6—C7—H7 119.4 C20—C19—C18 120.60 (17)
C8—C7—C6 121.12 (16) C20—C19—H19 119.7
C8—C7—H7 119.4 C15—C20—H20 119.2
C7—C8—H8 120.4 C19—C20—C15 121.68 (17)
C7—C8—C9 119.19 (16) C19—C20—H20 119.2
C9—C8—H8 120.4 C18—N21—H21A 117.5 (16)
C8—C9—I12 120.11 (13) C18—N21—H21B 115.7 (15)
C10—C9—C8 120.35 (16) H21A—N21—H21B 119 (2)
C10—C9—I12 119.54 (13) H22A—C22—H22B 109.5
C5—C10—H10 119.6 H22A—C22—H22C 109.5
C9—C10—C5 120.78 (16) H22B—C22—H22C 109.5
C9—C10—H10 119.6 O23—C22—H22A 109.5
C6—O11—H11 111 (2) O23—C22—H22B 109.5
N1—C13—C14 125.66 (16) O23—C22—H22C 109.5
N1—C13—C15 115.19 (15) C22—O23—H23 109.2 (19)
C15—C13—C14 119.13 (15)
N1—N2—C3—O4 5.9 (3) C8—C9—C10—C5 −3.6 (3)
N1—N2—C3—C5 −172.18 (15) C10—C5—C6—C7 4.3 (3)
N1—C13—C15—C16 13.9 (2) C10—C5—C6—O11 −176.74 (15)
N1—C13—C15—C20 −166.49 (17) O11—C6—C7—C8 175.98 (16)
N2—N1—C13—C14 3.0 (3) I12—C9—C10—C5 176.29 (13)
N2—N1—C13—C15 −175.48 (15) C13—N1—N2—C3 178.71 (16)
N2—C3—C5—C6 −20.8 (3) C13—C15—C16—C17 179.02 (17)
N2—C3—C5—C10 158.64 (16) C13—C15—C20—C19 −179.11 (17)
C3—C5—C6—C7 −176.25 (16) C14—C13—C15—C16 −164.75 (17)
C3—C5—C6—O11 2.7 (3) C14—C13—C15—C20 14.9 (3)
C3—C5—C10—C9 −179.52 (15) C15—C16—C17—C18 −0.6 (3)
O4—C3—C5—C6 161.03 (17) C16—C15—C20—C19 0.6 (3)
O4—C3—C5—C10 −19.5 (2) C16—C17—C18—C19 1.9 (3)
C5—C6—C7—C8 −5.1 (3) C16—C17—C18—N21 −179.92 (17)
C6—C5—C10—C9 0.0 (3) C17—C18—C19—C20 −2.0 (3)
C6—C7—C8—C9 1.5 (3) C18—C19—C20—C15 0.8 (3)
C7—C8—C9—C10 2.9 (3) C20—C15—C16—C17 −0.6 (3)
C7—C8—C9—I12 −177.01 (13) N21—C18—C19—C20 179.84 (17)

Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
O23—H23···O4 0.80 (2) 1.97 (2) 2.7561 (18) 170 (3)
N2—H2···O11 0.82 (3) 2.02 (2) 2.665 (2) 134.4 (19)
O11—H11···O23i 0.76 (3) 1.88 (3) 2.6323 (18) 172 (2)
N21—H21A···O4ii 0.85 (2) 2.14 (2) 2.961 (2) 164 (2)

Symmetry codes: (i) x, y, z−1; (ii) −x+1, −y+1, −z+2.

Funding Statement

This work was funded by VLIR-UOS grant ZEIN2014Z182 to L. Van Meervelt.

References

  1. Abbas, D., Matter, A.-M., Sanaa, Q. B., Sattar, J. A. A.-S. & Ihsan, A. M. A.-A. (2017). World J. Pharm. Sci. 5, 25–28.
  2. Asif, M. & Husain, A. (2013). J. Appl. Chem. Article ID, 247203.
  3. Bruker (2013). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  4. Bruker (2014). APEX2 and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Buzykin, B. I., Nabiullin, V. N., Mironova, E. V., Kostin, A. A., Tatarinov, D. A., Mironov, V. F. & Litvinov, I. A. (2012). Russ. J. Gen. Chem. 82, 1629–1645.
  6. Cui, Z., Ito, J., Dohi, H., Amemiya, Y. & Nishida, Y. (2014). PLoS One, 9, e108338. [DOI] [PMC free article] [PubMed]
  7. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339–341.
  8. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  9. Khan, M. S., Siddiqui, S. P. & Tarannum, N. (2017). Hygeia. J. D. Med. 9, 61–79.
  10. Kumar, N. S., Amandoron, E. A., Cherkasov, A., Finlay, B. B., Gong, H., Jackson, L., Kaur, S., Lian, T., Moreau, A., Labrière, C., Reiner, N. E., See, R. H., Strynadka, N. C., Thorson, L., Wong, E. W., Worrall, L., Zoraghi, R. & Young, R. N. (2012). Bioorg. Med. Chem. 20, 7069–7082. [DOI] [PubMed]
  11. Majumdar, P., Pati, A., Patra, M., Behera, R. K. & Behera, A. K. (2014). Chem. Rev. 114, 2942–2977. [DOI] [PubMed]
  12. McKinnon, J. J., Jayatilaka, D. & Spackman, M. A. (2007). Chem. Commun. pp. 3814–3816. [DOI] [PubMed]
  13. Muniz-Miranda, M., Pagliai, M., Cardini, G., Messori, L., Bruni, B., Casini, A., Di Vaira, M. & Schettino, V. (2008). CrystEngComm, 10, 416–422.
  14. Murty, M. S. R., Penthala, R., Nath, L. R. & Anto, R. J. (2014). Lett. Drug. Des. Discov. 11, 1133–1142.
  15. Nguyen, T. C., Nguyen, Q. T., Nguyen, T. M. N. & Nguyen, T. C. (2012). Vietnam J. Chem. 50, 12–15.
  16. Sarshira, E. M., Hamada, N. M., Moghazi, Y. M. & Abdelrahman, M. M. (2016). J. Heterocycl. Chem. 53, 1970–1982.
  17. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  18. Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
  19. Spackman, M. A. & Jayatilaka, D. (2009). CrystEngComm, 11, 19–32.
  20. Wodnicka, A., Huzar, E., Krawczyk, M. & Kwiecień, H. (2017). Pol. J. Chem. Technol. 19, 143–148.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989018008204/sj5557sup1.cif

e-74-00910-sup1.cif (1,015.2KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989018008204/sj5557Isup2.hkl

e-74-00910-Isup2.hkl (186.3KB, hkl)

Supporting information file. DOI: 10.1107/S2056989018008204/sj5557Isup3.cml

CCDC reference: 1846971

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES