Skip to main content
Frontiers in Neurology logoLink to Frontiers in Neurology
. 2018 Jul 10;9:557. doi: 10.3389/fneur.2018.00557

Update on Perioperative Ischemic Optic Neuropathy Associated With Non-ophthalmic Surgery

Steven Roth 1,*, Heather E Moss 2
PMCID: PMC6048244  PMID: 30042726

Abstract

Perioperative visual loss (POVL) is a rare, serious complication of non-ophthalmic surgeries. Ischemic optic neuropathy (ION), and retinal arterial occlusion (RAO) are the main causes (1, 2). Less frequent are cortical blindness (3), acute glaucoma (4), and choroidal and vitreous hemorrhage (5). ION is the most common cause for which the neurologist or neuro-ophthalmologist is consulted as it is associated either with a normal ophthalmic exam (posterior ION, PION), or less often, with optic nerve (ON) head swelling (anterior ION, AION). The presumed cause is impaired blood supply to the optic nerve (Figure 1). The most common surgical procedures complicated by ION are cardiac surgery and spinal fusion. Retrospective studies, surveys, and case reports are the basis of most knowledge regarding peri-operative ION (poION), with cohort and case-control studies helping to identify candidate risk factors (6, 7). Animal models have provided insight regarding mechanisms (8). This mini-review is an update on the latest advancements regarding poION in non-ophthalmic surgeries in epidemiological, clinical, and animal studies.

Keywords: cardiac surgery, ischemic optic neuropathy, spinal fusion, optic nerve, anterior ischemic optic neuropathy, posterior ischemic optic neuropathy

Epidemiology

Encouragingly, but for uncertain reasons, yearly rates of poION in spinal fusion have decreased, with an overall rate of 0.01% in 1998–2012 (7). Explanations may include greater utilization of minimally invasive spine surgery and surgical staging, and changes in anesthesia practice such as higher blood pressure levels and lower fluid administration (7, 9). Often not appreciated is that poION occurs with cardiac surgery at a rate of 0.06–0.113%, 6-fold greater vs. spinal fusion (6, 10, 11). poION has also been reported after head and neck surgery (12, 13), joint replacement (14), nasal and sinus surgery (15), vascular and general surgery, radical prostatectomy, gynecologic surgery, and liposuction (16).

Clinical presentation

Symptoms are typically reported within 1–2 d after surgery and frequently upon awakening (17), although first report may be delayed in those sedated after surgery (18). Painless central or peripheral vision loss or both, are common, with color vision decreased or absent, and usually bilateral. Unilateral or asymmetric cases have a relative afferent pupillary defect. Ophthalmoscopic exam does not identify causes for the vision loss other than optic neuropathy. PoION can be AION, with, acutely, a swollen ON head, or PION, with a normal ON head in the acute state; most spinal fusion cases have been PION (16). Lingering anesthetic effects, or sedation, may render patient cooperation difficult for eye examination.

Buono and Foroozan's retrospective series of 83 cases provides insight into poPION's heterogeneity (16), with 54% after spine surgery, 13% followed radical neck dissection, and 33% other surgery. Mean age was 52 years with 66% male. In 75%, visual loss was noted within 24 h. Over 60% were bilateral. Initial visual acuity was light perception in 54% of eyes.

MRI is generally obtained in patients with perioperative visual loss (POVL) to rule out intracranial pathology, and orbital MRI should be obtained to examine the ONs. Usually there are normal retro-bulbar ONs, although there are reports of ON enlargement from edema and perineural enhancement (19, 20). Diffusion-weighted imaging may enhance diagnostic sensitivity (21). Visual evoked potentials (VEPs) are abnormal (22).

Over weeks to months, ON swelling resolves in AION and optic atrophy develops in AION and PION. In Buono and Foroozan's case series, vision improved in 38%, but of 14 with no light perception, 12 (85%) had no improvement (16). A smaller series that included multiple causes of POVL after spine surgery (22/37 ION) reported no change in 68% and worsening in 3% (23).

Risk factors

Given lack of effective treatments or spontaneous recovery there is substantial interest in risk stratification (e.g., based on pre-existing conditions), and prevention (e.g., through modifying surgical or anesthesia practices). This risk stratification is of importance to patients, who prefer to be informed of the risk of visual loss (24). Though there are no prospective studies, case series, case-control studies, and medical claims-based studies have identified candidate risk factors. To date, no risk prediction model or stratification have been reported.

Extrapolation from spontaneous NAION

One strategy to identify risk factors is extrapolation from the spontaneous correlate to poION, non-arteritic AION. NAION risk factors include a small optic disk characterized by a small cup-to-disk ratio (C/D), with resulting axonal crowding predisposing to injury. Medical claims-based big data studies have identified association between male sex, white race, and diabetes with end organ involvement and NAION (25).

Medications including amiodarone and phosphodiesterase-5 inhibitors prescribed for pulmonary hypertension and erectile dysfunction are associated with NAION (26). While there are no reports of poION where the drugs were taken within 24 h of surgery, physicians may want to inquire in high risk patients. There is evolving literature supporting obstructive sleep apnea (OSA) as a risk factor for and untreated OSA as a risk factor for second eye involvement of spontaneous NAION (27). A challenge in such extrapolations is that most concern spontaneous NAION, whereas >50% of poION is PION. It remains an unstudied area of research if risk factors for spontaneous and perioperative ION are comparable.

Potential risk factors for poION in spine surgery

Multiple clinical studies have attempted to identify pre-existing conditions and intra-operative factors associated with poION in spine surgery (For summary, see Table 1). Case series have been striking for capturing the range of perioperative features. A literature based study described lowest hemoglobin 5.8–14.2 g/dL (mean 9.5 g/dL), intraoperative blood loss 0.8–16 L (mean 3.7 L), operative duration 3.5–23 h (mean 8.7 h), and lowest systolic blood pressure (SBP) 48–120 mm Hg (mean 77 mm Hg) in 83 cases (16). To address limitations in case series, The American Society of Anesthesia (ASA) POVL Registry systematically collected reports with detailed anesthesia and surgical data (28). The 93 cases (83 poION and 10 RAO) had mean lowest hematocrit 26% and mean blood loss 2.0 L. Most underwent surgery >6 h, often repeat and multilevel procedures. In 33%, lowest SBP was >90 mm Hg while in 20%, lowest recorded SBP was ≤ 80 mm Hg. Blood pressure decrease from pre-operative baseline varied widely [the definition of “baseline blood pressure” in anesthetic practice remains controversial (30)] with the majority (57%) having SBP or mean arterial blood pressure (MAP) 20–39% below baseline, and 25% SBP or MAP 40–49% below baseline. Deliberate hypotension was used to decrease blood loss in 25%. Median crystalloid fluid administration was 10 L. Surgical positioning devices included the Wilson frame (30%) and Jackson spinal table (27%). Mean age was 50 y. Pre-existing hypertension was in 41%, diabetes 16%, and coronary artery disease 10%. Another series of 37 cases included 8 AION and 14 PION. Less than half had each of hypertension, diabetes, vascular disease, and smoking history. No known vascular risk factors were in 13 (42%). Comparison of 28 of these cases with matched controls found longer operative time and blood loss, but no difference in age, hematocrit or blood pressure (23).

Table 1.

Summary of the studies on spine fusion and ION mentioned in this review.

References Type Study size ION # Findings
Buono and Foroozon (16) Literature based review 83 (only ION) Lumbar spine 83 *Mean hemoglobin 9.5 g/dl
*Mean blood loss 3.7 L
*Mean operative duration 8.7 h
*Mean lowest SBP 77 mm Hg
Lee (28) ASA POVL Registry (anonymous case submissions) 93 Lumbar spine 83 *Lowest mean hematocrit 26%
*Mean blood loss 2.0 L.
*Operative duration mostly > 6 h
*33%, lowest SBP was > 90 mm Hg
*20%, lowest recorded SBP was 80 mm Hg.
*57% had SBP or MAP 20–39% below baseline
*25% SBP or MAP 40–49% below baseline.
*Deliberate hypotension in 25%.
*Median crystalloid fluid 10 L.
*Surgical positioning: Wilson frame 30% and Jackson spinal table 27%.
*Mean age 50.
*Hypertension 41%, diabetes 16%, and coronary artery disease 10%.
Myers (23) Case control single institution 37 Lumbar spine 22 *Age, lowest hematocrit and lowest blood pressure no different in cases vs. controls
* < 50% hypertension, diabetes, vascular disease, and smoking history.
* No known vascular risk factors in 42%.
Lee (18) Case control multi-institutional 395 Lumbar spine 80 See Table 2 for main findings
Patil (29) Case control using NIS 600,000 lumbar fusion (also studied cervical spine) About 120 *Incidence about 0.02%
*Increased odds ratio for ION with: Peripheral vascular disease, Diabetes, Hypertension, Obesity, Anemia, Blood transfusion, Hypotension
Rubin (7) Case control using NIS 2.5M lumbar fusion 257 *Incidence about 0.01%
*Increased odds ratio for ION with: age, transfusion, and obesity. Female sex was protective

ION, ischemic optic neuropathy; MAP, mean arterial blood pressure; SBP, systolic arterial blood pressure.

To address the limitation of lacking a comparison group, the ASA-POVL Group conducted a case-control study using the Registry and randomly selected, matched controls from 17 academic US and Canadian medical centers (18). By multivariable regression, the six factors associated with poION were male sex, obesity, Wilson frame use, anesthesia duration, large blood loss, and low colloid:crystalloid fluid ratio (Table 2). Limitations are that affected cases were not randomly obtained; rather by anonymous case submissions, of which only a small percentage were confirmed by direct examination of anesthesia records, and missing data. Additionally, it could be argued that the controls are not a random sample of patients undergoing spine fusion, as all were derived only from academic medical centers.

Table 2.

Factors increasing the odds ratio of developing perioperative ion in lumbar spine fusion surgery.

Odds Ratio P Value
Male 2.53 (1.35–4.91) 0.005
Obesity 2.83 (1.52–5.39) 0.001
Wilson frame 4.30 (2.13–8.75) < 0.001
Anesthesia duration, per hour 1.39 (1.22–1.58) < 0.001
Estimated blood loss, per 1 L 1.34 (1.13–1.61) 0.001
Colloid as percent of non-blood replacement, per 5% 0.67 (0.52–0.82) < 0.001

The risk factors were determined using a multivariable analysis in a case-control study. Details are in reference #(18).

The Nationwide Inpatient Sample (NIS), a random sample of discharges of 20% of US hospitals, offers advantages of larger sample sizes and less selection bias than the ASA-POVL Registry, but is limited by reduced perioperative data. Analysis from 1993 to 2002 identified hypotension, peripheral vascular disease, and anemia as potential poION risk factors (29). A more recent analysis of >2.5 million discharges with spinal fusion identified older age, male, obesity, and blood transfusion to be associated with poION. These results are important because they were obtained in a very large, randomly collected sample, and suggest the importance of specific pre-operative factors. However, the conclusions rely upon the accuracy of procedure and diagnosis identification based on International Classification of Disease (ICD9) coding with both over- and under-coding possible (31). Also, the definition, timing of (intra- or post-operative), and degree of terms such as hypotension are not specified. Independent confirmation is not possible. A potential application of results from such a population sample is developing risk stratification models applicable to the typical spinal fusion patient.

Potential risk factors for poION in cardiac surgery

A single center, prospective, case-control study of 602 patients undergoing cardiopulmonary bypass (CPB) identified 8 (1.2%) with poION (all AION). CPB time was longer (252 vs. 164 min), minimum hematocrit lower (18 vs. 21%), 24 h postoperative weight gain higher (18 vs. 11%), and more vasoactive drugs were required in poION cases (17). A single center, retrospective, case-control study of 28,000 patients from 1976–1994 included 17 poION cases (0.06%). PION and AION were not distinguished. PoION cases had lower minimum post-operative hemoglobin and longer CPB. Other associations included clinically severe vascular disease and transfusion. There were no differences in pre- or post-CPB SBP. C/D < 0.3 was in 5 (29%) of poION (10). There was no multivariable model to help interpret interactions between the large number of parameters collected. Holy reported similar results, but included other surgical procedures, complicating interpretation with respect to cardiac surgery (32). All of these studies are limited by small size and single institution design.

A study of >5 million cardiac surgery discharges in NIS between 1998 and 2013, found 794 (0.014%) poION cases. In a multivariable model, poION was associated with male sex, carotid artery stenosis, stroke, diabetic, or hypertensive retinopathy, macular degeneration, glaucoma, and cataract. Cataract was included as a surrogate marker for eye examination to address the concern of under-coding with respect to eye conditions in discharges without poION. Including cataract adjusts model estimates for the confounding variable of eye exam. Therefore, demonstration of positive associations in the models that adjust for cataract increases confidence that other eye diseases are true associations. Intriguingly, this suggests that degenerative eye diseases are associated with poION, raising the possibility of a role of local pre-existing disease in the ON, and the possibility of constructing risk models based on these conditions (6). Limitations are, in addition to those for claims data in general, that type of poION was not identified.

Mechanism

Insight from spontaneous NAION

There is considerable literature with respect to spontaneously developing NAION. Delayed filling of the prelaminar optic disk in 76% of NAION eyes and not in normals suggests the filling defect is the primary process, not disk edema (33). Early disruption of the blood-brain barrier in AION, with dye leakage in the ON head (34), correlates with early onset of optic disk edema, even before symptoms (35). A generally accepted theory is that an initial insult leads to optic disc edema and secondary injury to neighboring cells.

Hayreh attributed NAION to individual variations in ON blood supply and watershed areas (36). This theory is supported by anatomic studies and variability of NAION's visual loss. But, inconsistent is that delayed filling of watershed zones was more common in normal eyes than in NAION (34). It has therefore been proposed that reduced perfusion pressure in the region of the para-optic branches of the short posterior ciliary arteries (SPCAs, Figure 1) results in optic disk hypoperfusion, rather than a watershed event (37). Histopathologic examination showed that the infarction was mainly retrolaminar, implicating the SPCAs as the cause of the ischemia (38). Studies in healthy humans generally show preserved anterior ON head blood flow within physiological or lower ranges of perfusion pressure, suggesting that impaired autoregulation may play a role (3941).

Figure 1.

Figure 1

Blood supply to the optic nerve and ON head structure. The blood supply is primarily from the ophthalmic artery. The posterior ON is supplied by pial branches of the ophthalmic artery posteriorly and the posterior ciliary arteries anteriorly; the supply to the central region is limited to the branches that penetrate deeply. The ON head is supplied by the circle of Zinn, from the short posterior ciliary arteries, and from choroidal vessels. The cup-to-disc ratio is the diameter of the central cup divided by diameter of the entire disc [Biousse and Newman (2) used with permission].

Insight from histologic examination of peri-operative and spontaneous PION

Histology has been reported in three PION cases after surgical procedures. All showed infarcts in the intra-orbital ON, two with lesions in the axial center and peripheral axonal sparing. The third had peripheral lesions with central axonal sparing in one eye and complete axonal loss in the other (16). It is possible that the location of ischemia varies between cases due to differences is vascular anatomy (42) but this theory requires further study.

A series of 12 cases of posterior ON ischemia in an autopsy study of the ON and chiasm from 53 patients with cerebrovascular disease divided their findings into three stages (43). Pre-morbid visual status was not reported. Acute stage had swollen lesions sharply demarcated from healthy tissue with capillary congestion, swollen axons, and myelin sheaths at the infarct periphery. Intermediate stage showed necrosis, and the chronic stage liquefaction and scar. Similar to poION, location of the ischemic lesions varied with respect to longitudinal and axial location. All had atherosclerotic changes in the intracranial portion of the internal carotid artery and ophthalmic artery, suggesting a role for pre-existing vascular disease.

Insight from animal studies

The role of proposed inciting intra-operative factors has been investigated in targeted studies. It has been shown in miniature pigs that blood flow in the ON head, as measured by laser Doppler, was maintained during isovolumic hemodilution with hematocrit decreased 30% (44). In a more extreme model, hematocrit at15% and MAP 50 mm Hg significantly reduced total ON blood flow in pigs (45). In the absence of hemodilution, blood flow was preserved in various locations of the optic nerve, including the retrolaminar area, at MAP as low as 40 mm Hg (46). The effects on ON function and histology were not reported in either study. Another limitation is that the blood supply to the ON in pigs differs from humans (47). Taken together, these results demonstrate the robust homeostatic mechanisms for ON head blood supply and suggest multiple perturbations may be necessary to compromise it.

A model that nearly recapitulates some intraoperative events is hemodilution and extreme head down tilt in rats (8), which altered ON function with decreased VEPs and decreased electrical activity (scotopic threshold potential) originating in retinal ganglion cells. Although there was increased ON glial reactivity, frank ischemia was not observed. A rodent model of PION consisting of ischemia induced using photochemical techniques may have application to therapy development, but does not inform understanding of the mechanism of the peri-operative form of the disease (48).

Treatment

No effective treatment exists. Increasing ocular perfusion pressure pharmacologically or increasing hemoglobin via transfusion may be appropriate when poION is present with hypotension and/or anemia. Both of these interventions as well as hyperbaric oxygen have been associated with improved vision in case reports (16). Diuretics may reduce edema (49), and corticosteroids may reduce axonal swelling, but risk increased wound infection (50). Neither are used widely and have no proven benefit. The use of neuroprotective agents or drugs that lower intraocular pressure with the goal of increasing blood supply to the ON are valuable in theory but have never been shown to result in vision improvement.

Potential strategies for prevention

Though pre-existing conditions may improve risk stratification, it is operative factors that offer opportunities for direct intervention. The following have received attention due to their theoretical role, and evidence from animal or human studies. None are proven to reduce risk of perioperative ION.

Length of surgery

Myers (23) and the ASA-POVL Study Group (18) reported increased risk with lengthy spinal fusion surgery. Increasingly, minimally invasive spine surgery is used (51) which reduces operative time, blood loss, and fluid requirements. Another strategy is staging, which trades off shorter individual procedures against multiple surgeries with associated increased risks of infection, and spinal instability, with studies to date still too small to reach definitive conclusions (5256).

Avoiding hypotension

Intraoperative hypotension was reported in a majority of cases in one case series and one analysis of the NIS (23, 29). However, it has not been confirmed as a risk factor by case control studies (18, 23, 32). Hypotension is a logical theoretical risk factor (57, 58) that may contribute by decreasing perfusion pressure in ONs that are predisposed due to anatomic variation or abnormal auto-regulation with inability to adequately compensate. What constitutes dangerous hypotension is difficult to quantitate due to lack of data (59). Deliberate hypotension should be viewed as one strategy to decrease blood loss in spine surgery, and factors such as patient's age, pre-existing atherosclerotic disease, hypertension, and its level of control, the possible disadvantages of deeper levels of hypotension (e.g., MAP < 60) vs. any possible advantages, and that it can only decrease arterial bleeding, are among factors that should be considered in its use.

Minimizing hemodilution and blood loss

Anemia, blood loss, and transfusion have been identified in various clinical studies as associated factors. In uncontrolled hemorrhage without adequate blood volume maintenance, decreased O2 delivery to the ON could result in ION (60). Allowing hemoglobin to decrease, as may be done to conserve blood in the operative setting, may be putting patients at increased risk for poION (61). However, level of hemoglobin and duration of decrease that constitute danger to the ON is not known. From the animal studies shown above, caution should be exercised with simultaneous deep levels of hypotension and hemodilution.

Head positioning

The ASA-POVL case control study showed an association between poION and the Wilson frame use (18). This could be due to venous hypertension. The head may be below the level of the back, in contrast to the Jackson table, where the head is maintained level (62). Positioning effects are evident even in healthy volunteers, who had an increase in ON diameter following prone positioning (63). The patient's head should be in a neutral position during spine surgery, and if a Wilson frame is used, the effect can be achieved with pillows to raise the head, or the bed placed in reverse Trendelenburg (63).

Fluid administration

ION cases in the ASA-POVL Registry received on average 9.7 L crystalloid intraoperatively (18), and increased postoperative weight gain was identified in a case-control study of visual loss after heart surgery (17), suggesting, although not proving, a role of fluid administration. The odds of developing poION were increased as % colloid of non-blood replacement decreased in spine fusion (18). Fluid resuscitation also contributes to hemodilution. In theory, crystalloid fluids may extravasate from vessels leading to a local compartment syndrome in the ON with edema and compression damaging axons. Colloids may be associated with less edema in the ON, although such an effect has not yet been demonstrated.

Vasoconstrictors

Shapira showed an association between prolonged epinephrine infusion or long CPB and poION (17). Lee and Lam presented four ION cases in critically ill patients with significant systemic illness and prolonged vasopressors and inotropic agents to maintain blood pressure and cardiac output (64). Based on observation of AION in patients with massive hemorrhage, Hayreh proposed that AION is related to excessive secretion of vasoconstrictors that lowered ON perfusion to low levels (65). However the mechanism is not clear as α-adrenergic receptors are not in the ON and the blood-brain barrier prevents entry of systemically administered agents, except possibly in the prelaminar zone. Therefore, the role of vasopressor use in poION remains unclear.

Conclusion

Large retrospective studies provided encouraging results that incidence of poION in spinal fusion has significantly declined. Case-control studies have suggested that both pre-operative factors (e.g., pre-existent diseases including pre-existing ophthalmic disease), as well as intraoperative factors such as fluid management, may increase risk of developing perioperative ION in non-ophthalmic surgeries. Although mechanisms of poION in non-ophthalmic surgery remain poorly understood, recent animal studies have provided insight into how proposed contributing factors may act together to cause poION. Diagnostic advances in imaging including diffusion weighted MR may enable early diagnosis.

Author contributions

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

Conflict of interest statement

SR has provided expert witness evaluation or testimony in cases of POVL on behalf of hospitals, patients, and physicians. The remaining author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Footnotes

Funding. National Institutes of Health grants R21 EY027447 (SR), R01 EY10343 (SR), K23 EY 024345 (HEM), P30 EY 026877 to the Department of Ophthalmology at Stanford University, P30 EY 001792 to the Department of Ophthalmology at the University of Illinois at Chicago, unrestricted grants from Research to Prevent Blindness to the Stanford University Department of Ophthalmology and to the University of Illinois at Chicago.

References

  • 1.Biousse V, Nahab F, Newman NJ. Management of acute retinal ischemia: follow the guidelines! Ophthalmology (2018) 10.1016/j.ophtha.2018.03.054. [Epub ahead of print]. [DOI] [PubMed] [Google Scholar]
  • 2.Biousse V, Newman NJ. Ischemic optic neuropathies. N Eng J Med. (2015) 372:2428–36. 10.1056/NEJMra1413352 [DOI] [PubMed] [Google Scholar]
  • 3.De la Garza-Ramos R, Samdani AF, Sponseller PD, Ain MC, Miller NR, Shaffrey CI, et al. Visual loss after corrective surgery for pediatric scoliosis: incidence and risk factors from a nationwide database. Spine J. (2016) 16:516–22. 10.1016/j.spinee.2015.12.031 [DOI] [PubMed] [Google Scholar]
  • 4.Gayat E, Gabison E, Devys JM. Case report: bilateral angle closure glaucoma after general anesthesia. Anesth Analg. (2011) 112:126–8. 10.1213/ANE.0b013e3182009ad6 [DOI] [PubMed] [Google Scholar]
  • 5.Frenkel RE, Shin DH. Prevention and management of delayed suprachoroidal hemorrhage after filtration surgery. Arch Ophthalmol. (1986) 104:1459–63. [DOI] [PubMed] [Google Scholar]
  • 6.Rubin DS, Matsumoto MM, Moss HE, Joslin CE, Tung A, Roth S. Ischemic optic neuropathy in cardiac surgery: incidence and risk factors in the United States from the national inpatient sample 1998 to 2013. Anesthesiology (2017) 126:810–21. 10.1097/ALN.0000000000001533 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Rubin DS, Parakati I, Lee LA, Moss HE, Joslin CE, Roth S. Perioperative visual loss in spine fusion surgery: ischemic optic neuropathy in the United States from 1998 to 2012 in the nationwide inpatient sample. Anesthesiology (2016) 125:457–64. 10.1097/ALN.0000000000001211 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Roth S, Dreixler JC, Newman NJ. Haemodilution and head-down tilting induce functional injury in the rat optic nerve: a model for peri-operative ischemic optic neuropathy. Eur J Anaesthesiology (2018) 10.1097/EJA.0000000000000829. [Epub ahead of print]. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Todd MM. Good news: but why is the incidence of postoperative ischemic optic neuropathy falling? Anesthesiology (2016) 125:445–8. 10.1097/ALN.0000000000001212 [DOI] [PubMed] [Google Scholar]
  • 10.Nuttall GA, Garrity JA, Dearani JA, Abel MD, Schroeder DR, Mullany CJ. Risk factors for ischemic optic neuropathy after cardiopulmonary bypass: a matched case/control study. Anesth Analg. (2001) 93:1410–6. 10.1097/00000539-200112000-00012 [DOI] [PubMed] [Google Scholar]
  • 11.Kalyani SD, Miller NR, Dong LM, Baumgartner WA, Alejo DE, Gilbert TB. Incidence of and risk factors for perioperative optic neuropathy after cardiac surgery. Ann Thor Surg. (2004) 78:34–7. 10.1016/j.athoracsur.2004.02.015 [DOI] [PubMed] [Google Scholar]
  • 12.Schobel GA, Schmidbauer M, Millesi W, Undt G. Posterior ischemic optic neuropathy following bilateral radical neck dissection. Int J Oral Maxillofac Surg. (1995) 24:283–7. 10.1016/S0901-5027(95)80030-1 [DOI] [PubMed] [Google Scholar]
  • 13.Fenton S, Fenton JE, Browne M, Hughes JP, Connor MO, Timon CI. Ischaemic optic neuropathy following bilateral neck dissection. J Laryngol Otol. (2001) 115:158–60. 10.1258/0022215011907613 [DOI] [PubMed] [Google Scholar]
  • 14.Kaeser PF, Borruat FX. Visual loss after orthopedic procedures. J Arthro. (2011) 26:338.e17–9. 10.1016/j.arth.2009.11.010 [DOI] [PubMed] [Google Scholar]
  • 15.Huang TW, Liu CM, Cheng PW, Yang CH. Posterior ischemic optic neuropathy following endoscopic sinus surgery. Otolaryngol Head Neck Surg. (2003) 129:448–50. 10.1016/S0194-5998(03)00624-7 [DOI] [PubMed] [Google Scholar]
  • 16.Buono LM, Foroozan R. Perioperative posterior ischemic optic neuropathy: review of the literature. Surv Ophathalmol. (2005) 50:15–26. 10.1016/j.survophthal.2004.10.005 [DOI] [PubMed] [Google Scholar]
  • 17.Shapira OM, Kimmel WA, Lindsey PS, Shahian DM. Anterior ischemic optic neuropathy after open heart operations. Ann Thorac Surg. (1996) 61:660–6. 10.1016/0003-4975(95)01108-0 [DOI] [PubMed] [Google Scholar]
  • 18.Lee LA, Roth S, Todd MM, Posner KL, Polissar NL, Neradilek MB, et al. The postoperative visual loss study group. risk factors associated with ischemic optic neuropathy after spinal fusion surgery. Anesthesiology (2012) 116:15–24. 10.1097/ALN.0b013e31823d012a [DOI] [PubMed] [Google Scholar]
  • 19.Vaphiades MS. Optic nerve enhancement in hypotensive ischemic optic neuropathy. J Neuro-Ophthalmol. (2004) 24:235–6. 10.1097/00041327-200409000-00011 [DOI] [PubMed] [Google Scholar]
  • 20.Bolacchi F, Garaci FG, Martucci A, Meschini A, Fornari M, Marziali S, et al. Differences between proximal versus distal intraorbital optic nerve diffusion tensor magnetic resonance imaging properties in glaucoma patients. Invest Ophthalmol Vis Sci. (2012) 53:4191–6. 10.1167/iovs.11-9345 [DOI] [PubMed] [Google Scholar]
  • 21.Quddus A, Lawlor M, Siddiqui A, Holmes P, Plant GT. Using diffusion-weighted magnetic resonance imaging to confirm a diagnosis of posterior ischaemic optic neuropathy: two case reports and literature review. Neuro-ophthalmology (2015) 39:161–5. 10.3109/01658107.2015.1021054 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22.Parisi V, Gallinaro G, Ziccardi L, Coppola G. Electrophysiological assessment of visual function in patients with non-arteritic ischaemic optic neuropathy. Eur J Neurol. (2008) 15:839–45. 10.1111/j.1468-1331.2008.02200.x [DOI] [PubMed] [Google Scholar]
  • 23.Myers MA, Hamilton SR, Bogosian AJ, Smith CH, Wagner TA. Visual loss as a complication of spine surgery. A review of 37 cases. Spine (1997) 22:1325–9. 10.1097/00007632-199706150-00009 [DOI] [PubMed] [Google Scholar]
  • 24.Corda DM, Dexter F, Pasternak JJ, Trentman TL, Nottmeier EW, Brull SJ. Patients' perspective on full disclosure and informed consent regarding postoperative visual loss associated with spinal surgery in the prone position. Mayo Clin Proc. (2011) 86:865–8. 10.4065/mcp.2011.0279 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Cestari DM, Gaier ED, Bouzika P, Blachley TS, De Lott LB, Rizzo JF, et al. Demographic, systemic, and ocular factors associated with nonarteritic anterior ischemic optic neuropathy. Ophthalmology (2016) 123:2446–55. 10.1016/j.ophtha.2016.08.017 [DOI] [PubMed] [Google Scholar]
  • 26.Lee MS, Vaphiades M. Are erectile dysfunction medications causally related to nonarteritic anterior ischemic optic neuropathy? J Neuro-ophthalmology (2016) 36:202–7. 10.1097/WNO.0000000000000342 [DOI] [PubMed] [Google Scholar]
  • 27.Aptel F, Khayi H, Pépin J, Tamisier R, Levy P, Romanet JP, et al. Association of nonarteritic ischemic optic neuropathy with obstructive sleep apnea syndrome: Consequences for obstructive sleep apnea screening and treatment. JAMA Ophthalmol. (2015) 133:797–804. 10.1001/jamaophthalmol.2015.0893 [DOI] [PubMed] [Google Scholar]
  • 28.Lee LA, Roth S, Posner KL, Cheney FW, Caplan RA, Newman NJ, et al. The American Society of anesthesiologists postoperative visual loss registry: analysis of 93 spine surgery cases with postoperative visual loss. Anesthesiology (2006) 105:652–9. [DOI] [PubMed] [Google Scholar]
  • 29.Patil CG, Lad EM, Lad SP, Ho C, Boakye M. Visual loss after spine surgery: a population-based study. Spine (2008) 33:1491–6. 10.1097/BRS.0b013e318175d1bf [DOI] [PubMed] [Google Scholar]
  • 30.Drummond JC, Blake JL, Patel PM, Clopton P, Schulteis G. An observational study of the influence of “white-coat hypertension” on day-of-surgery blood pressure determinations. J Neurosurg Anesthesiol. (2013) 25:154–61. 10.1097/ANA.0b013e31827a0151 [DOI] [PubMed] [Google Scholar]
  • 31.Golinvaux NS, Bohl DD, Basques BA, Grauer JN. Administrative database concerns: accuracy of international classification of diseases, ninth revision coding is poor for preoperative anemia in patients undergoing spinal fusion. Spine (2014) 39:2019–23. 10.1097/BRS.0000000000000598 [DOI] [PubMed] [Google Scholar]
  • 32.Holy SE, Tsai JH, McAllister RK, Smith KH. Perioperative ischemic optic neuropathy: a case control analysis of 126,666 procedures at a single institution. Anesthesiology (2009) 110:246–53. 10.1097/ALN.0b013e318194b238 [DOI] [PubMed] [Google Scholar]
  • 33.Arnold AC. Pathogenesis of nonarteritic anterior ischemic optic neuropathy. J Neuro-ophthalmol. (2003) 23:157–63 [DOI] [PubMed] [Google Scholar]
  • 34.Arnold AC, Hepler RS. Flourescein angiography in acute nonarteritic anterior optic neuropathy. Am J Ophthalmol. (1994) 117:222–30. [DOI] [PubMed] [Google Scholar]
  • 35.Subramanian PS, Gordon LK, Bonelli L, Arnold AC. Progression of asymptomatic optic disc swelling to non-arteritic anterior ischaemic optic neuropathy. Br J Ophthalmol. (2017) 101:671–5. 10.1136/bjophthalmol-2016-309250 [DOI] [PubMed] [Google Scholar]
  • 36.Hayreh SS. Blood supply of the optic nerve head: A “reality check”. In: Pillunat LE, Harris A, Anderson DR, Greve EL. editors. Current Concepts in Ocular Blood Flow in Glaucoma. (The Hague: Kugler; ) (1999). p. 3–31. [Google Scholar]
  • 37.Olver JM, Spalton DJ, McCartney AC. Microvascular study of the retrolaminar optic nerve in man. The possible significance in anterior ischaemic optic neuropathy. Eye (1990) 4:7–24. [DOI] [PubMed] [Google Scholar]
  • 38.Knox DL, Kerrison JB, Green WR. Histopathologic studies of ischemic optic neuropathy. Trans Am Ophthalmol Soc. (2000) 98:203–20 [PMC free article] [PubMed] [Google Scholar]
  • 39.Pillunat LE, Anderson DR, Knighton RW, Joos KM, Feuer WJ. Autoregulation of human optic nerve head circulation in response to increased intraocular pressure. Exp Eye Res. (1997) 64:737–44. 10.1006/exer.1996.0263 [DOI] [PubMed] [Google Scholar]
  • 40.Movaffaghy A, Chamot SR, Petrig BL, Riva CE. Blood flow in the human optic nerve head during isometric exercise. Exp Eye Res. (1998) 67:561–8. 10.1006/exer.1998.0556 [DOI] [PubMed] [Google Scholar]
  • 41.Hayreh SS. Blood flow in the optic nerve head and factors that may influence it. Prog Retin Eye Res. (2001) 20:595–624. [DOI] [PubMed] [Google Scholar]
  • 42.Isayama Y, Hiramatsu K, Asakura S, Takahashi T. Posterior ischemic optic neuropathy. I. Blood supply of the optic nerve. Ophthalmologica (1983) 186:197–203. [DOI] [PubMed] [Google Scholar]
  • 43.Isayama Y, Takahashi T. Posterior ischemic optic neuropathy. II. Histopathology of the idiopathic form. Ophthalmologica (1983) 187:8–18. 10.1159/000309286 [DOI] [PubMed] [Google Scholar]
  • 44.Chamot SR, Petrig BL, Pournaras CJ, Riva CE. Effect of isovolumic hemodilution on oxygen delivery to the optic nerve head. Klin Monatsbl Augenheilkd. (2002) 219:292–5. 10.1055/s-2002-30656 [DOI] [PubMed] [Google Scholar]
  • 45.Lee LA, Deem S, Glenny RW, Townsend I, Moulding J, An D, et al. Effects of anemia and hypotension on porcine optic nerve blood flow and oxygen delivery. Anesthesiology (2008) 108:864–72. 10.1097/ALN.0b013e31816c8a30 [DOI] [PubMed] [Google Scholar]
  • 46.Weinstein JM, Duckrow RB, Beard D, Brennan RW. Regional optic nerve blood flow and its autoregulation. Invest Ophthalmol Vis Sci. (1983) 24:1559–65. [PubMed] [Google Scholar]
  • 47.Moren H, Gesslein B, Undren P, Andreasson S, Malmsjo M. Endovascular coiling of the ophthalmic artery in pigs to induce retinal ischemia. Invest Ophthalmol Vis Sci. (2011) 52:4880–5. 10.1167/iovs.11-7628 [DOI] [PubMed] [Google Scholar]
  • 48.Wang Y, Brown DP, Jr, Duan Y, Kong W, Watson BD, Goldberg JL. A novel rodent model of posterior ischemic optic neuropathy. JAMA Ophthalmol. (2013) 131:194–204. 10.1001/2013.jamaophthalmol.271 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49.Hayreh SS. Anterior ischaemic optic neuropathy. III. Treatment, prophylaxis, and differential diagnosis. Br J Ophthalmol. (1974) 58:981–9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 50.Saxena R, Singh D, Sharma M, James M, Sharma P, Menon V. Steroids versus no steroids in nonarteritic anterior ischemic optic neuropathy: a randomized controlled trial. Ophthalmology (2018) 10.1016/j.ophtha.2018.03.032 [Epub ahead of print]. [DOI] [PubMed] [Google Scholar]
  • 51.Bae J, Lee SH. Minimally invasive spinal surgery for adult spinal deformity. Neurospine (2018) 15:18–24. 10.14245/ns.1836022.011 [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 52.Edwards CC, 2nd, Lessing NL, Ford L, Edwards CC. Deep vein thrombosis after complex posterior spine surgery: does staged surgery make a difference? Spine deform. (2018) 6:141–7. 10.1016/j.jspd.2017.08.012 [DOI] [PubMed] [Google Scholar]
  • 53.Hassanzadeh H, Gjolaj JP, El Dafrawy MH, Jain A, Skolasky RL, Cohen DB, et al. The timing of surgical staging has a significant impact on the complications and functional outcomes of adult spinal deformity surgery. Spine J. (2013) 13:1717–22. 10.1016/j.spinee.2013.03.005 [DOI] [PubMed] [Google Scholar]
  • 54.Maddox JJ, Pruitt DR, Agel J, Bransford RJ. Unstaged versus staged posterior-only thoracolumbar fusions in deformity: a retrospective comparison of perioperative complications. Spine J. (2014) 14:1159–65. 10.1016/j.spinee.2013.07.485 [DOI] [PubMed] [Google Scholar]
  • 55.Passias PG, Poorman GW, Jalai CM, Line B, Diebo B, Park P, et al. Outcomes of open staged corrective surgery in the setting of adult spinal deformity. Spine J. (2017) 17:1091–9. 10.1016/j.spinee.2017.03.012 [DOI] [PubMed] [Google Scholar]
  • 56.Siemionow K, Tyrakowski M, Patel K, Neckrysh S. Comparison of perioperative complications following staged versus one-day anterior and posterior cervical decompression and fusion crossing the cervico-thoracic junction. Neurologia i Neurochirurgia Polska (2014) 48:403–9. 10.1016/j.pjnns.2014.10.001 [DOI] [PubMed] [Google Scholar]
  • 57.Brown RH, Schauble JF, Miller NR. Anemia and hypotension as contributors to perioperative loss of vision. Anesthesiology (1994) 80:222–6. 10.1097/00000542-199401000-00033 [DOI] [PubMed] [Google Scholar]
  • 58.Katz DM, Trobe JD, Cornblath WT, Kline LB. Ischemic optic neuropathy after lumbar spine surgery. Arch Ophthalmol. (1994) 112:925–31. 10.1001/archopht.1994.01090190073024 [DOI] [PubMed] [Google Scholar]
  • 59.Arens JF, Connis RT, Domino KB, Lee LA, Miller NR, Mirza SK, et al. Practice Advisory for Perioperative Visual Loss Associated with Spine Surgery: A Report by the American Society of Anesthesiologists Task Force on Perioperative Blindness. Anesthesiology (2006) 104:1319–28. [DOI] [PubMed] [Google Scholar]
  • 60.Hayreh SS. Anterior ischemic optic neuropathy. VIII. Clinical features and pathogenesis of post-hemorrhagic amaurosis. Ophthalmology (1987) 94:1488–502. [DOI] [PubMed] [Google Scholar]
  • 61.Williams EL, Hart WMJ, Tempelhoff R. Postoperative ischemic optic neuropathy. Anesth Analg. (1995) 80:1018–29. [DOI] [PubMed] [Google Scholar]
  • 62.Apfelbaum JL, Roth S, Connis RT, Domino KB, Lee LA, Nickinovich DG, et al. Practice advisory for perioperative visual loss associated with spine surgery: an updated report by the american society of anesthesiologists task force on perioperative visual loss. Anesthesiology (2012) 116:274–85. 10.1097/ALN.0b013e31823c104d [DOI] [PubMed] [Google Scholar]
  • 63.Grant GP, Szirth BC, Bennett HL, Huang SS, Thaker RS, Heary RF, et al. Effects of prone and reverse trendelenburg positioning on ocular parameters. Anesthesiology (2010) 112:57–65. 10.1097/ALN.0b013e3181c294e1 [DOI] [PubMed] [Google Scholar]
  • 64.Lee LA, Lam AM. Unilateral blindness after prone lumbar surgery. Anesthesiology (2001) 95:793–5. [DOI] [PubMed] [Google Scholar]
  • 65.Hayreh SS, Joos KM, Podhajsky PA, Long CR. Systemic diseases associated with nonarteritic anterior ischemic optic neuropathy. Am J Ophthalmol. (1994) 118:766–80. 10.1016/S0002-9394(14)72557-7 [DOI] [PubMed] [Google Scholar]

Articles from Frontiers in Neurology are provided here courtesy of Frontiers Media SA

RESOURCES