Abstract
A new effective method was developed to determine the concentration of arbutin in pear peels using a modified QuEChERS (Quick, Easy, Cheap, Effective, Rugged, and Safe) method and liquid chromatography-tandem mass spectrometry (LC-MS/MS). The original QuEChERS was modified to enable the extraction of the polar arbutin molecule. Use of an initial 50:50 acetonitrile:water extraction solvent led to the highest extraction efficiency. The arbutin extracted from pear peels was found to be identical to the β-arbutin standard, as confirmed by NMR and LC-MS/MS analyses. For quantitative analysis, the mass spectra of the precursor ion [M+NH4]+ at m/z 290.0 and the product ion of arbutin at m/z 163.0 were used. The limit of detection, limit of quantification, linearity, precision, accuracy, and recovery of the proposed method were evaluated. We successfully applied this method to pear samples and it may be suitable for the quantitative analysis of arbutin in other similar plant materials.
Keywords: arbutin, pear peels, QuEChERS, LC-MS/MS, quantitative analysis
References
- 1.Rychlinska I, Nowak S. Quantitative determination of arbutin and hydroquinone in different plant materials by HPLC. Not. Bot. Horti Agrobo. 2012;40:109–113. [Google Scholar]
- 2.Fiorentino A, Castaldi S, D’Abrosca B, Natale A, Carfora A, Messere A, Monaco P. Polyphenols from the hydroalcoholic extract of Arbutus unedo living in a monospecific Mediterranean woodland. Biochem. Syst. Ecol. 2007;35:809–811. doi: 10.1016/j.bse.2007.04.005. [DOI] [Google Scholar]
- 3.Lukas B, Schmiderer C, Mitteregger U, Novak J. Arbutin in marjoram and oregano. Food Chem. 2010;121:185–190. doi: 10.1016/j.foodchem.2009.12.028. [DOI] [Google Scholar]
- 4.Funayama M, Arakawa H, Yamamoto R, Nishino T, Shin T, Murao S. Effects of alpha-arbutin and beta-arbutin on activity of tyrosinases from mushroom and mouse melanoma. Biosci. Biotech. Bioch. 1995;59:143–144. doi: 10.1271/bbb.59.143. [DOI] [PubMed] [Google Scholar]
- 5.Gallo FR, Pagliuca G, Multari G, Panzini G, D’Amore E, Altieri I. New highperformance liquid chromatography-DAD method for analytical determination of arbutin and hydroquinone in rat plasma. Indian J. Pharm. Sci. 2015;77:530–535. doi: 10.4103/0250-474X.169031. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Kurosu J, Sato T, Yoshida K, Tsugane T, Shimura S, Kirimura K, Kino K, Usami S. Enzymatic synthesis of alpha-arbutin by alpha-anomer-selective glucosylation of hydroquinone using lyophilized cells of Xanthomonas campestris WU-9701. J. Biosci. Bioeng. 2002;93:328–330. doi: 10.1016/S1389-1723(02)80037-8. [DOI] [PubMed] [Google Scholar]
- 7.Robertson JA, Howard LA. Effect of carbohydrates on growth of Ureaplasma urealyticum and Mycoplasma hominis. J. Clin. Microbiol. 1987;25:160–161. doi: 10.1128/jcm.25.1.160-161.1987. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 8.Sugimoto K, Nishimura T, Nomura K, Sugimoto K, Kuriki T. Syntheses of arbutin-alpha-glycosides and a comparison of their inhibitory effects with those of alpha-arbutin and arbutin on human tyrosinase. Chem. Pharm. Bull. 2003;51:798–801. doi: 10.1248/cpb.51.798. [DOI] [PubMed] [Google Scholar]
- 9.Cho JY, Park KY, Lee KH, Lee HJ, Lee SH, Cho JA, Kim WS, Shin SC, Park KH, Moon JH. Recovery of arbutin in high purity from fruit peels of pear (Pyrus pyrifolia Nakai) Food Sci. Biotechnol. 2011;20:801–807. doi: 10.1007/s10068-011-0111-9. [DOI] [Google Scholar]
- 10.Seo DH, Jung JH, Ha SJ, Song MC, Cha J, Yoo SH, Kim TJ, Baek NI, Park CS. Highly selective biotransformation of arbutin to arbutin-alpha-glucoside using amylosucrase from Deinococcus geothermalis DSM 11300. J. Mol. Catal. BEnzym. 2009;60:113–118. doi: 10.1016/j.molcatb.2009.04.006. [DOI] [Google Scholar]
- 11.Hu ZM, Zhou Q, Lei TC, Ding SF, Xu SZ. Effects of hydroquinone and its glucoside derivatives on melanogenesis and antioxidation: Biosafety as skin whitening agents. J. Dermatol. Sci. 2009;55:179–184. doi: 10.1016/j.jdermsci.2009.06.003. [DOI] [PubMed] [Google Scholar]
- 12.Couteau C, Coiffard LJ. Photostability determination of arbutin, a vegetable whitening agent. Farmaco. 2000;55:410–413. doi: 10.1016/S0014-827X(00)00049-5. [DOI] [PubMed] [Google Scholar]
- 13.Kwiecien I, Szopa A, Madej K, Ekiert H. Arbutin production via biotransformation of hydroquinone in in vitro cultures of Aronia melanocarpa (Michx.) Elliott. Acta Biochim. Pol. 2013;60:865–870. [PubMed] [Google Scholar]
- 14.Schindler G, Patzak U, Brinkhaus B v, Niecieck A, Wittig J, Krahmer N, Glockl I, Veit M. Urinary excretion and metabolism of arbutin after oral administration of Arctostaphylos uvae ursi extract as film-coated tablets and aqueous solution in healthy humans. J. Clin. Pharmacol. 2002;42:920–927. doi: 10.1177/009127002401102740. [DOI] [PubMed] [Google Scholar]
- 15.Moran A, Gutierrez S, Martinez-Blanco H, Ferrero MA, Monteagudo-Mera A, Rodriguez-Aparicio LB. Non-toxic plant metabolites regulate Staphylococcus viability and biofilm formation: A natural therapeutic strategy useful in the treatment and prevention of skin infections. Biofouling. 2014;30:1175–1182. doi: 10.1080/08927014.2014.976207. [DOI] [PubMed] [Google Scholar]
- 16.Zbigniew S, Beata Z, Kamil J, Roman F, Barbara K, Andrzej D. Antimicrobial and antiradical activity of extracts obtained from leaves of three species of the genus pyrus. Microb. Drug Resist. 2014;20:337–343. doi: 10.1089/mdr.2013.0155. [DOI] [PubMed] [Google Scholar]
- 17.de Arriba SG, Naser B, Nolte KU. Risk assessment of free hydroquinone derived from Arctostaphylos Uva-ursi folium herbal preparations. Int. J. Toxicol. 2013;32:442–453. doi: 10.1177/1091581813507721. [DOI] [PubMed] [Google Scholar]
- 18.Assaf MH, Ali AA, Makboul MA, Beck JP, Anton R. Preliminary study of phenolic glycosides from Origanum majorana; quantitative estimation of arbutin; cytotoxic activity of hydroquinone. Planta Med. 1987;53:343–345. doi: 10.1055/s-2006-962734. [DOI] [PubMed] [Google Scholar]
- 19.Zhang L, Zhang W, Chen G. Determination of arbutin and bergenin in Bergeniae Rhizoma by capillary electrophoresis with a carbon nanotubeepoxy composite electrode. J. Pharmaceut. Biomed. 2015;115:323–329. doi: 10.1016/j.jpba.2015.07.044. [DOI] [PubMed] [Google Scholar]
- 20.Lamien-Meda A, Lukas B, Schmiderer C, Franz C, Novak J. Validation of a quantitative assay of arbutin using gas chromatography in Origanum majorana and Arctostaphylos uva-ursi extracts. Phytochem. Analysis. 2009;20:416–420. doi: 10.1002/pca.1142. [DOI] [PubMed] [Google Scholar]
- 21.Jurica K, Karaconji IB, Segan S, Opsenica DM, Kremer D. Quantitative analysis of arbutin and hydroquinone in strawberry tree (Arbutus unedo L., Ericaceae) leaves by gas chromatography-mass spectrometry. Arh. Hig. Rada Toksiko. 2015;66:197–202. doi: 10.1515/aiht-2015-66-2696. [DOI] [PubMed] [Google Scholar]
- 22.Parejo I, Viladomat F, Bastida J, Codina C. A single extraction step in the quantitative analysis of arbutin in bearberry (Arctostaphylos uva-ursi) leaves by high-performance liquid chromatography. Phytochem. Analysis. 2001;12:336–339. doi: 10.1002/pca.602. [DOI] [PubMed] [Google Scholar]
- 23.Pavlovic RD, Lakusic B, Doslov-Kokorus Z, Kovacevic N. Arbutin content and antioxidant activity of some Ericaceae species. Pharmazie. 2009;64:656–659. [PubMed] [Google Scholar]
- 24.Lin LZ, Harnly JN. Phenolic compounds and chromatographic profiles of pear skins (Pyrus spp.) J. Agr. Food Chem. 2008;56:9094–9101. doi: 10.1021/jf8013487. [DOI] [PubMed] [Google Scholar]
- 25.Ferreira D, Guyot S, Marnet N, Delgadillo I, Renard CMGC, Coimbra MA. Composition of phenolic compounds in a Portuguese pear (Pyrus communis L. var. S. Bartolomeu) and changes after sun-drying. J. Agr. Food Chem. 2002;50:4537–4544. doi: 10.1021/jf020251m. [DOI] [PubMed] [Google Scholar]
- 26.Wiilkowska A, Biziuk M. Determination of pesticide residues in food matrices using the QuEChERS methodology. Food Chem. 2011;125:803–812. doi: 10.1016/j.foodchem.2010.09.094. [DOI] [Google Scholar]
- 27.Lehotay SJ, Son KA, Kwon H, Koesukwiwat U, Fu W, Mastovska K, Hoh E, Leepipatpiboon N. Comparison of QuEChERS sample preparation methods for the analysis of pesticide residues in fruits and vegetables. J. Chromatogr. A. 2010;1217:2548–2560. doi: 10.1016/j.chroma.2010.01.044. [DOI] [PubMed] [Google Scholar]
- 28.Lesueur C, Knittl P, Gartner M, Mentler A, Fuerhacker M. Analysis of 140 pesticides from conventional farming foodstuff samples after extraction with the modified QuECheRS method. Food Control. 2008;19:906–914. doi: 10.1016/j.foodcont.2007.09.002. [DOI] [Google Scholar]
- 29.Paya P, Anastassiades M, Mack D, Sigalova I, Tasdelen B, Oliva J, Barba A. Analysis of pesticide residues using the Quick Easy Cheap Effective Rugged and Safe (QuEChERS) pesticide multiresidue method in combination with gas and liquid chromatography and tandem mass spectrometric detection. Anal. Bioanal. Chem. 2007;389:1697–1714. doi: 10.1007/s00216-007-1610-7. [DOI] [PubMed] [Google Scholar]
- 30.Cui T, Nakamura K, Ma L, Li JZ, Kayahara H. Analyses of arbutin and chlorogenic acid, the major phenolic constituents in Oriental pear. J. Agr. Food Chem. 2005;53:3882–3887. doi: 10.1021/jf047878k. [DOI] [PubMed] [Google Scholar]
- 31.Taylor VF, March RE, Longerich HP, Stadey CJ. A mass spectrometric study of glucose, sucrose, and fructose using an inductively coupled plasma and electrospray ionization. Int. J. Mass Spectrom. 2005;243:71–84. doi: 10.1016/j.ijms.2005.01.001. [DOI] [Google Scholar]