Abstract
The effects of different solvents on the recovery of (i) extractable solids (ES), (ii) total phenolic compounds (TPC), (iii) total flavonoid content (TFC), (iv) vitamin C, and (v) antioxidant activity from lemon pomace waste were investigated. The results revealed that solvents significantly affected the recovery of ES, TPC, TFC, and antioxidant properties. Absolute methanol and 50% acetone resulted in the highest extraction yields of TPC, whereas absolute methanol resulted in the highest extraction of TFC, and water had the highest recovery of vitamin C. 50% ethanol, and 50% acetone had higher extraction yields for TPC, and TFC, as well as higher antioxidant activity compared with their absolute solvents and water. TPC and TFC were shown to be the major components contributing to the antioxidant activity of lemon pomace.
Keywords: lemon peel, total flavonoid, ascorbic acid, extractable solid, antioxidant
References
- 1.Liu YQ, Heying E, Tanumihardjo SA. History, global distribution, and nutritional importance of citrus fruits. Compr. Rev. Food Sci. F. 2012;11:530–545. doi: 10.1111/j.1541-4337.2012.00201.x. [DOI] [Google Scholar]
- 2.Huang YS, Ho SC. Polymethoxy flavones are responsible for the antiinflammatory activity of citrus fruit peel. Food Chem. 2010;119:868–873. doi: 10.1016/j.foodchem.2009.09.092. [DOI] [Google Scholar]
- 3.Jayaprakasha GK, Jadegoud Y, Gowda GAN, Patil BS. Bioactive compounds from sour orange inhibit colon cancer cell proliferation and induce cell cycle arrest. J. Agr. Food Chem. 2010;58:180–186. doi: 10.1021/jf9027816. [DOI] [PubMed] [Google Scholar]
- 4.Yang X, Kang SM, Jeon BT, Kim YD, Ha JH, Kim YT, Jeon YJ. Isolation and identification of an antioxidant flavonoid compound from citrus-processing by-product. J. Sci. Food Agr. 2011;91:1925–1927. doi: 10.1002/jsfa.4402. [DOI] [PubMed] [Google Scholar]
- 5.Rezzadori K, Benedetti S, Amante ER. Proposals for the residues recovery: Orange waste as raw material for new products. Food Bioprod. Process. 2012;90:606–614. doi: 10.1016/j.fbp.2012.06.002. [DOI] [Google Scholar]
- 6.González-Molina E D-, Perles R, Moreno DA, García-Viguera C. Natural bioactive compounds of Citrus limon for food and health. J. Pharmaceut. Biomed. 2010;51:327–345. doi: 10.1016/j.jpba.2009.07.027. [DOI] [PubMed] [Google Scholar]
- 7.Bocco A, Cuvelier ME, Richard H, Berset C. Antioxidant activity and phenolic composition of citrus peel and seed extracts. J. Agr. Food Chem. 1998;46:2123–2129. doi: 10.1021/jf9709562. [DOI] [Google Scholar]
- 8.Dhanavade MJ, Jalkute CB, Ghosh JS, Sonawane KD. Study antimicrobial activity of lemon (Citrus lemon L.) peel extract. Brit. J. Pharmacol. Toxicol. 2011;2:119–122. [Google Scholar]
- 9.Proteggente AR, Pannala AS, Paganga G, Van Buren L, Wagner E, Wiseman S, Van De Put F, Dacombe C, Rice-Evans CA. The antioxidant activity of regularly consumed fruit and vegetables reflects their phenolic and vitamin C composition. Free Radical Res. 2002;36:217–233. doi: 10.1080/10715760290006484. [DOI] [PubMed] [Google Scholar]
- 10.Khoddami A, Wilkes MA, Roberts TH. Techniques for analysis of plant phenolic compounds. Molecules. 2013;18:2328–2375. doi: 10.3390/molecules18022328. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Abad-García B, Berrueta LA, López-Márquez DM, Crespo-Ferrer I, Gallo B, Vicente F. Optimization and validation of a methodology based on solvent extraction and liquid chromatography for the simultaneous determination of several polyphenolic families in fruit juices. J. Chromatogr. A. 2007;1154:87–96. doi: 10.1016/j.chroma.2007.03.023. [DOI] [PubMed] [Google Scholar]
- 12.Vuong QV, Golding JB, Nguyen MH, Roach PD. Production of caffeinated and decaffeinated green tea catechin powders from underutilised old tea leaves. J. Food Eng. 2012;110:1–8. doi: 10.1016/j.jfoodeng.2011.12.026. [DOI] [Google Scholar]
- 13.Vuong QV, Hirun S, Roach PD, Bowyer MC, Phillips PA, Scarlett CJ. Effect of extraction conditions on total phenolic compounds and antioxidant activities of carica papaya leaf aqueous extracts. J. Herb. Med. 2013;3:104–111. doi: 10.1016/j.hermed.2013.04.004. [DOI] [Google Scholar]
- 14.Zhishen J, Mengcheng T, Jianming W. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64:555–559. doi: 10.1016/S0308-8146(98)00102-2. [DOI] [Google Scholar]
- 15.Vuong QV, Hirun S, Chuen TLK, Goldsmith CD, Bowyer MC, Chalmers AC, Phillips PA, Scarlett CJ. Physicochemical composition, antioxidant and antiproliferative capacity of a lilly pilly (Syzygium paniculatum) extract. J. Herb. Med. 2014;4:134–140. doi: 10.1016/j.hermed.2014.04.003. [DOI] [Google Scholar]
- 16.Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH. Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J. Food Compos. Anal. 2006;19:669–675. doi: 10.1016/j.jfca.2006.01.003. [DOI] [Google Scholar]
- 17.Apak R, Güçlü K, Özyürek M, Karademir SE. Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J. Agr. Food Chem. 2004;52:7970–7981. doi: 10.1021/jf048741x. [DOI] [PubMed] [Google Scholar]
- 18.Wang L, Liu Y. Optimization of solvent extraction conditions for total carotenoids in rapeseed using response surface methodology. Nat. Sci. 2009;1:23–29. [Google Scholar]
- 19.Riitta JT. Phenolic constituents in the leaves of northern willows: Methods for the analysis of certain phenolics. J. Agr. Food Chem. 1985;33:213–217. doi: 10.1021/jf00062a013. [DOI] [Google Scholar]
- 20.Yapo BM, Lerouge P, Thibault JF, Ralet MC. Pectins from citrus peel cell walls contain homogalacturonans homogenous with respect to molar mass, rhamnogalacturonan I and rhamnogalacturonan II. Carbohyd. Polym. 2007;69:426–435. doi: 10.1016/j.carbpol.2006.12.024. [DOI] [Google Scholar]
- 21.Pinelo M, Rubilar M, Sineiro J N MJ. Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster) Food Chem. 2004;85:267–273. doi: 10.1016/j.foodchem.2003.06.020. [DOI] [Google Scholar]
- 22.Nayak B, Dahmoune F, Moussi K, Remini H, Dairi S, Aoun O, Khodir M. Comparison of microwave, ultrasound and accelerated-assisted solvent extraction for recovery of polyphenols from Citrus sinensis peels. Food Chem. 2015;187:507–516. doi: 10.1016/j.foodchem.2015.04.081. [DOI] [PubMed] [Google Scholar]
- 23.Park JH, Lee M, Park E. Antioxidant activity of orange flesh and peel extracted with various solvents. Prev. Nutr. Food Sci. 2014;19:291–298. doi: 10.3746/pnf.2014.19.4.291. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Ma Y, Ye X, Hao Y, Xu G, Xu G, Liu D. Ultrasound-assisted extraction of hesperidin from Penggan (Citrus reticulata) peel. Ultrason. Sonochem. 2008;15:227–232. doi: 10.1016/j.ultsonch.2007.03.006. [DOI] [PubMed] [Google Scholar]
- 25.Lou SN, Hsu YS, Ho CT. Flavonoid compositions and antioxidant activity of calamondin extracts prepared using different solvents. J. Food Drug Anal. 2014;22:290–295. doi: 10.1016/j.jfda.2014.01.020. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Marston A, Hostettmann K. Separation and quantification of flavonoids. In: Andersen M, Markham KR, editors. Flavonoids: Chemistry, biochemistry and applications. Abingdon, UK: Taylor & Francis; 2005. pp. 1–36. [Google Scholar]
- 27.Shalmashi A, Eliassi A. Solubility of l-(+)-ascorbic acid in water, ethanol, methanol, propan-2-ol, acetone, acetonitrile, ethyl acetate, and tetrahydrofuran from (293 to 323) K. J. Chem. Eng. Data. 2008;53:1332–1334. doi: 10.1021/je800056h. [DOI] [Google Scholar]
- 28.Arnao MB. Some methodological problems in the determination of antioxidant activity using chromogen radicals: A practical case. Trends Food Sci. Tech. 2000;11:419–421. doi: 10.1016/S0924-2244(01)00027-9. [DOI] [Google Scholar]
- 29.Litwinienko G, Ingold KU. Abnormal solvent effects on hydrogen atom abstractions. 1. The reactions of phenols with 2,2-diphenyl-1-picrylhydrazyl (dpph•) in alcohols. J. Org. Chem. 2003;68:3433–3438. doi: 10.1021/jo026917t. [DOI] [PubMed] [Google Scholar]
- 30.Çelik SE, Özyürek M, Güçlü K, Apak R. Solvent effects on the antioxidant capacity of lipophilic and hydrophilic antioxidants measured by CUPRAC, ABTS/persulphate and FRAP methods. Talanta. 2010;81:1300–1309. doi: 10.1016/j.talanta.2010.02.025. [DOI] [PubMed] [Google Scholar]
- 31.Van den Berg R, Haenen GRMM, Van den Berg H, Bast A. Applicability of an improved Trolox equivalent antioxidant capacity (TEAC) assay for evaluation of antioxidant capacity measurements of mixtures. Food Chem. 1999;66:511–517. doi: 10.1016/S0308-8146(99)00089-8. [DOI] [Google Scholar]
- 32.Shofinita D, Feng S, Langrish TAG. Comparing yields from the extraction of different citrus peels and spray drying of the extracts. Adv. Powder Technol. 2015;26:1633–1638. doi: 10.1016/j.apt.2015.09.007. [DOI] [Google Scholar]
- 33.Ghasemi K, Ghasemi Y, Ebrahimzadeh MA. Antioxidant activity, phenol and flavonoid contents of 13 citrus species peels and tissues. Pak. J. Pharm. Sci. 2009;22:277–281. [PubMed] [Google Scholar]
- 34.Al-Juhaimi FY. Citrus fruits by-products as sources of bioactive compounds with antioxidant potential. Pak. J. Bot. 2014;46:1459–1462. [Google Scholar]
- 35.Arena E, Fallico B, Maccarone E. Evaluation of antioxidant capacity of blood orange juices as influenced by constituents, concentration process and storage. Food Chem. 2001;74:423–427. doi: 10.1016/S0308-8146(01)00125-X. [DOI] [Google Scholar]