Abstract
In this study, comprehensive metabolic profiles of mulberry fruits (Morus alba Linnaeus) at various maturation stages were determined using GC-MS and HPLC. In total, 48 compounds, including 3 alcohols, 16 amino acids, 7 organic acids, 2 sugars, 4 phenolics, 2 terpenes, 3 vitamins, 9 fatty acids, and 2 cyanidins were identified in the mulberry samples. Levels of chlorogenic acid, cryptochlorogenic acid, neochlorogenic acid, ascorbic acid, and δ-tocopherol, and total fatty acid content were significantly higher in the semi-matured mulberry fruits. Furthermore, levels of glycerol, citrate, fructose, glucose, 3-O-glucoside, and cyanidin-3-O-rutinoside were significantly higher at the fully matured stage than at the other stages. Twelve biosynthetic pathways were suggested as major pathways involved in mulberry fruit maturation. The information obtained in this study will provide a basis for future investigations toward quality control or metabolic engineering for development of mulberry fruits possessing commercially valuable characteristics.
Keywords: gas chromatography-mass spectrometry, maturation stage, metabolic profile, mulberry fruit
References
- 1.Ercisli S, Orhan E. Chemical composition of white (Morus alba), red (Morus rubra) and black (Morus nigra) mulberry fruits. Food Chem. 2007;103:1380–1384. doi: 10.1016/j.foodchem.2006.10.054. [DOI] [Google Scholar]
- 2.Huang HP, Shih YW, Chang YC, Hung CN, Wang CJ. Chemoinhibitory effect of mulberry anthocyanins on melanoma metastasis involved in the Ras/PI3K pathway. J. Agr. Food Chem. 2008;56:9286–9293. doi: 10.1021/jf8013102. [DOI] [PubMed] [Google Scholar]
- 3.Lotito SB, Frei B. Dietary flavonoids attenuate tumor necrosis factor a-induced adhesion molecule expression in human aortic endothelial cells structure-function relationships and activity after first pass metabolism. J. Biol. Chem. 2006;281:37102–37110. doi: 10.1074/jbc.M606804200. [DOI] [PubMed] [Google Scholar]
- 4.Kim HG, Ju MS, Shim JS, Kim MC, Lee SH, Huh Y, Oh MS. Mulberry fruit protects dopaminergic neurons in toxin-induced Parkinson’s disease models. Brit. J. Nutr. 2010;104:8–16. doi: 10.1017/S0007114510000218. [DOI] [PubMed] [Google Scholar]
- 5.Lee JS, Synytsya A, Kim HB, Choi DJ, Lee S, Lee J, Park YI. Purification, characterization and immunomodulating activity of a pectic polysaccharide isolated from Korean mulberry fruit Oddi (Morus alba L.) Int. Immunopharmacol. 2013;17:858–866. doi: 10.1016/j.intimp.2013.09.019. [DOI] [PubMed] [Google Scholar]
- 6.Oki T, Kobayashi M, Nakamura T, Okuyama A, Masuda M, Shiratsuchi H, Suda I. Changes in radicalscavenging activity and components of mulberry fruit during maturation. J. Food Sci. 2006;71:C18–C22. doi: 10.1111/j.1365-2621.2006.tb12382.x. [DOI] [Google Scholar]
- 7.Zhang W, Han F, He J, Duan C. HPLCDADESIMS/MS analysis and antioxidant activities of nonanthocyanin phenolics in mulberry (Morus alba L.) J. Food Sci. 2008;73:C512–C518. doi: 10.1111/j.1750-3841.2008.00854.x. [DOI] [PubMed] [Google Scholar]
- 8.Hunyadi A, Martins A, Hsieh TJ, Seres A, Zupkó I. Chlorogenic acid and rutin play a major role in the in vivo anti-diabetic activity of Morus alba leaf extract on type II diabetic rats. PLoS ONE. 2012;7:50619. doi: 10.1371/journal.pone.0050619. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Yang X, Yang L, Zheng H. Hypolipidemic and antioxidant effects of mulberry (Morus alba L.) fruit in hyperlipidaemia rats. Food Chem. Toxicol. 2010;48:2374–2379. doi: 10.1016/j.fct.2010.05.074. [DOI] [PubMed] [Google Scholar]
- 10.Li J, Schauer N, Kopka J, Willmitzer L, Fernie AR. Gas chromatography mass spectrometry-based metabolite profiling in plants. Nat. Protoc. 2006;1:387–396. doi: 10.1038/nprot.2006.484. [DOI] [PubMed] [Google Scholar]
- 11.Hill CB, Roessner U. Metabolic profiling of plants by GC-MS. In: Weckwerth W, Kahl G, editors. The handbook of plant metabolomics. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co.; 2013. pp. 1–23. [Google Scholar]
- 12.Trethewey RN. Metabolite profiling as an aid to metabolic engineering in plants. Curr. Opin. Plant Biol. 2004;7:196–201. doi: 10.1016/j.pbi.2003.12.003. [DOI] [PubMed] [Google Scholar]
- 13.Lee SY, Kim SH, Hyun SH, Suh HW, Hong SJ, Cho BK, Choi HK. Fatty acids and global metabolites profiling of Dunaliella tertiolecta by shifting culture conditions to nitrate deficiency and high light at different growth phases. Process Biochem. 2014;49:996–1004. doi: 10.1016/j.procbio.2014.02.022. [DOI] [Google Scholar]
- 14.Chagoyen M, Pazos F. MBRole: Enrichment analysis of metabolomic data. Bioinformatics. 2011;27:730–731. doi: 10.1093/bioinformatics/btr001. [DOI] [PubMed] [Google Scholar]
- 15.Kim HS, Park SJ, Hyun SH, Yang SO, Lee J, Auh JH, Choi HK. Biochemical monitoring of black raspberry (Rubus coreanus Miquel) fruits according to maturation stage by 1H NMR using multiple solvent systems. Food Res. Int. 2011;44:1977–1987. doi: 10.1016/j.foodres.2011.01.023. [DOI] [Google Scholar]
- 16.Oms-Oliu G, Hertog MLATM, Van de Poel B, Ampofo-Asiama J, Geeraerd A N BM. Metabolic characterization of tomato fruit during preharvest development, ripening, and postharvest shelf-life. Postharvest Biol. Tec. 2011;62:7–16. doi: 10.1016/j.postharvbio.2011.04.010. [DOI] [Google Scholar]
- 17.Glew RH, Ayaz FA, Sanz C, Van der Jagt DJ, Huang HS, Chuang LT, Strnad M. Changes in sugars, organic acids and amino acids in medlar (Mespilus germanica L.) during fruit development and maturation. Food Chem. 2003;83:363–369. doi: 10.1016/S0308-8146(03)00097-9. [DOI] [Google Scholar]
- 18.Cort WM. Antioxidant activity of tocopherols, ascorbyl palmitate, and ascorbic acid and their mode of action. J. Am. Oil Chem. Soc. 1974;51:321–325. doi: 10.1007/BF02633006. [DOI] [PubMed] [Google Scholar]
- 19.Sato Y, Itagaki S, Kurokawa T, Ogura J, Kobayashi M, Hirano T, Iseki K. In vitro and in vivo antioxidant properties of chlorogenic acid and caffeic acid. Int. J. Pharm. 2011;403:136–138. doi: 10.1016/j.ijpharm.2010.09.035. [DOI] [PubMed] [Google Scholar]
- 20.Nakatani N, Kayano SI, Kikuzaki H, Sumino K, Katagiri K, Mitani T. Identification, quantitative determination, and antioxidative activities of chlorogenic acid isomers in prune (Prunus domestica L.) J. Agr. Food Chem. 2000;48:5512–5516. doi: 10.1021/jf000422s. [DOI] [PubMed] [Google Scholar]
- 21.Bertrand C, Noirot M, Doulbeau S, de Kochko A, Hamon S, Campa C. Chlorogenic acid content swap during fruit maturation in Coffea pseudozanguebariae: Qualitative comparison with leaves. Plant Sci. 2003;165:1355–1361. doi: 10.1016/j.plantsci.2003.07.002. [DOI] [Google Scholar]
- 22.Ayaz FA, Kadioglu A, Reunanen M. Changes in phenolic acid contents of Diospyros lotus L. during fruit development. J. Agr. Food Chem. 1997;45:2539–2541. doi: 10.1021/jf960741c. [DOI] [Google Scholar]
- 23.Ali K, Maltese F, Fortes AM, Pais MS, Choi YH, Verpoorte R. Monitoring biochemical changes during grape berry development in Portuguese cultivars by NMR spectroscopy. Food Chem. 2011;124:1760–1769. doi: 10.1016/j.foodchem.2010.08.015. [DOI] [Google Scholar]
- 24.Degu A, Hochberg U, Sikron N, Venturini L, Buson G, Ghan R, Fait A. Metabolite and transcript profiling of berry skin during fruit development elucidates differential regulation between cabernet sauvignon and shiraz cultivars at branching points in the polyphenol pathway. BMC Plant Biol. 2014;14:1–20. doi: 10.1186/s12870-014-0188-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 25.Nardozza S, Boldingh HL, Osorio S H M, Wohlers M, Gleave AP, Clearwater MJ. Metabolic analysis of kiwifruit (Actinidia deliciosa) berries from extreme genotypes reveals hallmarks for fruit starch metabolism. J. Exp. Bot. 2013;64:5049–5063. doi: 10.1093/jxb/ert293. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Giovannoni JJ. Genetic regulation of fruit development and ripening. Plant Cell. 2004;16:S170–S180. doi: 10.1105/tpc.019158. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 27.Giovannoni JJ. Fruit ripening mutants yield insights into ripening control. Curr. Opin. Plant Biol. 2007;10:283–289. doi: 10.1016/j.pbi.2007.04.008. [DOI] [PubMed] [Google Scholar]
- 28.Wang ZJ, Li GM, Tang WL, Yin M. Neuroprotective effects of stearic acid against toxicity of oxygen/glucose deprivation or glutamate on rat cortical or hippocampal slices. Acta Pharm. Sinic. 2006;27:145–150. doi: 10.1111/j.1745-7254.2006.00259.x. [DOI] [PubMed] [Google Scholar]
- 29.Capurso A, Panza F, Solfrizzi V, Capurso C, D’Introno A, Capurso S, Colacicco AM. The results of a study of cognitive decline in old age. Is there a case for this treatment in multiple sclerosis? In: Hommes OR, Comi G, editors. Early indicators early treatments neuroprotection in multiple sclerosis, Monounsaturated fatty acids and neuroprotection. Milano, Italy: Springer Milan; 2004. pp. 97–107. [Google Scholar]
- 30.Joseph KD, Muralidhara M. Fish oil prophylaxis attenuates rotenone-induced oxidative impairments and mitochondrial dysfunctions in rat brain. Food Chem. Toxicol. 2012;50:1529–1537. doi: 10.1016/j.fct.2012.01.020. [DOI] [PubMed] [Google Scholar]
- 31.Henry GE, Momin RA, Nair MG, Dewitt DL. Antioxidant and cyclooxygenase activities of fatty acids found in food. J. Agr. Food Chem. 2002;50:2231–2234. doi: 10.1021/jf0114381. [DOI] [PubMed] [Google Scholar]
- 32.Msaada K, Hosni K, Taarit MB, Chahed T, Hammami M, Marzouk B. Changes in fatty acid composition of coriander (Coriandrum sativum L.) fruit during maturation. Ind. Crop. Prod. 2009;29:269–274. doi: 10.1016/j.indcrop.2008.05.011. [DOI] [Google Scholar]
- 33.Matas AJ, Gapper NE, Chung MY, Giovannoni JJ, Rose JK. Biology and genetic engineering of fruit maturation for enhanced quality and shelf-life. Curr. Opin. Biotech. 2009;20:197–203. doi: 10.1016/j.copbio.2009.02.015. [DOI] [PubMed] [Google Scholar]
- 34.De Vleesschauwer D, Xu J, Höfte M. Making sense of hormone-mediated defense networking: From rice to Arabidopsis. Front Plant Sci. 2014;5:1–15. doi: 10.3389/fpls.2014.00611. [DOI] [PMC free article] [PubMed] [Google Scholar]