Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Aug 31;25(4):1169–1174. doi: 10.1007/s10068-016-0186-4

Antioxidant and anti-adipogenic activities of chestnut (Castanea crenata) byproducts

Un-Young Youn 1, Myung-Soo Shon 1, Gyo-Nam Kim 1, Riho Katagiri 2, Kaori Harata 2, Yasuyuki Ishida 2, Seung-Cheol Lee 1,
PMCID: PMC6049104  PMID: 30263390

Abstract

The antioxidant and anti-adipogenic activities of chestnut byproducts were evaluated. At 100 μg/mL, the methanol extract (ME) scavenged 34.2% of DPPH and 78.8% of ABTS radicals. The DPPH and ABTS radical scavenging activity of the water extract (WE) was found to be low (13.7 and 33.1%, respectively) compared with controls. WE and ME dose-dependently inhibited lipid accumulation of 3T3-L1 adipocytes. WE and ME at 100 μg/mL suppressed 3T3-L1 adipogenesis by 71.0 and 96.5%, respectively, when compared with mature adipocytes. The results indicated that WE and ME inhibited adipocyte differentiation by down-regulating the mRNA expression levels of CCAAT/enhancer binding protein (C/EBP)-β, C/EBPα, and peroxisome proliferator-activated receptor (PPAR)-γ in 3T3-L1 cells. Our study also revealed that WE and ME inhibited pre- and early stage adipogenesis in 3T3-L1 cells. The results suggest that chestnut byproducts are a promising source of antioxidant and antiobesity molecules.

Keywords: chestnut, byproducts, antioxidant activity, gallic acid

References

  • 1.Korea Statistical Information Service. Available from: http://kosis.kr. Accessed Mar. 31, 2016.
  • 2.Barreira JCM, Ferreira ICFR, Oliveira MBPP, Pereira JA. Antioxidant activities of the extracts from chestnut flower, leaf, skins and fruit. Food Chem. 2008;107:1106–1113. doi: 10.1016/j.foodchem.2007.09.030. [DOI] [Google Scholar]
  • 3.Rice-Evans CA, Miller NJ, Paganga G. Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. [DOI] [PubMed] [Google Scholar]
  • 4.Vázquez G, Fontenla E, Santos J, Freire MS, González-Álvarez J, Antorrena G. Antioxidant activity and phenolic content of chestnut (Castanea sativa) shell and eucalyptus (Eucalyptus globulus) bark extracts. Ind. Crop. Prod. 2008;28:279–285. doi: 10.1016/j.indcrop.2008.03.003. [DOI] [Google Scholar]
  • 5.Vasconcelos MCBM, Bennett RN, Quideau S, Jacquet R, Rosa EAS, Ferreira-Cardoso JV. Evaluating the potential of chestnut (Castanea sativa Mill.) fruit pericarp and integument as a source of tocopherols, pigments and polyphenols. Ind. Crop. Prod. 2010;31:301–311. doi: 10.1016/j.indcrop.2009.11.008. [DOI] [Google Scholar]
  • 6.Noh JR, Gang GT, Kim YH, Yang KJ, Hwang JH, Lee HS. Antioxidant effects of the chestnut (Castanea crenata) inner shell extract in t-BHP-treated HepG2 cells, and CCl4-and high-fat diet-treated mice. Food Chem. Toxicol. 2010;48:3177–3183. doi: 10.1016/j.fct.2010.08.018. [DOI] [PubMed] [Google Scholar]
  • 7.Ham JS, Kim HY, Lim ST. Antioxidant and deodorizing activities of phenolic components in chestnut inner shell extracts. Ind. Crop. Prod. 2015;73:99–105. doi: 10.1016/j.indcrop.2015.04.017. [DOI] [Google Scholar]
  • 8.Pasch H, Pizzi A. Considerations on the macromolecular structure of chestnut ellagitannins by matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry. J. Appl. Polym. Sci. 2002;85:429–437. doi: 10.1002/app.10618. [DOI] [Google Scholar]
  • 9.Martinez S, Štagljar I. Correlation between the molecular structure and the corrosion inhibition efficiency of chestnut tannin in acidic solutions. J. Mol. Struct. 2003;640:167–174. doi: 10.1016/j.theochem.2003.08.126. [DOI] [Google Scholar]
  • 10.Vekiari SA, Gordon MH, García-Macías P, Labrinea H. Extraction and determination of ellagic acid content in chestnut bark and fruit. Food Chem. 2008;110:1007–1011. doi: 10.1016/j.foodchem.2008.02.005. [DOI] [PubMed] [Google Scholar]
  • 11.Comandini P, Lerma-García MJ, Simó-Alfonso EF, Toschi TG. Tannin analysis of chestnut bark samples (Castanea sativa Mill.) by HPLC-DAD-MS. Food Chem. 2014;157:290–295. doi: 10.1016/j.foodchem.2014.02.003. [DOI] [PubMed] [Google Scholar]
  • 12.Santos-Buelga C, Scalbert A. Proanthocyanidins and tannin-like compoundsnature, occurrence, dietary intake and effects on nutrition and health. J. Sci. Food Agr. 2000;80:1094–1117. doi: 10.1002/(SICI)1097-0010(20000515)80:7<1094::AID-JSFA569>3.0.CO;2-1. [DOI] [Google Scholar]
  • 13.Lee SC, Kim JH, Jeong SM, Kim DR, Ha JU, Nam KC, Ahn DU. Effect of farinfrared radiation on the antioxidant activity of rice hulls. J. Agr. Food Chem. 2003;51:4400–4403. doi: 10.1021/jf0300285. [DOI] [PubMed] [Google Scholar]
  • 14.Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evan C. Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. [DOI] [PubMed] [Google Scholar]
  • 15.Gutfinger T. Polyphenols in olive oil. J. Am. Oil Chem. Soc. 1981;58:966–968. doi: 10.1007/BF02659771. [DOI] [Google Scholar]
  • 16.Yonemori K, Oshida M, Sugiura A. On the nature of coagulated tannins in astringent-type persimmon fruit after an artificial treatment of astringency removal. Postharvest Biol. Tec. 1996;8:317–327. doi: 10.1016/0925-5214(96)00016-6. [DOI] [Google Scholar]
  • 17.Coyle JT, Puttfarcken P. Oxidative stress, glutamate, and neurodegenerative disorders. Science. 1993;262:689–695. doi: 10.1126/science.7901908. [DOI] [PubMed] [Google Scholar]
  • 18.Sánchez-Moreno C. Methods used to evaluate the free radical scavenging activity in foods and biological systems. Food Sci. Technol. Int. 2002;8:121–137. doi: 10.1177/1082013202008003770. [DOI] [Google Scholar]
  • 19.Leong LP, Shui G. An investigation of antioxidant capacity of fruits in Singapore markets. Food Chem. 2002;76:69–75. doi: 10.1016/S0308-8146(01)00251-5. [DOI] [Google Scholar]
  • 20.Kim HJ, Choi GN, Kwak JH, Jeong CH, Jeong HR, Lee U, Kim MJ, Heo H J. Inhibitory effects of chestnut inner skin extracts on melanogenesis. Food Sci. Biotechnol. 2012;21:1571–1576. doi: 10.1007/s10068-012-0209-8. [DOI] [Google Scholar]
  • 21.Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011;24:1043–1048. doi: 10.1016/j.jfca.2011.01.008. [DOI] [Google Scholar]
  • 22.Wang M, Li J, Rangarajan M, Shao Y L, Voie EJ, Huang TC, Ho CT. Antioxidative phenolic compounds from sage (Salvia officinalis) J. Agr. Food Chem. 1998;46:4869–4873. doi: 10.1021/jf980614b. [DOI] [Google Scholar]
  • 23.Pandey KB, Rizvi SI. Plant polyphenols as dietary antioxidants in human health and disease. Oxid. Med. Cell Longev. 2009;2:270–278. doi: 10.4161/oxim.2.5.9498. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Amarowicz R. Tannins: The new natural antioxidants. Eur. J. Lipid Sci. Tech. 2007;109:549–551. doi: 10.1002/ejlt.200700145. [DOI] [Google Scholar]
  • 25.Chung KT, Wong TY, Wei CI, Huang YW, Lin Y. Tannins and human health: A review. Crit. Rev. Food Sci. 1998;38:421–464. doi: 10.1080/10408699891274273. [DOI] [PubMed] [Google Scholar]
  • 26.Ntambi JM, Kim YC. Adipocyte differentiation and gene expression. J. Nutr. 2000;130:3122S–3126S. doi: 10.1093/jn/130.12.3122S. [DOI] [PubMed] [Google Scholar]
  • 27.Gregoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. 1998;78:783–809. doi: 10.1152/physrev.1998.78.3.783. [DOI] [PubMed] [Google Scholar]
  • 28.Lee YJ, Kim DB, Lee JS, Cho JH, Kim BK, Choi HS, Lee BY, Lee OH. Antioxidant activity and anti-adipogenic effects of wild herbs mainly cultivated in Korea. Molecules. 2013;18:12937–12950. doi: 10.3390/molecules181012937. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 29.Zhang XH, Huang B, Choi SK, Seo JS. Anti-obesity effect of resveratrolamplified grape skin extracts on 3T3-L1 adipocytes differentiation. Nutr. Res. Pract. 2012;6:286–293. doi: 10.4162/nrp.2012.6.4.286. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Kimura H, Ogawa S, Sugiyama A, Jiska M, Takeuchi T, Yokata K. Anti-obesity effects of highly polymeric proanthocyanidins from seed shells of Japanese horse chestnut (Aesculus turbinate Blume) Food Res. Int. 2011;44:121–126. doi: 10.1016/j.foodres.2010.10.052. [DOI] [Google Scholar]
  • 31.Choi JH, Park YH, Lee IS, Lee SP, Yu MH. Antioxidant activity and inhibitory effect of Aster scaber Thunb. extract on adipocyte differentiation in 3T3-L1 cells. Korean J. Food Sci. Technol. 2013;45:356–363. [Google Scholar]
  • 32.Siersbæk R, Mandrup S. Transcriptional networks controlling adipocyte differentiation. Cold Spring Harb. Sym. 2011;76:247–255. doi: 10.1101/sqb.2011.76.010512. [DOI] [PubMed] [Google Scholar]
  • 33.Kim MB, Song YW, Kim CH, Hwang JK. Kirenol inhibits adipogenesis through activation of the Wnt/ß-catenin signaling pathway in 3T3-L1 adipocytes. Biochem. Bioph. Res. Co. 2014;445:433–438. doi: 10.1016/j.bbrc.2014.02.017. [DOI] [PubMed] [Google Scholar]
  • 34.Harp JB. New insights into inhibitors of adipogenesis. Curr. Opin. Lipidol. 2004;15:303–307. doi: 10.1097/00041433-200406000-00010. [DOI] [PubMed] [Google Scholar]
  • 35.Ahn JY, Lee HJ, Kim SA, Ha TY. Curcumin-induced suppreßsion of adipogenic differentiation is accompanied by activation of Wnt/ß-catenin signaling. Am. J. Physiol.-Cell. Ph. 2010;298:C1510–C1516. doi: 10.1152/ajpcell.00369.2009. [DOI] [PubMed] [Google Scholar]
  • 36.Cawthorn WP, Scheller E, MacDougald E. Adipose tissue stem cells meet preadipocyte commitment: Going back to the future. J. Lipid Res. 2012;53:227–246. doi: 10.1194/jlr.R021089. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 37.Rosen ED, Walkey CJ, Puigerver P, Spiegelman BM. Transcriptional regulation of adipogenesis. Gene Dev. 2010;14:1293–1307. [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES