Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Aug 31;25(4):1029–1034. doi: 10.1007/s10068-016-0166-8

Effects of gardenia seed, green tea, and cactus pear in rice batter on the chemical quality of lotus root bugak and frying oil

Leejin Jung 1, Yeong-Ok Song 2, Eunok Choe 1,
PMCID: PMC6049113  PMID: 30263370

Abstract

This study investigated the effects of the addition of gardenia seed, green tea, or cactus pear (Opuntia ficus-indica) to rice batter at 10% on the lipid oxidation, pigments, antioxidants, and antioxidant activity of lotus root bugak and frying oil. Lipid oxidation was evaluated based on the conjugated dienoic acid and p-anisidine values. Lipid oxidation and tocopherol degradation were significantly reduced in the gardenia seed-added bugak and frying oil, whereas the cactus pear-added bugak and frying oil showed an increase. The addition of green tea had no significant effects on the lipid oxidation of bugak and frying oil. The in vitro antioxidant activity of lotus root bugak significantly increased with the addition of gardenia seed, green tea, or cactus pear. The results suggested that green tea and gardenia seed could improve the health and food functionality of antioxidation for lotus root bugak, respectively.

Keywords: lipid oxidation, lotus root bugak, gardenia seed, green tea, cactus pear (Opuntia ficusindica)

References

  • 1.Jung L, Song Y, Chung L, Choe E. Characteristics on lipid and pigments of lotus root, dried laver, and perilla leaf bugak (Korean fried cuisine) made by Korean traditional recipe. Korean J. Food Cook. Sci. 2013;29:805–814. doi: 10.9724/kfcs.2013.29.6.805. [DOI] [Google Scholar]
  • 2.Park BH, Choi HK, Cho HS. A study on the oxidative stability and quality characteristics of kimbugak made of aqueous green tea. J. Korean Soc. Food Sci. Nutr. 2001;30:557–564. [Google Scholar]
  • 3.Choi HM, Sim CH, Shin TS, Bing DJ, Chun SS. Quality characteristics of Kimbugak with sea tangle powder. Korean J. Food Nutr. 2011;24:434–441. doi: 10.9799/ksfan.2011.24.3.434. [DOI] [Google Scholar]
  • 4.Lee JM, Kim JA, Lee JM. Sensory and physicochemical attributes of Boogags using mulberry leaf. J. Korean Soc. Food Cult. 2002;17:103–110. [Google Scholar]
  • 5.Park SH, Shin EH, Koo JG, Lee TH, Han JH. Effects of Nelumbo nucifera on the regional cerebral blood flow and blood pressure in rats. J. East Asian Soc. Diet. Life. 2005;15:49–56. [Google Scholar]
  • 6.Ko BS, Jun DW, Jang JS, Kim JH, Park S. Effect of Sasa Borealis and white lotus roots and leaves on insulin action and secretion in vivo. Korean J. Food Sci. Technol. 2006;38:114–120. [Google Scholar]
  • 7.Sridhar KR, Bhat R. Lotus -a potential nutraceutical source. J. Agric. Technol. 2007;3:143–155. [Google Scholar]
  • 8.Kim M, Hong SH, Chung L, Choe E, Song YO. Development of lotus root bugak with plasma lipid reduction capacity by addition of Opuntia ficus-indica var. saboten or green tea as a coloring agent. J. Korean Soc. Food Sci. Nutr. 2014;43:333–340. doi: 10.3746/jkfn.2014.43.3.333. [DOI] [Google Scholar]
  • 9.Jung L, Song Y, Chung L, Choe E. In Vitro antioxidative activity and polyphenol and tocopherol contents of bugak with lotus root, dried laver, or perilla leaf. Korean J. Food Cook. Sci. 2014;30:767–773. doi: 10.9724/kfcs.2014.30.6.767. [DOI] [Google Scholar]
  • 10.AOCS. Official Methods and Recommended Practices of the American Oil Chemists’ Society. 4th ed. Methods Ti la-64 and Cd 18-90. AOCS Press, Champaign, IL, USA (2008)
  • 11.Ošt’ádalová M, Tremlová B, Pokorná J, Král M. Chlorophyll as an indicator of green tea quality. Acta Vet. Brno. 2015;83:S103–S109. doi: 10.2754/avb201483S10S103. [DOI] [Google Scholar]
  • 12.Kopsell DA, Kopsell DE, Curran-Celentano J. Carotenoid and chlorophyll pigments in sweet basil grown in the field and green house. Hortic. Sci. 2005;40:1230–1233. [Google Scholar]
  • 13.Ošt’ádalová M T B, Straka I, Pokorná J, Èáslavková P. Evaluation of significant pigmets in green teas of different origin. Potravinárstvo. 2014;8:221–227. [Google Scholar]
  • 14.Huang WY, Cai YZ, Corke H, Sun M. Survey of antioxidant capacity and nutritional quality of selected edible and medicinal fruit plants in Hong Kong. J. Food Compos. Anal. 2010;23:510–517. doi: 10.1016/j.jfca.2009.12.006. [DOI] [Google Scholar]
  • 15.Lee LS, Choi JH, Son N, Kim SH, Park JD, Jang DJ, Jeong Y, Kim HJ. Metabolic analysis of the effect of shade treatment on the nutritional and sensory qualities of green tea. J. Agr. Food Chem. 2012;61:332–338. doi: 10.1021/jf304161y. [DOI] [PubMed] [Google Scholar]
  • 16.Jung CH, Kang ST, Joo OS, Lee SC, Shin YH, Shim KH, Cho SH, Choi SG, Heo HJ. Phenolic content, antioxidant effect and acetylcholinesterase inhibitory activity of Korean commercial Green, Puer, Oolong, and Black teas. Korean J. Food Presev. 2009;16:230–237. [Google Scholar]
  • 17.Gokhale SV, Lele SS. Betalain content and antioxidant activity of beta vulgaris: Effect of hot air convective drying and storage. J. Food Process. Pres. 2012;38:585–590. doi: 10.1111/jfpp.12006. [DOI] [Google Scholar]
  • 18.He W, Gao Y, Yuan F, Bao Y, Liu F, Dong J. Optimization of supercritical carbon dioxide extraction of gardenia fruit oil and the analysis of functional components. J. Am. Oil Chem. Soc. 2010;87:1071–1079. doi: 10.1007/s11746-010-1592-z. [DOI] [Google Scholar]
  • 19.Yen GC, Chen HY. Relationship between antimutagenic activity and major components of various teas. Mutagenesis. 1996;11:37–41. doi: 10.1093/mutage/11.1.37. [DOI] [PubMed] [Google Scholar]
  • 20.Ramadan MF, Morsel JT. Recovered lipids from prickly pear [Opuntia ficusindica (L.) Mill] peel: A good source of polyunsaturated fatty acids, natural antioxidant vitamins and sterols. Food Chem. 2003;83:447–456. doi: 10.1016/S0308-8146(03)00128-6. [DOI] [Google Scholar]
  • 21.Ramadan MF, Morsel JT. Oil cactus pear (Opuntia ficus-indica L.) Food Chem. 2003;82:339–345. doi: 10.1016/S0308-8146(02)00550-2. [DOI] [Google Scholar]
  • 22.Ahn H, Choe E. Effects of blanching and drying on pigments and antioxidants of daraesoon (shoot of the Siberian gooseberry tree, Actinidia arguta Planchon) Food Sci. Biotechnol. 2015;24:1265–1270. doi: 10.1007/s10068-015-0162-4. [DOI] [Google Scholar]
  • 23.Dueik V R t P, Bouchon P. Vacuum frying reduces oil uptake and improves the quality parameters of carrot crisps. Food Chem. 2010;119:1143–1149. doi: 10.1016/j.foodchem.2009.08.027. [DOI] [Google Scholar]
  • 24.Borchani C, Besbes S, Blecker CH, Attia H. Chemical characteristics and oxidative stability of sesame seed, sesame paste, and olive oils. J. Agr. Sci. Tech. 2010;12:585–596. [Google Scholar]
  • 25.D’Archivio M, Filesi C, Varì R, Scazzocchio B, Masella R. Bioavailability of the polyphenols: Status and controversies. Int. J. Mol. Sci. 2010;11:1321–1342. doi: 10.3390/ijms11041321. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 26.Esposto S, Taticchi A, Di Maio I, Urbani S, Veneziani G, Selvaggini R, Sordini B, Servili M. Effect of an olive phenolic extract on the quality of vegetable oils during frying. Food Chem. 2015;176:184–192. doi: 10.1016/j.foodchem.2014.12.036. [DOI] [PubMed] [Google Scholar]
  • 27.Henry LK, Catignani GL, Schwartz SJ. Oxidative degradation kinetics of lycopene, lutein, and 9-cis and all-trans ß-carotene. J. Am. Oil Chem. Soc. 1998;75:823–829. doi: 10.1007/s11746-998-0232-3. [DOI] [Google Scholar]
  • 28.Daskalaki D, Kefi G, Kotsiou K, Tasioula-Margari M. Evaluation of phenolic compounds degradation in virgin olive oil during storage and heating. J. Food Nutr. Res. 2009;48:31–41. [Google Scholar]
  • 29.Wada M, Kido H, Ohyama K, Ichibangase T, Kishikawa N, Ohba Y, Nakashima MN, Kuroda N, Nakashima K. Chemiluminescent screening of quenching effects of natural colorants against reactive oxygen species: Evaluation of grade seed, monascus, gardenia and red radish extracts as multi-functional food additives. Food Chem. 2007;101:980–986. doi: 10.1016/j.foodchem.2006.02.050. [DOI] [Google Scholar]
  • 30.Park KR, Lee SG, Nam TG, Kim YJ, Kim YR, Kim DO. Comparative analysis of catechin and antioxidant capacity in various grades of organic green teas in Boseong, Korea. Korean J. Food Sci. Technol. 2009;41:82–86. [Google Scholar]
  • 31.Georgiev VG, Weber J, Kneschke EM, Denev PN, Bley T, Pavlov AI. Antioxidant activity and phenolic content of betalain extracts from intact plants and hairy root cultures of red beetroot Beta vulgaris cv. Detroit dark red. Plant Food Hum. Nutr. 2010;65:105–111. doi: 10.1007/s11130-010-0156-6. [DOI] [PubMed] [Google Scholar]
  • 32.Azeredo HMC. Betalains: Properties, sources, applications, and stability. Int. J. Food Sci. Tech. 2009;44:2365–2376. doi: 10.1111/j.1365-2621.2007.01668.x. [DOI] [Google Scholar]
  • 33.Allegra M, D’Acquisto F, Tesoriere L, Attanzio A, Livrea MA. Pro-oxidant activity of indicaxanthin from Opuntia ficus indica modulates arachidonate metabolism and prostaglandin synthesis through lipid peroxide production in LPS-stimulated RAW 264.7 macrophages. Redox Biol. 2014;2:892–900. doi: 10.1016/j.redox.2014.07.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 34.Ha DO, Park CU, Kim MJ, Lee JH. Antioxidant and prooxidant activities of ß-carotene in accelerated autoxidation and photosensitized model systems. Food Sci. Biotechnol. 2012;21:607–611. doi: 10.1007/s10068-012-0078-1. [DOI] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES