Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Aug 31;25(4):1183–1187. doi: 10.1007/s10068-016-0188-2

Antioxidant and anti-adipogenic activities of acorn shells

Un-Young Youn 1, Myung-Soo Shon 1, Gyo-Nam Kim 1, Riho Katagiri 2, Kaori Harata 2, Masayuki Kamegai 2, Yasuyuki Ishida 2, Seung-Cheol Lee 1,
PMCID: PMC6049134  PMID: 30263392

Abstract

Antioxidant and anti-adipogenic activities of water extract (WE) and methanol extract (ME) of acorn shells (AS), from Quercus acutissima Carruth. grown in Korea, were investigated. At a concentration of 50 μg/mL, the WE had a scavenging activity of 53.84% for the DPPH and 76.09% for the ABTS radical, while the ME had corresponding scavenging activities of 29.09 and 48.43%. Total phenolic contents of WE and ME were 375.96 and 288.01 mg gallic acid equivalents/g of extracts, respectively. Both extracts significantly inhibited 3T3-L1 adipogenesis in a dose-dependent manner, and concomitantly decreased the size and number of intracellular lipid droplets. Furthermore, the antiadipogenic activities of WE and ME are largely limited in the pre- and early stages of adipogenesis. The results suggest that AS may be a promising source of antioxidants and anti-obesity compounds.

Keywords: acorn, shell, antioxidant, anti-adipiogenic

References

  • 1.Kim BN. A study on the literature review of acorn in Korea. Korean J. Food Cook. Sci. 1995;11:158–163. [Google Scholar]
  • 2.Shim TH, Jin YS, Sa JH, Shin IC, Heo SI, Wang MH. Studies for component analysis and antioxidative evaluation in acorn powders. Korean J. Food Sci. Technol. 2004;36:800–803. [Google Scholar]
  • 3.Rakic S, Povrenovic D, Teševic V, Simic M, Maletic R. Oak acorn, polyphenols and antioxidant activity in functional food. J. Food Eng. 2006;74:416–423. doi: 10.1016/j.jfoodeng.2005.03.057. [DOI] [Google Scholar]
  • 4.Custódio L, Patarra J, Alberício F, da Rosa Neng N, Nogueira JMF, Romano A. Phenolic composition, antioxidant potential and in vitro inhibitory activity of leaves and acorns of Quercus suber on key enzymes relevant for hyperglycemia and Alzheimer’s disease. Ind. Crop. Prod. 2015;64:45–51. doi: 10.1016/j.indcrop.2014.11.001. [DOI] [Google Scholar]
  • 5.Kang MH, Lee JH, Lee JS, Kim JH, Chung HK. Effects of acorn supplementation on lipid profiles and antioxidant enzyme activities in high fat diet-induced obese rats. Korean J. Nutr. 2004;37:169–175. [Google Scholar]
  • 6.Dogan A, Celik I, Kaya MS. Antidiabetic properties of lyophilized extract of acorn (Quercus brantii Lindl.) on experimentally STZ-induced diabetic rats. J. Ethnopharmacol. 2015;176:243–251. doi: 10.1016/j.jep.2015.10.034. [DOI] [PubMed] [Google Scholar]
  • 7.Tadayoni M, Sheikh-Zeinoddin M, Soleimanian-Zad S. Isolation of bioactive polysaccharide from acorn and evaluation of its functional properties. Int. J. Biol. Macromol. 2015;72:179–184. doi: 10.1016/j.ijbiomac.2014.08.015. [DOI] [PubMed] [Google Scholar]
  • 8.Toori MA, Mirzaei M, Mirzaei N, Lamrood P, Mirzaei A. Antioxidant and hepatoprotective effects of the internal layer of oak fruit (Jaft) J. Med. Plants Res. 2013;7:24–28. [Google Scholar]
  • 9.Ishida Y, Hirota T, Sato S, Kamegai M, Kim SK, Park SY, Koo DH, Shon MS, Kim GN, Park HR, Lee SC. Discriminative analysis of free and esterified gallic acids in acorn shells by thermochemolysis-gas chromatography/mass spectrometry in the presence of organic alkalis. J. Anal. Appl. Pyrol. 2015;116:114–119. doi: 10.1016/j.jaap.2015.09.019. [DOI] [Google Scholar]
  • 10.Lee SC, Kim JH, Jeong SM, Kim DR, Ha JU, Nam KC, Ahn DU. Effect of farinfrared radiation on the antioxidant activity of rice hulls. J. Agr. Food Chem. 2003;51:4400–4403. doi: 10.1021/jf0300285. [DOI] [PubMed] [Google Scholar]
  • 11.Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evan C. Antioxidant activity applying improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. [DOI] [PubMed] [Google Scholar]
  • 12.Gutfinger T. Polyphenols in olive oil. J. Am. Oil Chem. Soc. 1981;58:966–968. doi: 10.1007/BF02659771. [DOI] [Google Scholar]
  • 13.Yonemori K, Oshida M, Sugiura A. On the nature of coagulated tannins in astringent-type persimmon fruit after an artificial treatment of astringency removal. Postharvest Biol. Tec. 1996;8:317–327. doi: 10.1016/0925-5214(96)00016-6. [DOI] [Google Scholar]
  • 14.Shon MS, Kim SK, Song JH, Lee SC, Kim GN. Anti-adipogenic activity of blue mußsel (Mytilus edulis) extract by regulation of 3T3-L1 adipogenesis through Wnt/ß-catenin signaling pathway. Food Sci. Biotechnol. 2015;24:315–321. doi: 10.1007/s10068-015-0042-y. [DOI] [Google Scholar]
  • 15.Rakic S, Petrovic S, Kukic J, Jadranin M, Teševic V, Povrenovic D, Šiler-Marinkovic S. Influence of thermal treatment on phenolic compounds and antioxidant properties of oak acorns from Serbia. Food Chem. 2007;1042:830–834. doi: 10.1016/j.foodchem.2007.01.025. [DOI] [Google Scholar]
  • 16.Floegel A, Kim DO, Chung SJ, Koo SI, Chun OK. Comparison of ABTS/DPPH assays to measure antioxidant capacity in popular antioxidant-rich US foods. J. Food Compos. Anal. 2011;24:1043–1048. doi: 10.1016/j.jfca.2011.01.008. [DOI] [Google Scholar]
  • 17.Lee MH, Jeong JH, Oh MJ. Antioxidative activity of gallic acid in acorn extract. J. Korean Soc. Food Nutr. 1992;21:693–700. [Google Scholar]
  • 18.Hagerman AE, Riedl KM, Jones GA, Sovik KN, Ritchard NT, Hartzfeld PW, Riechel TL. High molecular weight plant polyphenolics (tannins) as biological antioxidants. J. Agr. Food Chem. 1998;46:1887–1892. doi: 10.1021/jf970975b. [DOI] [PubMed] [Google Scholar]
  • 19.Grepoire FM, Smas CM, Sul HS. Understanding adipocyte differentiation. Physiol. Rev. 1998;78:783–809. doi: 10.1152/physrev.1998.78.3.783. [DOI] [PubMed] [Google Scholar]
  • 20.Hwang JT, Park IJ, Shin JI, Lee YK, Lee SK, Baik HW, Ha J, Park OJ. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem. Bioph. Res. Co. 2005;338:694–699. doi: 10.1016/j.bbrc.2005.09.195. [DOI] [PubMed] [Google Scholar]
  • 21.Kwon JY, Seo SG, Yue S, Cheng JX, Lee KW, Kim KH. An inhibitory effect of resveratrol in the mitotic clonal expansion and insulin signaling pathway in the early phase of adipogenesis. Nutr. Res. 2012;32:607–616. doi: 10.1016/j.nutres.2012.06.014. [DOI] [PubMed] [Google Scholar]
  • 22.Kwon JY, Seo SG, Heo YS, Yue S, Chen JX, Lee KW, Kim KH. Piceatannol, natural polyphenlic stilbene, inhibits adipogenesis via modulation of mitotic clonal expansion and insulin receptor-dependent insulin signaling in early phase of differentiation. J. Biol. Chem. 2012;287:11566–11578. doi: 10.1074/jbc.M111.259721. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES