Abstract
A modified brain heart infusion (MBHI) broth and a protocol of immunomagnetic separation (IMS) using antibody-coated Dynabeads® protein G were developed for the enrichment and separation of Bacillus cereus in artificially contaminated vegetable samples. The MBHI consisted of BHI and 0.34 g/L magnesium sulfate, 12.08 g/L sodium pyruvate, 1.82 g/L yeast extract, and polymyxin B. The amount of immunomagnetic beads (IMBs) and immunoreaction time were optimized. The capture efficiency was 58.32% with 0.4 mg IMBs when the immunoreaction time was 20 min. Capture of B. cereus by IMBs did not interfere with competing flora. Pre-enrichment IMS was validated with four B. cereus strains in artificially contaminated baby sprouts, bean sprouts, lettuce, and spinach at two levels (∼0.1 and ∼1 CFU/g). We were able to detect and isolate B. cereus in 40/40 samples of vegetables contaminated at 0.1 CFU/g with IMS after 6 h of enrichment in MBHI.
Keywords: Bacillus cereus, immunomagnetic separation, Dynabeads® protein G, enrichment
References
- 1.Granum PE, Lund T. Bacillus cereus and its food poisoning toxins. FEMS Microbiol. Lett. 1997;157:223–228. doi: 10.1111/j.1574-6968.1997.tb12776.x. [DOI] [PubMed] [Google Scholar]
- 2.Hauge S. Food poisoning caused by aerobic spore-forming bacilli. J. Appl. Bacteriol. 1955;18:591–595. doi: 10.1111/j.1365-2672.1955.tb02116.x. [DOI] [Google Scholar]
- 3.Mahler H, Pasi A, Kramer JM, Schulte P, Scoging AC, Bär W K S. Fulminant liver failure in association with the emetic toxin of Bacillus cereus. New Engl. J. Med. 1997;336:1142–1148. doi: 10.1056/NEJM199704173361604. [DOI] [PubMed] [Google Scholar]
- 4.Dierick K, Van Coillie E, Swiecicka I, Meyfroidt G, Devlieger H, Meulemans A, Hoedemaekers G, Fourie L, Heyndrickx M, Mahillon J. Fatal family outbreak of Bacillus cereus-associated food poisoning. J. Clin. Microbiol. 2005;43:4277–4279. doi: 10.1128/JCM.43.8.4277-4279.2005. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Naranjo M, Denayer S, Botteldoorn N, Delbrassinne L, Veys J, Waegenaere J, Sirtaine N, Driesen RB, Sipido KR, Mahillon J. Sudden death of a young adult associated with Bacillus cereus food poisoning. J. Clin. Microbiol. 2011;49:4379–4381. doi: 10.1128/JCM.05129-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Valero M, Hernández-Herrero L, Fernández P, Salmerón M. Characterization of Bacillus cereus isolates from fresh vegetables and refrigerated minimally processed foods by biochemical and physiological tests. Food Microbiol. 2002;19:491–499. doi: 10.1006/fmic.2002.0507. [DOI] [Google Scholar]
- 7.Rosenquist H, Smidt L, Andersen SR, Jensen GB, Wilcks A. Occurrence and significance of Bacillus cereus and Bacillus thuringiensis in ready-to-eat food. FEMS Microbiol. Lett. 2005;250:129–136. doi: 10.1016/j.femsle.2005.06.054. [DOI] [PubMed] [Google Scholar]
- 8.Messelhäusser U, Frenzel E, Blöchinger C, Zucker R, Kämpf P, Ehling-Schulz M. Emetic Bacillus cereus are more volatile than thought: Recent foodborne outbreaks and prevalence studies in bavaria (2007-2013) BioMed. Res. Int. 2014;2014:465603. doi: 10.1155/2014/465603. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Fernández-No I, Guarddon M, Böhme K, Cepeda A, Calo-Mata P, Barros-Velázquez J. Detection and quantification of spoilage and pathogenic Bacillus cereus, Bacillus subtilis and Bacillus licheniformis by real-time PCR. Food Microbiol. 2011;28:605–610. doi: 10.1016/j.fm.2010.10.014. [DOI] [PubMed] [Google Scholar]
- 10.Guerini MN, Arthur TM, Shackelford SD, Koohmaraie M. Evaluation of Escherichia coli O157: H7 growth media for use in test-and-hold procedures for ground beef processing. J. Food Protect. 2006;69:1007–1011. doi: 10.4315/0362-028x-69.5.1007. [DOI] [PubMed] [Google Scholar]
- 11.Kobayashi H, Kubota J, Fujihara K, Honjoh K-i, Iio M, Fujiki N, Nakabe M, Oda S-i, Satoyama T, Takasu K. Simultaneous enrichment of Salmonella spp, Escherichia coli O157:H7, Vibrio parahaemolyticus, Staphylococcus aureus, Bacillus cereus, and Listeria monocytogenes by single broth and screening of the pathogens by multiplex real-time PCR. Food Sci. Technol. Res. 2009;15:427–438. doi: 10.3136/fstr.15.427. [DOI] [Google Scholar]
- 12.Kumar TK, Murali H, Batra H. Multiplex PCR assay for the detection of enterotoxic Bacillus cereus group strains and its application in food matrices. Indian J. Microbiol. 2010;50:165–171. doi: 10.1007/s12088-010-0002-4. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 13.Jeníková G, Pazlarová J, Demnerová K. Detection of Salmonella in food samples by the combination of immunomagnetic separation and PCR assay. Int. Microbiol. 2010;3:225–229. [PubMed] [Google Scholar]
- 14.Amoako KK, Shields MJ, Goji N, Paquet C, Thomas MC, Janzen TW, Bin Kingombe CI, Kell AJ, Hahn KR. J. Pathog. 2012. Rapid detection and identification of Yersinia pestis from food using immunomagnetic separation and pyrosequencing. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 15.Estrada CSL, del Carmen Velázquez L, Favier GI, Di Genaro MS, Escudero ME. Detection of Yersinia spp. in meat products by enrichment culture, immunomagnetic separation and nested PCR. Food Microbiol. 2012;30:157–163. doi: 10.1016/j.fm.2011.10.014. [DOI] [PubMed] [Google Scholar]
- 16.Fu Z, Rogelj S, Kieft TL. Rapid detection of Escherichia coli O157:H7 by immunomagnetic separation and real-time PCR. Int. J. Food Microbiol. 2005;99:47–57. doi: 10.1016/j.ijfoodmicro.2004.07.013. [DOI] [PubMed] [Google Scholar]
- 17.Mao Y, Huang X, Xiong S, Xu H, Aguilar ZP, Xiong Y. Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes and Listeria ivanovii in lettuce. Food Control. 2016;59:601–608. doi: 10.1016/j.foodcont.2015.06.048. [DOI] [Google Scholar]
- 18.Björck L, Kronvall G. Purification and some properties of streptococcal protein G, a novel IgG-binding reagent. J. Immunol. 1984;133:969–974. [PubMed] [Google Scholar]
- 19.Varshney M, Yang L, Su X-L, Li Y. Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef. J. Food Protect. 2005;68:1804–1811. doi: 10.4315/0362-028x-68.9.1804. [DOI] [PubMed] [Google Scholar]
- 20.Xiong Q, Cui X, Saini JK, Liu D, Shan S, Jin Y, Lai W. Development of an immunomagnetic separation method for efficient enrichment of Escherichia coli O157:H7. Food Control. 2014;37:41–45. doi: 10.1016/j.foodcont.2013.08.033. [DOI] [Google Scholar]
- 21.Kim D-H, Kim H, Chon J-W, Moon J-S, Song K-Y, Seo K-H. Development of blood-yolk-polymyxin B-trimethoprim agar for the enumeration of Bacillus cereus in various foods. Int. J. Food Microbiol. 2013;165:144–147. doi: 10.1016/j.ijfoodmicro.2013.04.015. [DOI] [PubMed] [Google Scholar]
- 22.Reekmans R, Stevens P, Vervust T, De Vos P. An alternative real-time PCR method to detect the Bacillus cereus group in naturally contaminated food gelatine: A comparison study. Lett. Appl. Microbiol. 2009;48:97–104. doi: 10.1111/j.1472-765X.2008.02495.x. [DOI] [PubMed] [Google Scholar]
- 23.Wang Y, Yin Y, Zhang C. Selective cultivation and rapid detection of Staphylococcus aureus by computer vision. J. Food Sci. 2014;79:M399–M406. doi: 10.1111/1750-3841.12355. [DOI] [PubMed] [Google Scholar]
- 24.Restaino L. Plating media for the presumptive identification of Bacillus cereus and Bacillus thuringiensis. 2001. [Google Scholar]
- 25.Busch SV, Donnelly CW. Development of a repair-enrichment broth for resuscitation of heat-injured Listeria monocytogenes and Listeria innocua. Appl. Environ. Microb. 1992;58:14–20. doi: 10.1128/aem.58.1.14-20.1992. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Shan S, Zhong Z, Lai W, Xiong Y, Cui X, Liu D. Immunomagnetic nanobeads based on a streptavidin-biotin system for the highly efficient and specific separation of Listeria monocytogenes. Food Control. 2014;45:138–142. doi: 10.1016/j.foodcont.2014.04.036. [DOI] [Google Scholar]
- 27.Sun W, Khosravi F, Albrechtsen H, Brovko L, Griffiths M. Comparison of ATP and in vivo bioluminescence for assessing the efficiency of immunomagnetic sorbents for live Escherichia coli O157: H7 cells. J. Appl. Microbiol. 2002;92:1021–1027. doi: 10.1046/j.1365-2672.2002.01639.x. [DOI] [PubMed] [Google Scholar]
- 28.Linda S, Uknalis J, Tu S-I. Immunomagnetic separation methods for the isolation of Campylobacter jejuni from ground poultry meats. J. Immunol. Methods. 2001;256:11–18. doi: 10.1016/S0022-1759(01)00372-6. [DOI] [PubMed] [Google Scholar]
- 29.Yang H, Qu L, Wimbrow AN, Jiang X, Sun Y. Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and realtime PCR. Int. J. Food Microbiol. 2007;118:132–138. doi: 10.1016/j.ijfoodmicro.2007.06.019. [DOI] [PubMed] [Google Scholar]
- 30.Uyttendaele M, Van Hoorde I, Debevere J. The use of immuno-magnetic separation (IMS) as a tool in a sample preparation method for direct detection of L. monocytogenes in cheese. Int. J. Food Microbiol. 2000;54:205–212. doi: 10.1016/S0168-1605(99)00196-8. [DOI] [PubMed] [Google Scholar]
- 31.Fricker M, Reissbrodt R, Ehling-Schulz M. Evaluation of standard and new chromogenic selective plating media for isolation and identification of Bacillus cereus. Int. J. Food Microbiol. 2008;121:27–34. doi: 10.1016/j.ijfoodmicro.2007.10.012. [DOI] [PubMed] [Google Scholar]
- 32.Weagant SD, Bound AJ. Evaluation of techniques for enrichment and isolation of Escherichia coli O157:H7 from artificially contaminated sprouts. Int. J. Food Microbiol. 2001;71:87–92. doi: 10.1016/S0168-1605(01)00558-X. [DOI] [PubMed] [Google Scholar]
- 33.Weagant SD, Jinneman KC, Yoshitomi KJ, Zapata R, Fedio WM. Optimization and evaluation of a modified enrichment procedure combined with immunomagnetic separation for detection of E. coli O157:H7 from artificially contaminated alfalfa sprouts. Int. J. Food Microbiol. 2011;149:209–217. doi: 10.1016/j.ijfoodmicro.2011.06.008. [DOI] [PubMed] [Google Scholar]
