Abstract
The objective of this study was to obtain the in vitro cultures of Boletus badius under controlled conditions and investigate the release of indole compounds and zinc from the mycelium of B. badius to artificial digestive juices under conditions similar to those in the human gastrointestinal tract. Biomass was obtained from cultures grown using both only the Oddoux medium as well as the same medium with added zinc hydroaspartate and zinc sulfate. The release of 5-hydroxy-L-tryptophan, L-tryptophan, and serotonin from the B. badius biomass extracts to the artificial digestive juices was determined. Differential pulse anodic stripping voltammetry was used to demonstrate that zinc is released from each of the extracted materials. The total amount of zinc in the materials under study was estimated to be between 7.12 and 44.15 mg/100 g dry weight. It was demonstrated that in vitro cultures of B. badius grown using appropriately selected media may supplement zinc and indole compounds.
Keywords: artificial digestive juice, Boletus badius, indole compounds, mycelial culture, zinc supplementation
References
- 1.Doğan HH, Sanda MA, Uyanöz R, Öztürk C, Çetin Contents of metals in some wild mushrooms. Biol. Trace Elem. Res. 2006;110:79–93. doi: 10.1385/BTER:110:1:79. [DOI] [PubMed] [Google Scholar]
- 2.Kalač P. Chemical composition and nutritional value of European species of wild growing mushrooms: A review. Food Chem. 2009;113:9–16. doi: 10.1016/j.foodchem.2008.07.077. [DOI] [Google Scholar]
- 3.Wasser SP, Weis A. Therapeutic effects of substances occurring in higher Basidiomycetes mushroom: A modern perspective. Crit. Rev. Immunol. 1999;19:65–69. [PubMed] [Google Scholar]
- 4.Zaidman BZ, Yassin M, Mahajana J, Wasser SP. Medicinal mushroom modulators of molecular targets as cancer therapeutic. Appl. Microbiol. Biot. 2005;67:453–468. doi: 10.1007/s00253-004-1787-z. [DOI] [PubMed] [Google Scholar]
- 5.Barros L, Cruz T, Baptista P, Estevinho LM, Ferreira ICFR. Wild and commercial mushrooms as source of nutrients and nutraceuticals. Food Chem. Toxicol. 2008;46:2742–2747. doi: 10.1016/j.fct.2008.04.030. [DOI] [PubMed] [Google Scholar]
- 6.Scalbert A, Manach C, Morand C, Remesy C, Jimenez J. Dietary polyphenols and the prevention of diseases. Crit. Rev. Food Sci. 2005;45:287–306. doi: 10.1080/1040869059096. [DOI] [PubMed] [Google Scholar]
- 7.Singh M, Arseneault M, Sanderson T, Murthy V, Ramassamy C. Challenges for research on polyphenols from foods in Alzheimer’s disease: Bioavability, metabolism and cellular and molecular mechanism. J. Agr. Food Chem. 2008;56:4855–4873. doi: 10.1021/jf0735073. [DOI] [PubMed] [Google Scholar]
- 8.Vermerris W, Nicholson R. Phenolic compounds and their effects on human health. In: Vermerris W, Nicholson R, editors. Phenolic Compound Biochemistry. Dordrecht, Netherlands: Springer Science+Business Media BV; 2008. [Google Scholar]
- 9.Barros L, Dueñas M, Ferreira ICRF, Baptista P, Santos-Buelga C. Phenolic acids determination by HPLC-DAD-ESI/MS in sixteen different Portuguese wild mushrooms species. Food Chem. Toxicol. 2009;47:1076–1079. doi: 10.1016/j.fct.2009.01.039. [DOI] [PubMed] [Google Scholar]
- 10.Muszyńska B, Sułkowska-Ziaja K, Ekiert H. Phenolic acids in selected edible Basidomycota species: Armillaria mellea, Boletus badius, Boletus edulis, Cantharellus cibarius, Lactarius deliciosus, and Pleurotus ostreatus. Acta Sci. Pol.-Hortoru. 2013;12:107–116. [Google Scholar]
- 11.Reis FS. Antioxidant properties and phenolic profile of the most widely appreciated cultivated mushrooms: A comparative study between in vivo and in vitro samples. Food Chem. Toxicol. 2012;50:1201–1207. doi: 10.1016/j.fct.2012.02.013. [DOI] [PubMed] [Google Scholar]
- 12.Elmastas M, Isildak O, Turkekul I, Temur N. Determination of antioxidant activity and compounds in wild edible mushrooms. J. Food Compos. Anal. 2007;20:337–345. doi: 10.1016/j.jfca.2006.07.003. [DOI] [Google Scholar]
- 13.Muszyńska B, Sułkowska-Ziaja K, Lojewski M, Opoka W, Zajac M, Rojowski J. Edible mushrooms in prophylaxis and treatment of human diseases. Med. Inter. Rev. 2013;101:170–183. [Google Scholar]
- 14.Andreini C, Bertini I. A bioinformatics view of zinc enzymes. J. Inorg. Biochem. 2012;111:150–156. doi: 10.1016/j.jinorgbio.2011.11.020. [DOI] [PubMed] [Google Scholar]
- 15.Kuljeet K, Rajiv G, Shubhini AS, Shailendra KS. Zinc: The metal of life. Compr. Rev. Food Sci. F. 2014;13:35–376. doi: 10.1111/1541-4337.12067. [DOI] [PubMed] [Google Scholar]
- 16.Knudsen H, Vesterholt J. In: Funga Nordica: Agaricoid, boletoid and cyphelloid genera. Knudsen H, Vesterholt J (eds). Nordsvamp, Copenhagen, Denmark (2008)
- 17.Oddoux L. Imprimerie de Trevoux. 1957. Recherches sur les mycéliums secondaires des Homobasidiés en culture pure; pp. 9–20. [Google Scholar]
- 18.Arvidson K, Johasson EG. Galvanic current between dental alloys in vitro. Scand. J. Dent. Res. 1985;93:467–473. doi: 10.1111/j.1600-0722.1985.tb01341.x. [DOI] [PubMed] [Google Scholar]
- 19.Polish Pharmacopeia. Ed X, PTFarm, Warszawa, Poland. p. 646 (2014)
- 20.Zajac M, Muszyńska B, Kała K, Sikora A, Opoka W. Popular species of edible mushrooms as a good source of zinc released to artificial digestive juices. J. Physiol. Pharmacol. 2015;66:763–769. [PubMed] [Google Scholar]
- 21.Muszyńska B, Ekiert H, Kwiecien I, Maoelanka A, Zodi R, Beerhues L. Comparative analysis of therapeutically important indole compounds in in vitro cultures of Hypericum perforatum cultivars by HPLC and TLC analysis coupled with densitometric detection. Nat. Prod. Commun. 2014;9:1437–1440. [PubMed] [Google Scholar]
- 22.Validation and analytical procedures: Text and methodology. Available from: http://www.ich.org/fileadmin/Public_Web_Site/ICH_Products/Guidelines/ Quality/Q2_R1/Step4/Q2_R1__Guideline.pdf. Accessed Nov. 6, 2015
- 23.Sułkowska-Ziaja K, Muszyńska B, Motyl P, Ekiert H, Pasko P. Phenolic compounds and antioxidant activity in some species of polyporoid mushrooms from Poland. Int. J. Med. Mushrooms. 2012;14:385–393. doi: 10.1615/IntJMedMushr.v14.i4.60. [DOI] [PubMed] [Google Scholar]
- 24.Muszyńska B, Sułkowska-Ziaja K, Ekiert H. Indole compounds in fruiting bodies of some selected Macromycetes species and in their mycelia cultured in vitro. Pharmazie. 2009;64:479–480. [PubMed] [Google Scholar]
- 25.Muszyńska B, Sułkowska-Ziaja K, Ekiert H. Analysis of indole compounds in methanolic extracts from the fruiting bodies of Cantharellus cibarius (the Chanterelle) and from the mycelium of this species cultured in vitro. J. Food Sci. Tech. Mys. 2013;50:1233–1237. doi: 10.1007/s13197-013-1009-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 26.Muszyńska B, Sułkowska-Ziaja K. Analysis of indole compounds in edible Basidiomycota species after thermal processing. Food Chem. 2012;132:455–459. doi: 10.1016/j.foodchem.2011.11.021. [DOI] [PubMed] [Google Scholar]
- 27.Muszyńska B, Sułkowska-Ziaja K, Ekiert H. An antioxidant in fruiting bodies and in mycelia from in vitro cultures of Calocera viscosa (Basidiomycota)-preliminary results. Acta Pol. Pharm. 2012;69:135–138. [PubMed] [Google Scholar]
- 28.Muszyńska B, Kała K, Sułkowska-Ziaja K, Gawel K, Zajac M, Opoka W. Determination of indole compounds released from selected edible mushrooms and their biomass to artificial stomach juice. LWT-Food Sci. Technol. 2015;62:27–31. doi: 10.1016/j.lwt.2015.01.037. [DOI] [Google Scholar]
- 29.Reczyński W, Muszyńska B, Opoka W, Smalec A, Sułkowska-Ziaja K. Comparative study of metals accumulation in cultured in vitro mycelium and natural grown fruiting bodies of Boletus badius and Cantharellus cibarius. Biol. Trace Elem. Res. 2013;153:355–359. doi: 10.1007/s12011-013-9670-3. [DOI] [PMC free article] [PubMed] [Google Scholar]