Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Apr 30;25(2):445–451. doi: 10.1007/s10068-016-0061-3

Comparisons and correlations of phenolic profiles and anti-oxidant activities of seventeen varieties of pineapple

Liqing Du 1, Guangming Sun 1, Xiumei Zhang 1, Yuge Liu 1, Witoon Prinyawiwatkul 2, Zhimin Xu 2, Yixiao Shen 2,
PMCID: PMC6049176  PMID: 30263289

Abstract

Major phenolic, β-carotene, and ascorbic acid (AA) contents in 17 pineapple varieties were quantified and compared. Anti-oxidant activities were evaluated using 2,2-Diphenyl-l-picrylhydrazyl (DPPH), 2,2’-Azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), ferric reducing anti-oxidant power (FRAP), and metal chelating capacity (MCC) assays. MD-2 exhibited the highest AA and total phenolic (TP) contents and DPPH and ABTS assay results, but was lower in β-carotene contents. Ripley had the highest total flavonoid (TF) content with a low AA content. Comte de Pairs exhibited the highest MCC and the lowest FRAP values. TP contents and both DPPH and ABTS activities, FRAP values and both AA contents and DPPH activities, and TF contents and ABTS activities were positively correlated. MD-2 exhibited the greatest diversity of phenolics and highest anti-oxidant activities in all assays. Information included herein can be useful for development of pineapple-based food products containing high levels of health promoting anti-oxidants.

Keywords: anti-oxidant, correlation, phenolic profile, pineapple

References

  • 1.Zhang X, Shen Y, Prinyawiwatkul W, Xu Z. Volatile compounds in fresh-cut pineapple heated at different temperatures. J. Food Process. Pres. 2012;36:567–573. doi: 10.1111/jfpp.12009. [DOI] [Google Scholar]
  • 2.Montero-Calderon M, Rojas-Grau MA, Aguilo-Aguayo I, Soliva-Fortuny R, Martin-Belloso O. Influence of modified atmosphere packaging on volatile compounds and physicochemical and anti-oxidant attributes of fresh-cut pineapple (Ananas comosus) J. Agr. Food Chem. 2010;58:5042–5049. doi: 10.1021/jf904585h. [DOI] [PubMed] [Google Scholar]
  • 3.Pino J, Queris O. Analysis of volatile compounds of pineapple wine using solidphase microextraction techniques. Food Chem. 2010;122:1241–1246. doi: 10.1016/j.foodchem.2010.03.033. [DOI] [Google Scholar]
  • 4.Alotham A, Bhat R, Karim AA. Anti-oxidant capacity and phenolic content of selected tropical fruits from Malaysia, extracted with different solvents. Food Chem. 2009;115:785–788. doi: 10.1016/j.foodchem.2008.12.005. [DOI] [Google Scholar]
  • 5.Xu Z, Howard LR. Analysis of Anti-oxidant-rich Phytochemicals. Hoboken, NJ, USA: John Wiley & Sons. Inc.; 2012. pp. 1–16. [Google Scholar]
  • 6.Mhatre M, Tilak-Jain J, De S, Devasagayam TPA. Evaluation of the anti-oxidant activity of non-transformed and transformed pineapple: A comparative study. Food Chem. Toxicol. 2009;47:2696–2702. doi: 10.1016/j.fct.2009.06.031. [DOI] [PubMed] [Google Scholar]
  • 7.Jang S, Xu Z. Lipophilic and hydrophilic anti-oxidants and their anti-oxidant activities in purple rice bran. J. Agr. Food Chem. 2009;57:58–862. doi: 10.1021/jf803113c. [DOI] [PubMed] [Google Scholar]
  • 8.Kim DO, Chun OK, Kim YJ, Moon HY, Lee CY. Quantification of polyphenolics and their anti-oxidant capacity in fresh plums. J. Agr. Food Chem. 2003;51:6509–6515. doi: 10.1021/jf0343074. [DOI] [PubMed] [Google Scholar]
  • 9.Kampfenkel KM, Montagu V, Inz D. Extraction and determination of ascorbate and dehydroascorbate from plant tissue. Anal. Biochem. 1995;225:165–167. doi: 10.1006/abio.1995.1127. [DOI] [PubMed] [Google Scholar]
  • 10.Liyana-Pathirana CM, Shahidi F. Anti-oxidant activity of commerical soft and hard wheat (Triticum aestivum L.) as affected by gastric pH conditions. J. Agr. Food Chem. 2005;53:2433–2440. doi: 10.1021/jf049320i. [DOI] [PubMed] [Google Scholar]
  • 11.Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Bio. Med. 1999;26:1231–1237. doi: 10.1016/S0891-5849(98)00315-3. [DOI] [PubMed] [Google Scholar]
  • 12.Benzie LF, Strain JJ. The ferric reducing ability of plasma (FRAP) as a measure of “anti-oxidant power”: The FRAP Assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292. [DOI] [PubMed] [Google Scholar]
  • 13.Dinis TCP, Madeira VMC, Almeida LM. Action of phenolic derivates (acetoaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys. 1994;315:161–169. doi: 10.1006/abbi.1994.1485. [DOI] [PubMed] [Google Scholar]
  • 14.Shen Y, Zhang X, Prinyawiwatkul W, Xu Z. Phytochemicals in sweet sorghum (Dura) and their anti-oxidant capabilities against lipid oxidation. J. Agr. Food Chem. 2013;61:12620–12624. doi: 10.1021/jf4040157. [DOI] [PubMed] [Google Scholar]
  • 15.Fu L, Xu B, Xu X, Gan R, Zhang Y, Xia E, Li H. Anti-oxidant capacities and total phenolic contents of 62 fruits. Food Chem. 2011;129:345–350. doi: 10.1016/j.foodchem.2011.04.079. [DOI] [PubMed] [Google Scholar]
  • 16.Lin J, Tang C. Determination of total phenolic and flavonoid contents in selected fruits and vegetables, as well as their stimulatory effects on mouse splenocyte proliferation. Food Chem. 2007;101:140–147. doi: 10.1016/j.foodchem.2006.01.014. [DOI] [Google Scholar]
  • 17.Robles-Sánchez M, Astiazaran-Garcia H, Martin-Belloso O, Gorinstein S, Alvarez-Parrilla E, De la Rosa LA, Yepiz-Plascencia G, Gonzalez-Aguilar G. Influence of whole and fresh-cut mango intake on plasma lipids and antioxidant capacity of healthy adults. Food Res. Int. 2011;44:1386–1391. doi: 10.1016/j.foodres.2011.01.052. [DOI] [Google Scholar]
  • 18.Setiawan B, Setiawan B, Sulaeman A, Giraud DW, Driskell JA. Carotenoid content of selected indonesian fruits. J. Food Compos. Anal. 2001;14:169–176. doi: 10.1006/jfca.2000.0969. [DOI] [Google Scholar]
  • 19.Holden JM, Eldridge AL, Beecher GR, Marilyn BI, Bhagwat S, Davis CS, Douglass LW, Gebhardt S, Haytowitz D, Schakel S. Carotenoid content of U.S. foods: An update of the database. J. Food Compos. Anal. 1999;12:169–196. [Google Scholar]
  • 20.Zhang Y, Sun Y, Xi W, Shen Y, Qiao L, Zhong L, Ye X, Zhou Z. Phenolic compositions and anti-oxidant capacities of Chinese wild mandarin (Citrus reticulata Blanco) fruits. Food Chem. 2014;145:674–680. doi: 10.1016/j.foodchem.2013.08.012. [DOI] [PubMed] [Google Scholar]
  • 21.Chavez-Santoscoy RA, Gutierrez-Uribe JA, Serna-Saldívar SO. Phenolic composition, anti-oxidant capacity and in vitro cancer cell cytotoxicity of nine prickly pear (Opuntia spp.) juices. Plant Food Hum. Nutr. 2009;64:146–152. doi: 10.1007/s11130-009-0117-0. [DOI] [PubMed] [Google Scholar]
  • 22.Jomova K, Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283:65–87. doi: 10.1016/j.tox.2011.03.001. [DOI] [PubMed] [Google Scholar]
  • 23.Pande G, Akoh CC. Organic acids, anti-oxidant capacity, phenolic content and lipid characterization of Georgia-grown underutilized fruit crops. Food Chem. 2010;120:1067–1075. doi: 10.1016/j.foodchem.2009.11.054. [DOI] [Google Scholar]
  • 24.Palafox-Carlosa H, Yahiab E, Islas-Osunaa MA, Gutierrez-Martinezc P, Robles-Sánchezd M, González-Aguilara GA. Effect of ripeness stage of mango fruit Mangifera indica L., cv. Ataulfo) on physiological parameters and anti-oxidant activity. Sci. Hortic.-Amsterdam. 2012;135:7–13. [Google Scholar]
  • 25.Prior RL, Wu X, Schaich K. Standardised methods for the determination of anti-oxidant capacity and phenolics in foods and dietary supplements. J. Agr. Food Chem. 2005;53:4290–4302. doi: 10.1021/jf0502698. [DOI] [PubMed] [Google Scholar]
  • 26.Ma X, Wu H, Liu L, Yao Q, Wang S, Zhan R, Xing S, Zhou Y. Polyphenolic compounds and anti-oxidant properties in mango fruits. Sci. Hortic.-Amsterdam. 2011;129:102–107. doi: 10.1016/j.scienta.2011.03.015. [DOI] [Google Scholar]
  • 27.Li X, Wang T, Zhou B, Gao W, Cao J, Huang L. Chemical composition and antioxidant and anti-inflammatory potential of peels and flesh from 10 different pear varieties (Pyrus spp.) Food Chem. 2014;152:531–538. doi: 10.1016/j.foodchem.2013.12.010. [DOI] [PubMed] [Google Scholar]
  • 28.Xia W, Zhang Y, Sun Y, Shen Y, Ye X, Zhou Z. Phenolic composition of Chinese wild mandarin (Citrus reticulate Balnco.) pulps and their anti-oxidant properties. Ind. Crop. Prod. 2014;52:466–474. doi: 10.1016/j.indcrop.2013.11.016. [DOI] [Google Scholar]
  • 29.Tommasini S, Raneri D, Ficarra R, Calabrò ML, Stancanelli R, Ficarra P. Improvement in solubility and dißsolution rate of flavonoids by complexation with cyclodextrin. J. Pharmaceut. Biomed. 2004;35:379–387. doi: 10.1016/S0731-7085(03)00647-2. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES