Abstract
Longissimus dorsi muscles from 3 goat species were assigned to high and low drip loss groups. Physio-chemical properties, sarcomere length, and proteome profiles were investigated. The high drip loss group had lower pH, higher brightness, and higher shear force values, and shorter sarcomere lengths than the low drip loss group. 22 differential proteins were identified between high and low loss groups. α-Enolase, NADH dehydrogenase, pyruvate dehydrogenase E1, HSP27, superoxide dismutase, peroxiredoxin-2, myosin, and the myosin light chain were among these proteins, which were metabolic enzymes, stress response factors, and structural proteins that affected glycolysis, oxidation, and muscle contraction. Drip loss was probably produced via proteins involved in glycolysis, oxidation, and muscle contraction.
Keywords: goat, drip loss, metabolic enzyme, stress response factor, structural protein
References
- 1.Jennen DG, Brings AD, Liu G, Jüngst H, Tholen E, Jonas E, Tesfaye D, Schellander K, Phatsara C. Genetic aspects concerning drip loss and waterholding capacity of porcine meat. J. Anim. Breed. Genet. 2007;124:2–11. doi: 10.1111/j.1439-0388.2007.00681.x. [DOI] [PubMed] [Google Scholar]
- 2.Zhang WG, Lonergan SM, Gardner MA, Huff-Lonergan E. Contribution of postmortem changes of intergrin, desmin and µ-calpain to variation in water holding capacity of pork. Meat Sci. 2006;74:578–585. doi: 10.1016/j.meatsci.2006.05.008. [DOI] [PubMed] [Google Scholar]
- 3.Rowe LJ, Maddock KR, Lonergan SM, Huff-Lonergan E. Influence of early postmortem protein oxidation on beef quality. J. Anim Sci. 2004;82:785–793. doi: 10.2527/2004.823785x. [DOI] [PubMed] [Google Scholar]
- 4.Di Luca A, Mullen AM, Elia G, Davey G, Hamill RM. Centrifugal drip is an accessible source for protein indicators of pork ageing and water-holding capacity. Meat Sci. 2011;88:261–270. doi: 10.1016/j.meatsci.2010.12.033. [DOI] [PubMed] [Google Scholar]
- 5.Huff-Lonergan E, Lonergan SM. Mechanisms of water holding capacity of meat: the role of post mortem biochemical and structural changes. Meat Sci. 2005;71:194–204. doi: 10.1016/j.meatsci.2005.04.022. [DOI] [PubMed] [Google Scholar]
- 6.Lametsch R, Bendixen E. Proteome analysis applied to meat science: Characterizing post mortem changes in porcine muscle. J. Agr. Food Chem. 2001;49:4531–4537. doi: 10.1021/jf010103g. [DOI] [PubMed] [Google Scholar]
- 7.Hwang IH, Park BY, Kim JH, Cho SH, Lee JM. Assessment of postmortem proteolysis by gel-based proteome analysis and its relationship to meat quality traits in pig longissimus. Meat Sci. 2005;69:79–91. doi: 10.1016/j.meatsci.2004.06.019. [DOI] [PubMed] [Google Scholar]
- 8.Bernevic B, Petre BA, Galetskiy D, Werner C, Wicke M, Schellander K, Przybylski M. Degradation and oxidation postmortem of myofibrillar proteins in porcine skeleton muscle revealed by high resolution mass spectrometric proteome analysis. Int. J. Mass Spectrom. 2011;305:217–227. doi: 10.1016/j.ijms.2010.11.010. [DOI] [Google Scholar]
- 9.Dick FM, Zhang WL. Identification of pork quality parameters by proteomics. Meat Sci. 2007;77:46–54. doi: 10.1016/j.meatsci.2007.04.017. [DOI] [PubMed] [Google Scholar]
- 10.Honikel KO. Reference methods for the assessment of physical characteristics of meat. Meat Sci. 1998;49:447–457. doi: 10.1016/S0309-1740(98)00034-5. [DOI] [PubMed] [Google Scholar]
- 11.Addis M, Fiori M, Manca C, Riu G, Scintu MF. Muscle colour and chemical and fattty acid composition of “Agnello di Sardegna” PGI suckling lamb. Small Ruminant Res. 2013;115:51–55. doi: 10.1016/j.smallrumres.2013.08.002. [DOI] [Google Scholar]
- 12.Wheeler TL, Shackelford SD, Koohmaraie M. Sampling, cooking and coring effects on Warner-bratzler shear force values in beef. J. Anim Sci. 1996;7:1553–1562. doi: 10.2527/1996.7471553x. [DOI] [PubMed] [Google Scholar]
- 13.Palka K, Daun H. Changes in texture, cooking losses, and myofibrillar structure of boving M. semitendinosus during heating. Meat Sci. 1999;51:237–243. doi: 10.1016/S0309-1740(98)00119-3. [DOI] [PubMed] [Google Scholar]
- 14.Otto G, Roehe R, Looft H, Thoelking L, Kalm E. Comparison of different methods for determination of drip loss and their relationships tomeat quality and carcass characteristics in pigs. Meat Sci. 2004;68:401–409. doi: 10.1016/j.meatsci.2004.04.007. [DOI] [PubMed] [Google Scholar]
- 15.Honikel KO. Conversion of muscle to meat: Glycolysis. In: Devine C, Dikeman M, editors. Encyclopedia of Meat Sciences. London, UK: Academic press, Inc.; 2014. pp. 353–357. [Google Scholar]
- 16.D’Alessandro A, Zolla L. Meat science: From proteomics to integrated omics towards system biology. J. Proteomics. 2013;78:558–577. doi: 10.1016/j.jprot.2012.10.023. [DOI] [PubMed] [Google Scholar]
- 17.Bolten KE, Marsh AE, Reed SM, Dubey JP, Toribio RE, Saville WJ. Sarcocystisneurona: Molecular characterization of enolase domain I region and a comparison to other protozoa. Exp. Parasitol. 2008;20:108–112. doi: 10.1016/j.exppara.2008.05.004. [DOI] [PubMed] [Google Scholar]
- 18.Paludo GP, Lorenzatto KR, Bonatto D, Ferreira HB. Systems biology approach reveals possible evolutionarily conserved moonlighting functions for enolase. Comput. Biol. Chem. 2015;58:1–8. doi: 10.1016/j.compbiolchem.2015.04.010. [DOI] [PubMed] [Google Scholar]
- 19.Liu Y, Gampert L, Nething K, Steinacker JM. Response and function of skeletal muscle heat shock protein 70. Front. Biosci. 2006;11:2802–2827. doi: 10.2741/2011. [DOI] [PubMed] [Google Scholar]
- 20.Sugiyame Y, Suzuki A, Kishikawa M, Akutsu R, Hirose T, Waye MM, Tsui SK, Yoshida S, Ohno S. Muscle develops a specific form of small heat shock protein complex composed of MKBP/HSPB2 and HSPB3 during myogenic differentiation. J. Biol. Chem. 2000;275:1095–1104. doi: 10.1074/jbc.275.2.1095. [DOI] [PubMed] [Google Scholar]
- 21.Guay J, Lambert H, Gingras-Breton G, Lavoie JN, Huot J, Landry J. Regulation of actin filament dynamics by p38 map kinase-mediated phosphorylation of heat shock protein 27. J. Cell Sci. 1997;100:357–368. doi: 10.1242/jcs.110.3.357. [DOI] [PubMed] [Google Scholar]
- 22.Morzel M, Terlouw C, Chambon C, Micol D, Picard B. Muscle proteome and meat eating qualities of Longissimus thoracis of “‘Blonde d’Aquitaine” young bulls: A central role of HSP27 isoforms. Meat Sci. 2008;78:297–304. doi: 10.1016/j.meatsci.2007.06.016. [DOI] [PubMed] [Google Scholar]
- 23.Kim NK, Cho S, Lee SH, Park HR, Lee CS, Cho YM, Im SK, Park EW. Proteins in longissimus muscle of Korean native cattle and their relationship to meat quality. Meat Sci. 2008;80:1068–1073. doi: 10.1016/j.meatsci.2008.04.027. [DOI] [PubMed] [Google Scholar]
- 24.Huot J, Houle F, Spitz DR, Laudry J. HSP27 phosphorylation-mediated resistance against actin fragmentation and cell death induced by oxidative stress. Cancer Res. 1996;56:273–279. [PubMed] [Google Scholar]
- 25.Laville E, Sayd T S-, Lhoutellier V, Morzel M, Labas R, Frank M, Chambon C, Monin G. Characterisation of PSE zones in semimembranosus pig muscle. Meat Sci. 2005;70:167–172. doi: 10.1016/j.meatsci.2004.12.008. [DOI] [PubMed] [Google Scholar]
- 26.Yu J, Tang S, Bao E, Zhang M, Hao Q, Yue Z. The effect of transportation on the expression of heat shock proteins and meat quality of M. longissimus dorsi in pigs. Meat Sci. 2009;83:474478. doi: 10.1016/j.meatsci.2009.06.028. [DOI] [PubMed] [Google Scholar]
- 27.Chan KM, Decker EA. Endogenous skeletal muscle antioxidants. Crit. Rev. Food Sci. 1994;34:403–426. doi: 10.1080/10408399409527669. [DOI] [PubMed] [Google Scholar]
- 28.Johnson RM, Ho YS, Yu DY, Kuypers FA, Ravindranath Y, Goyette GW. The effects of disruption of genes for peroxiredoxin-2, glutathione peroxidase-1, and catalase on erythrocyte oxidative metabolism. Free Radical Bio. Med. 2010;48:519–525. doi: 10.1016/j.freeradbiomed.2009.11.021. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 29.Stanley DW. Biological membrane deterioration and associated quality losses in food tissues. Crit. Rev. Food Sci. 1991;30:487–553. doi: 10.1080/10408399109527554. [DOI] [PubMed] [Google Scholar]
- 30.Chen T, Zhou GH, Xu XL, Zhao GM, Li CB. Phospholipase A2 and antioxidant enzyme activities in normal and PSE pork. Meat Sci. 2010;84:143–146. doi: 10.1016/j.meatsci.2009.08.039. [DOI] [PubMed] [Google Scholar]
- 31.Schlossarek S, Mearini G, Carrier L. Cardiac myosin-binding protein C in hypertrophic cardiomyopathy: Mechanisms and therapeutic opportunities. J. Mol. Cell Cardiol. 2010;50:613–620. doi: 10.1016/j.yjmcc.2011.01.014. [DOI] [PubMed] [Google Scholar]
- 32.Diesbougr L, Swatland HJ, Millman BM. X-ray diffraction measurements of postmortem changes in the myofilament lattice of pork. J. Anim Sci. 1988;66:1048–1054. doi: 10.2527/jas1988.6641048x. [DOI] [PubMed] [Google Scholar]