Abstract
The optimization of pink guava was executed using central composite face-centred design to optimize the spray drying parameters of inlet temperature, maltodextrin concentration (MDC) and feed flow (FF). The experimental results were significantly (p<0.01) fitted into second-order polynomial models to describe and predict the response quality in terms of the final moisture, particle size and lycopene with R 2 of 0.9749, 0.9616, and 0.9505, respectively. The final moisture content significantly (p<0.01) decreased with increasing inlet temperature and MDC, whereas the particle size increased. In contrast, the lycopene content significantly (p<0.01) decreased with the higher temperature and increased with increasing MDC. However, according to multiple response optimization, the optimum conditions of 150°C inlet temperature, 17.12% (w/v) MDC and 350 mL/h FF-predicted 3.10% moisture content, 11.23 μm particle size and 58.71 mg/100 g lycopene content. The experimental observation satisfied the predicted model within the acceptable range of the responses.
Keywords: pink guava, maltodextrin, spray drying, optimization, lycopene
References
- 1.Abreu JR, Santos CD, Abreu CMP, Corrêa AD, Lima LCO. Sugar fractionation and pectin content during the ripening of guava cv. Pedro Sato. Food Sci. Technol. (Campinas) 2012;32:156–162. doi: 10.1590/S0101-20612012005000029. [DOI] [Google Scholar]
- 2.Yadava UL. Guava production in Georgia under cold-protection structure. In: Janick J, editor. Progress in New Crops. 1996. pp. 451–457. [Google Scholar]
- 3.Flores G, Wua S, Negrin A, Kennelly EJ. Chemical composition and antioxidant activity of seven cultivars of guava (Psidium guajava) fruits. Food Chem. 2015;170:327–335. doi: 10.1016/j.foodchem.2014.08.076. [DOI] [PubMed] [Google Scholar]
- 4.Mercadante AZ, Steck A, Pfander H. Carotenoids from guava (Psidium guajava L): Isolation and structure elucidation. J. Agr. Food Chem. 1999;47:145–151. doi: 10.1021/jf980405r. [DOI] [PubMed] [Google Scholar]
- 5.Rodriguez-Amaya DB, Kimura M, Godoy HT, Amaya-Farfan J. Critical Review: Updated Brazilian database on food carotenoids: Factors affecting carotenoid composition. J. Food Compos. Anal. 2008;21:445–463. doi: 10.1016/j.jfca.2008.04.001. [DOI] [Google Scholar]
- 6.Flores G, Dastmalchi K, Wu SB, Whalen K, Dabo AJ, Reynertson KA. Phenolicrich extract from the Costa Rican guava (Psidium friedrichsthalianum) pulp with antioxidant and anti-inflammatory activity. Potential for COPD therapy. Food Chem. 2013;141:889–895. doi: 10.1016/j.foodchem.2013.03.025. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Ojowole JAO. Anti-inflammatory and analgesic effects of Psidium guajava Linn (Myrtaceae) leaf aqueous extract in rats and mice. Method. Find. Exp. Clin. 2006;28:441–446. doi: 10.1358/mf.2006.28.7.1003578. [DOI] [PubMed] [Google Scholar]
- 8.Shrestha AK, Ua-Arak T, Adhikari BR, Howes T, Bhandari BR. Glass transition behavior of spray dried orange juice powder measured by differential scanning calorimetry (DSC) and thermal mechanical compression test (TMCT) Int. J. Food Prop. 2007;10:661–673. doi: 10.1080/10942910601109218. [DOI] [Google Scholar]
- 9.Martinelli L, Gabas AL, Romero JT. Thermodynamic and quality properties of lemon juice powder as affected by maltodextrin and arabic gum. Dry. Technol. 2007;25:2035–2045. doi: 10.1080/07373930701728836. [DOI] [Google Scholar]
- 10.Kha TC, Nguyen MN, Roach PD. Effects of spray drying conditions on the physicochemical and antioxidant properties of the gac (momordica cochinchinensis) fruit aril powder. J. Food Eng. 2010;98:385–392. doi: 10.1016/j.jfoodeng.2010.01.016. [DOI] [Google Scholar]
- 11.Anekella K, Orsat V. Optimization of microencapsulation of probiotics in raspberry juice by spray drying. LWT-Food Sci. Technol. 2013;50:17–24. doi: 10.1016/j.lwt.2012.08.003. [DOI] [Google Scholar]
- 12.Mishraa P, Mishrab S, Mahantaa CL. Effect of maltodextrin concentration and inlet temperature during spray drying on physicochemical and antioxidant properties of amla (emblica officinalis) juice powder. Food Bioprod. Process. 2014;92:252–258. doi: 10.1016/j.fbp.2013.08.003. [DOI] [Google Scholar]
- 13.Cabral ACS, Said S, Oliveira WP. Retention of the enzymatic activity and product properties during spray drying of pineapple stem extract in presence of maltodextrin. Int. J. Food Prop. 2009;12:536–548. doi: 10.1080/10942910801942483. [DOI] [Google Scholar]
- 14.Tonon RV, Brabet C, Hubinger MD. Influence of process conditions on the physicochemical properties of acai (Euterpe oleraceae Mart.) powder produced by spray drying. J. Food Eng. 2008;88:411–418. doi: 10.1016/j.jfoodeng.2008.02.029. [DOI] [Google Scholar]
- 15.Hong JH, Choi YH. Physico-chemical properties of protein-bound polysaccharide from Agaricus blazei Murill prepared by ultrafiltration and spray drying process. Int. J. Food Sci. Technol. 2007;42:1–8. doi: 10.1111/j.1365-2621.2005.01116.x. [DOI] [Google Scholar]
- 16.Cai YZ, Corke H. Production and properties of spray-dried amaranthus betacyanin pigments. J. Food Sci. 2000;65:1248–1252. doi: 10.1111/j.1365-2621.2000.tb10273.x. [DOI] [Google Scholar]
- 17.Quek SY, Chok NK, Swedlund P. The physicochemical properties of spray-dried watermelon powders. Chem. Eng. Process. 2007;46:386–392. doi: 10.1016/j.cep.2006.06.020. [DOI] [Google Scholar]
- 18.Goula AM, Adamopoulos KG, Kazakis NA. Influence of spray drying conditions on tomato powder properties. Dry. Technol. 2004;22:1129–1151. doi: 10.1081/DRT-120038584. [DOI] [Google Scholar]
- 19.Patil V, Chauhan AK, Singh RP. Optimization of the spray-drying process for developing guava powder using response surface methodology. Powder Technol. 2014;253:230–236. doi: 10.1016/j.powtec.2013.11.033. [DOI] [Google Scholar]
- 20.Kong KW, Ismail A, Tan CP, Rajab NF. Optimization of oven drying conditions for lycopene content and lipophilic antioxidant capacity in a by-product of the pink guava puree industry using response surface methodology. LWT-Food Sci. Technol. 2010;43:729–735. doi: 10.1016/j.lwt.2009.10.011. [DOI] [Google Scholar]
- 21.Nora CD, Muller CD, Bona GS, Rios AO, Hertz PF, Jablonski A, Jong EV, Flores SH. Effect of processing on the stability of bioactive compounds from red guava (Psidium cattleyanum Sabine) and guabiju (Myrcianthes pungens) J. Food Compos. Anal. 2014;34:18–25. doi: 10.1016/j.jfca.2014.01.006. [DOI] [Google Scholar]
- 22.Kim SO, Ha TVA, Choi YJ, Ko S. Optimization of homogenization–evaporation process for lycopene nanoemulsion production and its beverage applications. J. Food Sci. 2014;79:1604–1610. doi: 10.1111/1750-3841.12472. [DOI] [PubMed] [Google Scholar]
- 23.Atalar I, Dervisoglu M. Optimization of spray drying process parameters for kefir powder using response surface methodology. LWT-Food Sci. Technol. 2015;60:751–757. doi: 10.1016/j.lwt.2014.10.023. [DOI] [Google Scholar]
- 24.Ilaiyaraja N, Likhith KR, Babu GRS, Khanum F. Optimisation of extraction of bioactive compounds from Feronia limonia (wood apple) fruit using response surface methodology (RSM) Food Chem. 2015;173:348–354. doi: 10.1016/j.foodchem.2014.10.035. [DOI] [PubMed] [Google Scholar]
- 25.Myers RH, Montgomery DC. Response surface methodology: Process and product optimization using designed experiments. Hoboken, NJ, USA: John Wiley and Sons, Inc.; 2002. p. 704. [Google Scholar]
- 26.Somayajula A, Asaithambi P, Susree M, Matheswaran M. Sonoelectrochemical oxidation for decolorization of Reactive Red 195. Ultrason. Sonochem. 2012;19:803–811. doi: 10.1016/j.ultsonch.2011.12.019. [DOI] [PubMed] [Google Scholar]
- 27.Carrillo-Navas H, González-Rodea DA, Cruz-Olivares J, Barrera-Pichardo JF, Román-Guerrero A, Pérez-Alonso C. Storage stability and physicochemical properties of passion fruit juice microcapsules by spray-drying. Rev. Mex. Ing. Quim. 2011;10:421–430. [Google Scholar]
- 28.AOAC. Official methods of analysis of AOAC. 15th ed. Method 9 34.01. Association of Official Analytical Chemists, Gaithersburg, MD, USA (1990)
- 29.Tze NL, Han CP, Yusof YA, Ling CN, Talib RA, Taip FS, Aziz MG. Physicochemical and nutritional properties of spray-dried pitaya fruit powder as natural colorant. Food Sci. Biotechnol. 2012;21:675–682. doi: 10.1007/s10068-012-0088-z. [DOI] [Google Scholar]
- 30.Sommano S, Caffin N, Mcdonal J, Cocksedge R. The impact of thermal processing on bioactive compounds in Australian native food products (bush tomato and Kakadu plum) Food Res. Int. 2013;50:557–561. doi: 10.1016/j.foodres.2011.03.008. [DOI] [Google Scholar]
- 31.Heredia A, Peinado I, Rosa E, Andrés A. Effect of osmotic pre-treatment and microwave heating on lycopene degradation and isomerization in cherry tomato. Food Chem. 2010;123:92–98. doi: 10.1016/j.foodchem.2010.04.005. [DOI] [Google Scholar]
- 32.Anguelova T, Warthesen J. Lycopene stability in tomato powders. J. Food Sci. 2000;65:67–70. doi: 10.1111/j.1365-2621.2000.tb15957.x. [DOI] [Google Scholar]
- 33.Design-expert. Design of expert, Version, 7.1.5. State-Ease, Inc., Minneapolis, MN, USA (2008)
- 34.Manivannan P, Rajasimman M. Optimization of process parameters for the osmotic dehydration of beetroot in sugar solution. J. Food Process Eng. 2011;34:804–825. doi: 10.1111/j.1745-4530.2009.00436.x. [DOI] [Google Scholar]
- 35.Barbosa-Canovas GV, Harte F, Yan HH. Particle size distribution in food powders. Food Eng. 2012;1:303–328. [Google Scholar]
- 36.Nijdam JJ, Langrish TAJ. The effect of surface composition on the functional properties of milk powders. J. Food Eng. 2006;77:919–925. doi: 10.1016/j.jfoodeng.2005.08.020. [DOI] [Google Scholar]
