Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Dec 31;25(6):1701–1708. doi: 10.1007/s10068-016-0261-x

Sesquiterpene lactones and scopoletins from Artemisia scoparia Waldst. & Kit. and their angiotensin I-converting enzyme inhibitory activities

Jeong-Yong Cho 2, Seung-Jae Jeong 2, Hee La Lee 2, Kyung-Hee Park 2, Do Young Hwang 2, Sun-Young Park 2, Yu Geon Lee 1, Jae-Hak Moon 1, Kyung-Sik Ham 2,
PMCID: PMC6049223  PMID: 30263465

Abstract

Ten compounds, including a new guaiane-type sesquiterpene lactone, were isolated from the aerial parts of Artemisia scoparia. The structure of the new compound was determined to be 5-hydroxyguaia-3(4),11(13),10(14)-trien-6α,12-olide, named scoparanolide. Six known sesquiterpene lactones [estafiatone, 3β,4α-dihydroxyguaia-11(13),10(14)-dien-6α,12-olide, estafiatin, preeupatundin, 3β-hydroxycostunolide, and ludovicin B] and three known coumarin derivatives (scopoletin, scoparone, and isofraxidin) were identified by nuclear magnetic resonance and electrospray ionization mass spectroscopy. Six known sesquiterpene lactones were found for the first time in this plant. The angiotensin I-converting enzyme inhibitory activities of coumarin derivatives and scopoletins were significantly higher compared to those of sesquiterpene lactones and quercetin.

Keywords: angiotensin I-converting enzyme inhibitor, Artemisia scoparia, sesquiterpene lactone, scoporanolide, scopoletin

References

  • 1.Chen YL, Huang HC, Weng YI, Yu YJ, Lee YT. Morphological evidence for the antiatherogenic effect of scoparone in hyperlipidemic diabetic rabbit. Cardiavasc. Res. 1994;28:1679–1685. doi: 10.1093/cvr/28.11.1679. [DOI] [PubMed] [Google Scholar]
  • 2.Yahagi T, Yakura N, Matsuzaki K, Kitanaka S. Inhibitory effect of chemical constituents from Artemisia scoparia Waldst. et Kit. on triglyceride accumulation in 3T3-L1 cells and nitric oxide production in Raw 264.7 cells. J. Nat. Med. 2014;68:414–420. doi: 10.1007/s11418-013-0799-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Oh HK, Beon MS, Lee MW, Whang BC. Ecological motif on the salt-water plants of brackish area in Buandam. Korean J. Environ. Eco. 2006;20:311–318. [Google Scholar]
  • 4.Gillani AUH, Janbaz KH. Protective effect of Artemisia scoparia extract against acetaminophen-induced hepatotoxicity. Gen. Pharmacol. 1993;24:1455–1458. doi: 10.1016/0306-3623(93)90434-Y. [DOI] [PubMed] [Google Scholar]
  • 5.Lee YM, Hsiao G, Chang JW, Sheu JR, Yen MH. Scoparone inhibits tissue factor expression in lipopolysaccharide-activated human umbilical vein endothelial cells. J. Biomed. Sci. 2003;10:518–525. doi: 10.1007/BF02256113. [DOI] [PubMed] [Google Scholar]
  • 6.Pan SL, Huang YW, Guh JH, Chang YL, Peng CY, Teng CM. Esculetin inhibits rasmediated cell proliferation and attenuates vascular restenosis following angioplasty in rats. Biochem. Pharmacol. 2003;65:1897–1905. doi: 10.1016/S0006-2952(03)00161-8. [DOI] [PubMed] [Google Scholar]
  • 7.Cha JD, Jeong MR, Jeong SI, Moon SE, Kim JY, Kil BS, Song YH. Chemical composition and antimicrobial activity of the essential oils of Artemisia scoparia and A. capillaris. Planta Med. 2005;71:186–190. doi: 10.1055/s-2005-837790. [DOI] [PubMed] [Google Scholar]
  • 8.Yoon WJ, Lee JA, Kim JY, Oh DJ, Jung YH, Lee WJ, Park SY. Antioxidant activities and anti-inflammatory effects on Artemisia scoparia. Korean J. Pharmacogn. 2006;37:235–240. [Google Scholar]
  • 9.Singh HP, Kaur S, Mittal S, Batish DR, Kohli RK. In vitro screening of essential oil from young and mature leaves of Artemisia scoparia compared to its major constituents for free radical scavenging activity. Food Chem. Toxicol. 2010;48:1040–1044. doi: 10.1016/j.fct.2010.01.017. [DOI] [PubMed] [Google Scholar]
  • 10.Habib M, Waheed L. Evaluation of anti-nociceptive, anti-inflammatory and antipyretic activities of Artemisia scoparia hydromethanolic extract. J. Ethnopharmacol. 2013;145:18–24. doi: 10.1016/j.jep.2012.10.022. [DOI] [PubMed] [Google Scholar]
  • 11.Khan K, Fatima H, Taqi MM, Zia M, ur-Rehman T, Mirza B, Haq I. Phytochemical and in vitro biological evaluation of Artemisia scoparia Waldst. & Kit for enhanced extraction of commercially significant bioactive compounds. J. Appl. Res. Med. Aromat. Plants. 2015;2:77–86. doi: 10.1016/j.jarmap.2015.04.002. [DOI] [Google Scholar]
  • 12.Wang ZQ, Zhang XH, Yu Y, Tipton RC, Raskin I, Ribnicky D, Johnson W, Cefalu WT. Artemisia scoparia extract attenuates non-alcoholic fatty liver disease in diet-induced obesity mice by enhancing hepatic insulin and AMPK signaling independently of FGF21 pathway. Metabolism. 2013;62:1239–1249. doi: 10.1016/j.metabol.2013.03.004. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Jamwal KS, Sharma ML, Chandhoke N, Ghatak BJ. Pharmacological action of 6,7-dimethoxycoumarin (scoparone) isolated from Artemisia scoparia, Waldst & Kit. Indian J. Med. Res. 1972;60:763–771. [PubMed] [Google Scholar]
  • 14.Cho JY, Park KH, Hwang DY, Lily J, Park YK, Kim SY, Kim HR, Moon JH, Ham KS. Antihypertensive effects of Artemisia scoparia Waldst in spontaneously hypertensive rats and identification of angiotensin I converting enzyme inhibitors. Molecules. 2015;20:19789–19804. doi: 10.3390/molecules201119657. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Cushman D, Cheung H. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochem. Pharmacol. 1971;20:1637–1648. doi: 10.1016/0006-2952(71)90292-9. [DOI] [PubMed] [Google Scholar]
  • 16.Cho JY, Yang X, Park KH, Park HJ, Park SY, Moon JH, Ham KS. Isolation and identification of antioxidative compounds from Suaeda japonica and their antioxidative activities. Food Sci. Biotechnol. 2013;22:1547–1557. doi: 10.1007/s10068-013-0250-2. [DOI] [Google Scholar]
  • 17.Ma CM, Ke W, Sun ZL, Peng JY, Li ZX, Zhou X, Fan GR, Huang CG. Large-scale isolation and purification of scoparone from Herba artemisiae scopariae by high-speed counter-current chromatography. Chromatographia. 2006;64:83–87. doi: 10.1365/s10337-006-0789-7. [DOI] [Google Scholar]
  • 18.Liu Z, Li S, Han N, Sun D, Gao Y, Yin Y. Studies on the chemical constituents of the vines of Streptocaulon juventas (Lour) Merr. Asian^J. Tradit. Med. 2008;3:193–198. [Google Scholar]
  • 19.Jung CM, Kwon HC, Choi SZ, Lee JH, Lee DJ, Ryu SN, Lee KR. Phytochemical constituents of Ainsliaea acerifolia. Korean J. Pharmacogn. 2000;31:125–129. [Google Scholar]
  • 20.Sigstad EE, Catalan CAN, Gutierrez AB, Diaz JG, Goedken VL, Herz W. Guaianolides and germacranolides from Stevia grisebachiana. Phytochemistry. 1991;30:1933–1940. doi: 10.1016/0031-9422(91)85043-Y. [DOI] [Google Scholar]
  • 21.Adekenov SM, Mukhametzhanov MN, Kagarlitskii AD, Turmukhambetov AZ. A chemical investigation of Achillea nobilis. Chem. Nat. Compd. 1984;20:568–571. doi: 10.1007/BF00580067. [DOI] [Google Scholar]
  • 22.Hilmi F, Stricher O, Heilmann J. New cytotoxic sesquiterpene lactones from Warionia saharae. Planta Med. 2003;69:462–464. doi: 10.1055/s-2003-39703. [DOI] [PubMed] [Google Scholar]
  • 23.Hajdú Z, Zupkó I, Réthy B, Forgo P, Hohmann J. Bioactivity-guided isolation of cytotoxic sesquiterpenes and flavonoids from Anthemis ruthenica. Planta Med. 2010;6:94–96. doi: 10.1055/s-0029-1185942. [DOI] [PubMed] [Google Scholar]
  • 24.Hu J, Zhu Q, Jia Z. Assignment of the 1H and 13C-NMR spectra of ludovicin B by two-dimensional NMR techniques. Bull. Soc. Chim. Belg. 1997;106:141–146. [Google Scholar]
  • 25.Salvetti A, Pedrinelli R, Arzilli F, Abdel-Haq B, Magagna A, Lucarina A, Graziadei L, Nuccorini A, Taddei S. Angiotensin-converting enzyme inhibitors in hypertension: A review. Int. J. Clin. Pharmacol. Res. 1985;5:429–438. [PubMed] [Google Scholar]
  • 26.Simaratanamongkol A, Umehara K, Noguchi H, Panichayupakaranant P. Identification of a new angiotensin-converting enzyme (ACE) inhibitor from Thai edible plants. Food Chem. 2014;165:92–97. doi: 10.1016/j.foodchem.2014.05.080. [DOI] [PubMed] [Google Scholar]
  • 27.Seifried HE, Anderson DE, Fisher EI, Milner JA. A review of the interaction among dietary antioxidants and reactive oxygen species. J. Nutr. Biochem. 2007;11:567–579. doi: 10.1016/j.jnutbio.2006.10.007. [DOI] [PubMed] [Google Scholar]
  • 28.Gonzáleza R, Ballesterc I, López-Posadasa R, Suárezb MD, Zarzuelob A, Martínez-Augustinb O, De Sánchez M F. Effects of flavonoids and other polyphenols on inflammation. Crit. Rev. Food Sci. Nutr. 2011;51:331–362. doi: 10.1080/10408390903584094. [DOI] [PubMed] [Google Scholar]
  • 29.Merfort I. Perspectives on sesquiterpene lactones in inflammation and cancer. Curr. Drug Targets. 2011;12:1560–1573. doi: 10.2174/138945011798109437. [DOI] [PubMed] [Google Scholar]
  • 30.Gach K, Dlugosz A, Janecka A. The role of oxidative stress in anticancer activity of sesquiterpene lactones. N-S Arch. Pharmacol. 2015;388:477–486. doi: 10.1007/s00210-015-1096-3. [DOI] [PubMed] [Google Scholar]
  • 31.Ivanescu B, Miron A, Corciova A. J. Anal. Methods Chem. 2015. Sesquiterpene lactones from Artemisia genus: Biological activities and methods of analysis. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 32.Sanchez-Viesca F, Romo J. Estafiatin, a new sesquiterpene lactone isolated from Artemisia mexicana (Willd) Tetrahedron. 1963;19:1285–1291. doi: 10.1016/S0040-4020(01)98591-6. [DOI] [Google Scholar]
  • 33.Lee KH, Geissman TA. Sesquitepene lactones of Artemisia constituents of A. ludoviciana ssp. Mexicana. Phytochemistry. 1970;9:403–408. doi: 10.1016/S0031-9422(00)85153-5. [DOI] [Google Scholar]
  • 34.Hu J, Zhu Q, Bai S, Jia Z. New eudesmane sesquiterpene and other constituents from Artemisia mongolica. Planta Med. 1996;62:477–478. doi: 10.1055/s-2006-957946. [DOI] [PubMed] [Google Scholar]
  • 35.Ahmed AA, El-Moghazy SA, El-Shanawany MA, Abdel-Ghani HF, Karchesy J, Sturtz G, Dalley K, Pare PW. Polyol monoterpenes and sesquiterpene lactones from the Pacific Northwest plant Artemisia suksdorfii. J. Nat. Prod. 2004;67:1705–1710. doi: 10.1021/np049954j. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES