Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Dec 31;25(6):1537–1544. doi: 10.1007/s10068-016-0238-9

Nutritional constituents, phytochemical profiles, in vitro antioxidant and antimicrobial properties, and gas chromatography–mass spectrometry analysis of various solvent extracts from grape seeds (Vitis vinifera L.)

Samir Felhi 1, Noura Baccouch 2, Hichem Ben Salah 2, Slim Smaoui 3, Noureddine Allouche 2, Néji Gharsallah 1, Adel Kadri 1,4,
PMCID: PMC6049225  PMID: 30263442

Abstract

The present study revealed that the nutritive value of grape seeds (Vitis vinifera L.) was 383.55±0.13 Kcal/100 g, with magnesium as the most abundant mineral element (70.44±0.88 mg/L). The maximum phenolic (392.58±1.70mg of GAE/g), flavonoid (256.16±1.60 mg of QE/g), and tannin (30.95±0.17mg of CE/g) contents were also found in the ethanol, dichloromethane, and hexane extracts, respectively. The major phytochemical compounds in the ethyl acetate extract were identified via gas chromatography–mass spectrometry (GC–MS) analysis. The ethanol extract has the highest antioxidant activity (IC50=140±1.20 μg/mL for DPPH, 145.28±0.45mg α-tocopherol/g for total antioxidant capacity, and EC50=80±1.41 μg/mL for ferric-reducing power assays). For β-carotene test, the highest antioxidant activity was obtained in the hexane extract. A satisfactory antimicrobial activity was found against a panel of microorganisms with the ethyl acetate extract as the best antimicrobial agent. Additionally, it was found that the bactericidal concentration required for the grape seed extract to kill Listeria monocytogenes should be less than 12.50 mg/mL (minimum inhibitory concentration=4).

Keywords: grape seed extracts, phytochemical contents, GC-MS analysis, antioxidant and antimicrobial activities

References

  • 1.Molva C, Baysal AH. Antimicrobial activity of grape seed extract on Alicyclobacillus acidoterrestris DSM 3922 vegetative cells and spores in apple juice. LWT-Food Sci. Technol. 2015;60:238–245. doi: 10.1016/j.lwt.2014.07.029. [DOI] [Google Scholar]
  • 2.Mayer R, Stecher G, Wuerzner R, Silva RC, Sultana T, Trojer L, Feuerstein I, Krieg C, Abel G, Popp M, Bobleter O, Bonn GK. Proanthocyanidins: Target compounds as antibacterial agents. J. Agr. Food Chem. 2008;56:6959–6966. doi: 10.1021/jf800832r. [DOI] [PubMed] [Google Scholar]
  • 3.Fiori L, Lavelli V, Duba KS, Sri Harsha PSC, Mohamed HB, Guella G. Supercritical CO2 extraction of oil from seeds of six grape cultivars: Modeling of mass transfer kinetics and evaluation of lipid profiles and tocol contents. J. Supercrit. Fluid. 2014;94:71–80. doi: 10.1016/j.supflu.2014.06.021. [DOI] [Google Scholar]
  • 4.Chedea VS, Braicu C, Socaciu C. Antioxidant/prooxidant activity of a polyphenolic grape seed extract. Food Chem. 2010;121:132–139. doi: 10.1016/j.foodchem.2009.12.020. [DOI] [Google Scholar]
  • 5.Pan X, Dai Y, Li X, Niu N, Li W, Liu F, Zhao Y, Yu Z. Inhibition of arsenic inducedrat liver injury by grape seed exact through suppression of NADPH oxidase and TGF-β/Smad activation. Toxicol. Appl. Pharm. 2011;254:323–331. doi: 10.1016/j.taap.2011.04.022. [DOI] [PubMed] [Google Scholar]
  • 6.Xia EQ, Deng GF, Guo Y, Li HB. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010;11:622–646. doi: 10.3390/ijms11020622. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.Khalifa FK, Khalil FA, Barakat HA, Hassan MM. Protective role of wheat germ and grape seed oils in chlorpyrifos-induced oxidative stress, biochemical and histological alterations in liver of rats. Aust. J. Basic Appl. Sci. 2011;5:54–66. [Google Scholar]
  • 8.Salem NA, Salem EA. Renoprotective effect of grape seed extract against oxidative stress induced by gentamicin and hypercholesterolemia in rats. Renal Failure. 2011;33:824–832. doi: 10.3109/0886022X.2011.601832. [DOI] [PubMed] [Google Scholar]
  • 9.Schewe T, Sadik C, Klotz LO, Yoshimoto T, Kühn H, Sies H. Polyphenols of cocoa: Inhibition of mammalian 15-lipoxygenase. Biol. Chem. 2001;382:1687–1696. doi: 10.1515/BC.2001.204. [DOI] [PubMed] [Google Scholar]
  • 10.Taguri T, Tanaka T, Kouno I. Antimicrobial activity of 10 different plant polyphenols against bacteria causing food-borne disease. Biol. Pharm. Bull. 2004;2004:1965–1969. doi: 10.1248/bpb.27.1965. [DOI] [PubMed] [Google Scholar]
  • 11.Bakari S, Ncir M, Felhi S, Hajlaoui H, Saoudi M, Gharsallah N, Kadri A. Chemical composition and in vitro evaluation of total phenolic, flavonoid, and antioxidant properties of essential oil and solvent extract from the aerial parts of Teucrium polium grown in Tunisia. Food Sci. Biotechnol. 2015;24:1943–1949. doi: 10.1007/s10068-015-0256-z. [DOI] [Google Scholar]
  • 12.Lee S, Prosky L, De vries J. Determination of total, soluble, and insoluble dietary fiber in foods: Enzymatic-gravimetric method, MES-TRIS buffer: Collaborative study. J. AOAC Int. 1992;75:395–416. [Google Scholar]
  • 13.Sun B, Richardo-da-Silvia JM, Spranger I. Critical factors of vanillin assay for catechin and proanthocyanidins. J. Agr. Food Chem. 1998;46:4267–4274. doi: 10.1021/jf980366j. [DOI] [Google Scholar]
  • 14.Zuo Y, Wang C, Zhan J. Separation, characterization and quantitation of benzoic and phenolic antioxidants in American cranberry fruit by GC–MS. J. Agr. Food Chem. 2002;50:3789–3794. doi: 10.1021/jf020055f. [DOI] [PubMed] [Google Scholar]
  • 15.Kadri A, Zarai Z, Békir A, Gharsallah N, Damak M, Gdoura R. Chemical composition and antioxidant activity of marrubium vulgare L. essential oil from Tunisia. Afr. J. Biotechnol. 2011;10:3908–3914. [Google Scholar]
  • 16.Prieto P, Pineda M, Aguilar M. Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: Specific application to the determination of vitamin^E. Anal. Biochem. 1999;269:337–341. doi: 10.1006/abio.1999.4019. [DOI] [PubMed] [Google Scholar]
  • 17.Daoud A, Drira M, Bakari S, Hfaiedh N, Mnafgui K, Kadri A, Gharsallah N. Arab. J. Chem. 2015. Assessment of polyphenol composition, antioxidant and antimicrobial properties of various extracts of Date Palm Pollen (DPP) from two Tunisian cultivars. [Google Scholar]
  • 18.Ben Hsouna A, Trigui M, Ben Mansour R, Mezghani R, Damak M, Jaoua S. Chemical composition, cytotoxicity effect and antimicrobial activity of Ceratonia siliqua essential oil with preservative effects against Listeria inoculated in minced beef meat. Int. J. Food Microbiol. 2011;148:66–72. doi: 10.1016/j.ijfoodmicro.2011.04.028. [DOI] [PubMed] [Google Scholar]
  • 19.Sousa EC, Uchôa-Thomaz AMA, Carioca JOB, Morais SMD, Lima AD, Martins CG, Alexandrino CD, Ferreira PAT, Rodrigues ALM, Rodrigues SP, Silva JDN, Rodrigues LL. Chemical composition and bioactive compounds of grape pomace (Vitis vinifera L.), Benitaka variety, grown in the semiarid region of Northeast Brazil. Food Sci. Technol. (Campinas) 2014;34:135–142. doi: 10.1590/S0101-20612014000100020. [DOI] [Google Scholar]
  • 20.Tangolar SG, Ozogul Y, Tangolar S, Torun A. Evaluation of fatty acid profiles and mineral content of grape seed oil of some grape genotypes. Int. J. Food Sci. Nutr. 2009;60:32–39. doi: 10.1080/09637480701581551. [DOI] [PubMed] [Google Scholar]
  • 21.Bampi M, Bicudo MOP, Fontoura PSG, Riban RF. Chemical composition of fruit, concentrated extract and flour from “Japanese grape.” Cienc. Rural. 2010;40:2361–2367. doi: 10.1590/S0103-84782010001100018. [DOI] [Google Scholar]
  • 22.Feringa HH, Laskey DA, Dickson JE, Coleman CI. The effect of grape seed extract on cardiovascular risk markers: A meta-analysis of randomized controlled trials. J. Am. Diet. Assoc. 2011;8:1173–1181. doi: 10.1016/j.jada.2011.05.015. [DOI] [PubMed] [Google Scholar]
  • 23.Niæiforoviæ N, Mihailoviæ V, Maškoviæ P, Solujiæ S, Stojkoviæ A, Pavloviæ-Muratspahiæ D. Antioxidant activity of selected plant species; Potential new sources of natural antioxidants. Food Chem. Toxicol. 2010;48:3125–3130. doi: 10.1016/j.fct.2010.08.007. [DOI] [PubMed] [Google Scholar]
  • 24.Do QD, Angkawijaya AE, Tran-Nguyen PL, Huynh LH, Soetaredjo FE, Ismadji S, Ju YH. Effect of extraction solvent on total phenol content, total flavonoid content, and antioxidant activity of Limnophila aromatica. J. Food Drug Anal. 2014;22:296–302. doi: 10.1016/j.jfda.2013.11.001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 25.Tomsone L, Kruma Z, Galoburda R. Comparison of different solvents and extraction methods for isolation of phenolic compounds from horseradish roots (Armoracia rusticana) World Acad. Sci. Eng. Technol. 2012;64:903–908. [Google Scholar]
  • 26.Udayaprakash NK, Ranjithkumar M, Deepa S, Sripriya N, Al-Arfaj AA, Bhuvaneswari S. Antioxidant, free radical scavenging and GC–MS composition of Cinnamomum iners Reinw. ex Blume. Ind. Crop. Prod. 2015;69:175–179. doi: 10.1016/j.indcrop.2015.02.018. [DOI] [Google Scholar]
  • 27.Kumar KA, Vijayalakshmi K. GC-MS analysis of phytochemical constituents in ethanolic extract of Punica granatum peel and Vitis vinifera seeds. IJPBS. 2011;2:B461–B468. [Google Scholar]
  • 28.Jayaprakasha GK, Singh RP, Sakariah KK. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 2001;73:285–290. doi: 10.1016/S0308-8146(00)00298-3. [DOI] [Google Scholar]
  • 29.Stojkoviæ D, Petroviæ J, Sokoviæ M, Glamoèlija J, Kukiæ-Markoviæ J, Petroviæ S. In situ antioxidant and antimicrobial activities of naturally occurring caffeic acid, p-coumaric acid and rutin, using food systems. J. Sci. Food Agric. 2013;93:3205–3208. doi: 10.1002/jsfa.6156. [DOI] [PubMed] [Google Scholar]
  • 30.Yen GC, Duh PD, Tsai HL. Antioxidant and pro-oxidant properties of ascorbic acid and gallic acid. Food Chem. 2002;79:307–313. doi: 10.1016/S0308-8146(02)00145-0. [DOI] [Google Scholar]
  • 31.Schreibe SB, Bozell JJ, Hayes DG, Zivanovic S. Introduction of primary antioxidant activity to chitosan for application as a multifunctional food packaging material. Food Hydrocolloid. 2013;33:207–214. doi: 10.1016/j.foodhyd.2013.03.006. [DOI] [Google Scholar]
  • 32.Prieto N, Gay M, Vidal S, Aagaard O, de Saja JA, Rodríguez-Méndez ML. Analysis of the influence of the type of closure in the organoleptic characteristics of a red wine by using an electronic panel. Food Chem. 2011;129:589–594. doi: 10.1016/j.foodchem.2011.04.071. [DOI] [PubMed] [Google Scholar]
  • 33.Gatsing D, Mbah JA, Garba IH, Tane P, Djemgou P, Nji-Nkah BF. An antisalmonellal agent from the leaves of Glossocalyx brevipes Benth (Monimiaceae) Pak. J. Biol. Sci. 2006;9:84–87. doi: 10.3923/pjbs.2006.84.87. [DOI] [Google Scholar]
  • 34.Mims CA, Playfair JHL, Roitt IM, Wakelin D, Williams R. Antimicrobials and chemotherapy. J. Med. Microbiol. 1993;35:1–34. [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES