Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Dec 31;25(6):1753–1760. doi: 10.1007/s10068-016-0267-4

Long-chain bases from Cucumaria frondosa inhibit adipogenesis and regulate lipid metabolism in 3T3-L1 adipocytes

Yingying Tian 1,2, Shiwei Hu 1,2,, Hui Xu 2, Jingfeng Wang 2, Changhu Xue 2, Yuming Wang 2
PMCID: PMC6049226  PMID: 30263471

Abstract

This study aims to investigate anti-adipogenic effects of long-chain bases from Cucumaria frondosa (Cf-LCBs) in vitro. Results showed that Cf-LCBs inhibited adipocyte differentiation and the expressions of CCAAT/enhancer binding proteins (C/EBPs) and peroxisome proliferators-activated receptor γ (PPARγ). Cf-LCBs increased β-catenin mRNA and nuclear translocation and increased its target genes, cyclin D1 and c-myc. Cf-LCBs enhanced fizzled and lipoprotein-receptor-related protein5/6 (LRP5/6) expressions, whereas wingless-type MMTV integration site10b (WNT10b) and glycogen syntheses kinase 3β (GSK3β) remained unchanged. Cf-LCBs also reduced adipogenesis and recovered WNT/β-catenin signaling in the cells suffering from 21H7, a β-catenin inhibitor. In addition, Cf-LCBs decreased triglyceride content and the expressions of lipogenesis genes. Cf-LCBs increased FFA levels and the expressions of lipidolytic factors. Cf-LCBs promoted the phosphorylation of adenosine-monophosphate-activated protein kinase (AMPK) and acetyl-CoA carboxylase. These findings indicate that Cf-LCBs inhibit adipogenesis through activation of WNT/β-catenin signaling and regulate lipid metabolism via activation of AMPK pathway.

Keywords: Cusumaria frondosa, long-chain bases, adipocyte differentiation, lipid metabolism

References

  • 1.Kopelman PG. Obesity as a medical problem. Nature. 2000;404:635–643. doi: 10.1038/35007508. [DOI] [PubMed] [Google Scholar]
  • 2.Kang SI, Shin HS, Kim SJ. Sinensetin enhances adipogenesis and lipolysis by increasing cyclic adenosine monophosphate levels in 3T3-L1 adipocytes. Biol. Pharm. Bull. 2015;38:552–558. doi: 10.1248/bpb.b14-00700. [DOI] [PubMed] [Google Scholar]
  • 3.Kowalska K, Olejnik A, Rychlik J, Grajek W. Cranberries (Oxycoccus quadripetalus) inhibit adipogenesis and lipogenesis in 3T3-L1 cells. Food Chem. 2014;148:246–252. doi: 10.1016/j.foodchem.2013.10.032. [DOI] [PubMed] [Google Scholar]
  • 4.Choi K, Ghaddar B, Moya C, Shi H, Sridharan GV, Lee K, Jayaraman A. Analysis of transcription factor network underlying 3T3-L1 adipocyte differentiation. PLoS ONE. 2014;9:e100177. doi: 10.1371/journal.pone.0100177. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5.Lim H, Yeo E, Song E, Chang YH, Han BK, Choi HJ, Hwang J. Bioconversion of Citrus unshiu pell extracts with cytolase suppresses adipogenic activity in 3T3-L1 cells. Nutr. Res. Pract. 2015;9:599–605. doi: 10.4162/nrp.2015.9.6.599. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 6.Vanella L, Sodhi K, Kim DH, Puri N, Maheshwari M, Hinds TD, Bellner L, Goldstein D, Peterson SJ, Shapiro JI, Abraham NG. Increased heme-oxygenase 1 expression in mesenchymal stem cell-derived adipocytes decreases differentiation and lipid accumulation via upregulation of the canonical Wnt signaling cascade. Stem Cell Res. Ther. 2013;4:28. doi: 10.1186/scrt176. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 7.He H, Chen K, Wang F, Zhao L, Wan X, Wang L, Mo Z. miR-204-5p promotes the adipogenic differentiation of human adipose derived mesenchymal stem cells by modulating DVL3 expression and suppressing Wnt/β-catenin signaling. Int. J. Mol. Med. 2015;35:1587–1595. doi: 10.3892/ijmm.2015.2160. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 8.Christodoulides C, Lagathu C, Sethi JK, Vidal-Puig A. Adipogenesis and WNT signaling. Trends Endocrin. Met. 2009;20:16–24. doi: 10.1016/j.tem.2008.09.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 9.Lee H, Bae S, Kim K, Kim W, Chung S, Yoon Y. Beta-Catenin mediates the antiadipogenic effect of baicalin. Biochem. Bioph. Res. Co. 2010;398:741–746. doi: 10.1016/j.bbrc.2010.07.015. [DOI] [PubMed] [Google Scholar]
  • 10.Kowalska K, Olejnik A, Rychlik J, Grajek W. Cranberries (Oxycoccus quadripetalus) inhibit lipid metabolism and modulate leptin and adiponectin secretion in 3T3-L1 adipocytes. Food Chem. 2015;185:383–388. doi: 10.1016/j.foodchem.2015.03.152. [DOI] [PubMed] [Google Scholar]
  • 11.Kim SK, Kong CS. Anti-adipogenic effect of dioxinodehydroeckol via AMPK activation in 3T3-L1 adipocytes. Chem.-Biol. Interact. 2010;186:24–29. doi: 10.1016/j.cbi.2010.04.003. [DOI] [PubMed] [Google Scholar]
  • 12.Samovski D, Sun J, Pietka T, Gross RW, Eckel RH, Su X, Stahi PD, Abumrad NA. Regulation of AMPK activation by CD36 links fatty acid uptake to β-oxidation. Diabetes. 2015;64:353–359. doi: 10.2337/db14-0582. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 13.Shimajiri J, Shiota M, Hosokawa M, Miyashita K. Synergistic antioxidant activity of milk sphingomyeline and its sphingoid base with α-tocopherol on fish oil triacylglycerol. J. Agr. Food Chem. 2013;61:7969–7975. doi: 10.1021/jf401788j. [DOI] [PubMed] [Google Scholar]
  • 14.Rozema E, Binder M, Bulusu M, Bochkov V, Krupitza G, Kopp B. Effects on inflammatory responses by the sphingoid base 4:8-sphingadienine. Int. J. Mol. Med. 2012;30:703–707. doi: 10.3892/ijmm.2012.1035. [DOI] [PubMed] [Google Scholar]
  • 15.Alden KP, Dhondt-Cordelier S, McDonald KL, Reape TJ, Ng CK, McCabe PF, Leaver CJ. Sphingolipid long chain base phosphates can regulate apoptoticlike programmed cell death in plants. Biochem. Bioph. Res. Co. 2011;410:574–580. doi: 10.1016/j.bbrc.2011.06.028. [DOI] [PubMed] [Google Scholar]
  • 16.Wei N, Pan J, Pop-Busui R, Othman A, Alecu I, Hornemann T, Eichler FS. Altered sphingoid base profiles in type 1 compared to type 2 diabetes. Lipids Health Dis. 2014;13:161. doi: 10.1186/1476-511X-13-161. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Sigruener A, Tarabin V, Paragh G, Liebisch G, Koehler T, Farwick M, Schmitz G. Effects of sphingoid bases on the sphingolipidome in early keratinocyte differentiation. Exp. Dermatol. 2013;22:677–679. doi: 10.1111/exd.12231. [DOI] [PubMed] [Google Scholar]
  • 18.Bordbar S, Anwar F, Saari N. High-value components and bioactives from sea cucumbers for functional foods—A review. Mar. Drugs. 2011;9:1761–1805. doi: 10.3390/md9101761. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 19.Hossain Z, Sugawara T, Hirata T. Sphingoid bases from sea cucumber induce apoptosis in human hepatoma HepG2 cells through p-AKT and DR5. Oncol. Rep. 2013;29:1201–1207. doi: 10.3892/or.2013.2223. [DOI] [PubMed] [Google Scholar]
  • 20.Gao Z, Zhou X, Hu X, Xue C, Xu J, Wang Y. Effects of sea cucumber cerebroside and its long-chain base on lipid and glucose metabolism in obese mice. Zhejiang Da Xue Xue Bao Yi Xue Ban. 2012;41:60–64. [PubMed] [Google Scholar]
  • 21.Sugawara T, Zaima N, Yamamoto A, Sakai S, Noguchi R, Hirata T. Isolation of sphingoid bases of sea cucumber cerebrosides and their cytotoxicity against human colon cancer cells. Biosci. Biotech. Bioch. 2006;70:2906–2912. doi: 10.1271/bbb.60318. [DOI] [PubMed] [Google Scholar]
  • 22.Siersbaek R, Nielsen R, Mandrup S. PPARgamma in adipocyte differentiation and metabolism—novel insights from genome-wide studies. FEBS Lett. 2010;584:3242–3249. doi: 10.1016/j.febslet.2010.06.010. [DOI] [PubMed] [Google Scholar]
  • 23.Kim JH, Park KW, Lee EW, Jang WS, Seo J, Shin S, Hwang KA, Song J. Suppression of PPARγ through MKRN1-mediated ubiquitination and degradation prevents adipocyte differentiation. Cell Death Differ. 2014;21:594–603. doi: 10.1038/cdd.2013.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 24.Yang J, Croniger CM, Lekstrom-Himes J, Zhang P, Fenyus M, Tenen DG, Darlington GJ, Hanson RW. Metabolic response of mice to a postnatal ablation of CCAAT/enhancer-binding protein alpha. J. Biol. Chem. 2005;280:38689–38699. doi: 10.1074/jbc.M503486200. [DOI] [PubMed] [Google Scholar]
  • 25.Yao Y, Zhu Y, Gao Y, Shi Z, Hu Y, Ren G. Suppressive effects of saponin-enriched extracts from quinoa on 3T3-L1 adipocyte differentiation. Food Funct. 2015;6:3282–3290. doi: 10.1039/C5FO00716J. [DOI] [PubMed] [Google Scholar]
  • 26.Madsen MS, Siersbaek R, Boergesen M, Nielsen R, Mandrup S. Peroxisome proliferator-activated receptor γ and C/EBPα synergistically activate key metabolic adipocyte genes by assisted loading. Mol. Cell. Biol. 2014;34:939–954. doi: 10.1128/MCB.01344-13. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Chen C, Peng Y, Peng Y, Peng J, Jiang S. m iR-135a-5p i nhibits 3 T3-L1 adipogenesis through activation of canonical Wnt/β-catenin signaling. J. Mol. Endocrinol. 2014;52:311–320. doi: 10.1530/JME-14-0013. [DOI] [PubMed] [Google Scholar]
  • 28.Lee H, Bae S, Yoon Y. Anti-adipogenic effects of 1:25-dihydroxyvitamin D3 are mediated by the maintenance of the wingless-type MMTV integration site/β-catenin pathway. Int. J. Mol. Med. 2012;30:1219–1224. doi: 10.3892/ijmm.2012.1101. [DOI] [PubMed] [Google Scholar]
  • 29.Park YK, Park B, Lee S, Choi K, Moon Y, Park H. Hypoxia-inducible factor-2α-dependent hypoxic induction of Wnt10b expression in adipogenic cells. J. Biol. Chem. 2013;288:26311–26322. doi: 10.1074/jbc.M113.500835. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 30.Xu H, Wang F, Wang J, Xu J, Wang Y, Xue C. The WNT/â-catenin pathway is involved in the anti-adipogenic activity of cerebrosides from the sea cucumber Cucumaria frondosa. Food Funct. 2015;6:2396–2404. doi: 10.1039/C5FO00273G. [DOI] [PubMed] [Google Scholar]
  • 31.Cho YM, Kim DH, Kwak SN, Jeong SW, Kwon OJ. X-box binding protein 1 enhances adipogenic differentiation of 3T3-L1 cells through the downregulation of Wnt10b expression. FEBS Lett. 2013;587:1644–1649. doi: 10.1016/j.febslet.2013.04.005. [DOI] [PubMed] [Google Scholar]
  • 32.Xu H, Wang J, Zhang X, Li Z, Wang Y, Xue C. Inhibitory effect of fucosylated chondroitin sulfate from the sea cucumber Acaudina molpadioides on adipogenesis is dependent on Wnt/β-catenin pathway. J. Biosci. Bioeng. 2015;119:85–91. doi: 10.1016/j.jbiosc.2014.05.026. [DOI] [PubMed] [Google Scholar]
  • 33.Ferrante MC, Amero P, Santoro A, Monnolo A, Simeoli R, Di Guida F, Mattace Raso G, Meli R. Polychlorinated biphenyls (PCB 101: PCB 153 and PCB 180) alter leptin signaling and lipid metabolism in differentiated 3T3-L1 adipocytes. Toxicol. Appl. Pharm. 2014;279:401–408. doi: 10.1016/j.taap.2014.06.016. [DOI] [PubMed] [Google Scholar]
  • 34.Chang JJ, Hsu MJ, Huang HP, Chung DJ, Chang YC, Wang CJ. Mulberry anthocyanins inhibit oleic acid induced lipid accumulation by reduction of lipogenesis and promotion of hepatic lipid clearance. J. Agr. Food Chem. 2013;61:6069–6076. doi: 10.1021/jf401171k. [DOI] [PubMed] [Google Scholar]
  • 35.Zheng G, Lin L, Zhong S, Zhang Q, Li D. Effects of puerarin on lipid accumulation and metabolism in high-fat diet-fed mice. PLoS ONE. 2015;10:e0122925. doi: 10.1371/journal.pone.0122925. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES