Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Dec 31;25(6):1657–1664. doi: 10.1007/s10068-016-0255-8

A GC-MS based metabolic profiling of fermented sausage supplemented with pineapple

Seon-A Yoo 2, Seong-Eun Park 2, Seung-Ho Seo 2, Hyun-Ji Lee 2, Kyoung-In Lee 1, Hong-Seok Son 2,
PMCID: PMC6049235  PMID: 30263459

Abstract

A GC-MS based metabolomic study was performed to understand metabolic changes during sausage fermentation and to investigate how the incorporation of pineapple affects the metabolic profiles of fermented sausages. Principal component analysis models showed clear metabolic differences among the fermented sausages according to the fermentation periods and the pineapple addition. Increased amounts of amino acids and organic acids except for citric acid, along with decreased levels of sugars were observed after fermentation. Higher levels of sugars and citric acid in the pineapple supplemented sausages dramatically decreased during the early stage of fermentation. The contents of lactic acid, phosphoric acid, succinic acid, ribonic acid, valine, leucine, isoleucine, glycine, threonine, glutamic acid, glucose, and sucrose were significantly increased in the 2% pineapple addition sausages. GC-MS and PCA analytical methods provide a new approach to understand of the metabolic changes in fermented sausages during fermentation.

Keywords: fermented sausage, pineapple, fermentation, metabolomics, GC-MS

References

  • 1.Feiner G. Meat products handbook: Practical science and technology. Cambridge, UK: Woodhead Publishing; 2006. pp. 314–322. [Google Scholar]
  • 2.Zhao L, Jin Y, Ma C, Song H, Li H, Wang Z. Physico-chemical characteristics and free fatty acid composition of dry fermented mutton sausages as affected by the use of various combinations of starter cultures and spices. Meat Sci. 2011;88:761–766. doi: 10.1016/j.meatsci.2011.03.010. [DOI] [PubMed] [Google Scholar]
  • 3.Villani F, Pepe O, Mauriello G, Salzano G, Moschetti G, Coppola S. Antimicrobial activity of Staphylococcus xylosus from Italian sausages against Listeria monocytogenes. Lett. Appl. Microbiol. 1994;18:159–161. doi: 10.1111/j.1472-765X.1994.tb00833.x. [DOI] [Google Scholar]
  • 4.Tabanelli G, Coloretti F, Chiavari C, Grazia L, Lanciotti R, Gardini F. Effects of starter cultures and fermentation climate on the properties of two types of typical Italian dry fermented sausages produced under industrial conditions. Food Control. 2012;26:416–426. doi: 10.1016/j.foodcont.2012.01.049. [DOI] [Google Scholar]
  • 5.Park YS, Lee JY. The effect of kimchi on the microbiological stability of fermented sausage. Meat Sci. 2012;92:721–727. doi: 10.1016/j.meatsci.2012.06.028. [DOI] [PubMed] [Google Scholar]
  • 6.Coloretti F, Tabanelli G, Chiavari C, Lanciotti R, Grazia L, Gardini F. Effect of wine addition on microbiological characteristics, volatile molecule profiles and biogenic amine contents in fermented sausages. Meat Sci. 2014;96:1395–1402. doi: 10.1016/j.meatsci.2013.11.027. [DOI] [PubMed] [Google Scholar]
  • 7.Hossain MA, Rahman SMM. Total phenolics, flavonoids and antioxidant activity of tropical fruit pineapple. Food Res. Int. 2011;44:672–676. doi: 10.1016/j.foodres.2010.11.036. [DOI] [Google Scholar]
  • 8.Seo SH, Park SE, Yoo SA, Son HS. Quality characteristics of makgeolli supplemented with pineapple. J. Korean Soc. Food Sci. Nutr. 2014;43:1283–1288. doi: 10.3746/jkfn.2014.43.8.1283. [DOI] [Google Scholar]
  • 9.Casaburi A, Di Martino V, Ferranti P, Picariello L, Villani F. Technological properties and bacteriocins production by Lactobacillus curvatus 54M16 and its use as starter culture for fermented sausage manufacture. Food Control. 2016;59:31–45. doi: 10.1016/j.foodcont.2015.05.016. [DOI] [Google Scholar]
  • 10.Mozzi F, Ortiz ME, Bleckwedel J, De Vuyst L, Pescuma M. Metabolomics as a tool for the comprehensive understanding of fermented and functional foods with lactic acid bacteria. Food Res. Int. 2013;54:1152–1161. doi: 10.1016/j.foodres.2012.11.010. [DOI] [Google Scholar]
  • 11.Ruiz-Capillas C, Moral A. Free amino acids and biogenic amines in red and white muscle of tuna stored in controlled atmospheres. Amino Acids. 2004;26:125–132. doi: 10.1007/s00726-003-0054-4. [DOI] [PubMed] [Google Scholar]
  • 12.Kim J, Choi JN, John KM, Kusano M, Oikawa A, Saito K. GC-TOF-MS-and CETOF-MS-based metabolic profiling of cheonggukjang (fast-fermented bean paste) during fermentation and its correlation with metabolic pathways. J. Agr. Food Chem. 2012;60:9746–9753. doi: 10.1021/jf302833y. [DOI] [PubMed] [Google Scholar]
  • 13.Inui T, Tsuchiya F, Ishimaru M, Oka K, Komura H. Different beers with different hops. Relevant compounds for their aroma characteristics. J. Agr. Food Chem. 2013;61:4758–4764. doi: 10.1021/jf3053737. [DOI] [PubMed] [Google Scholar]
  • 14.Roullier-Gall C, Witting M, Tziotis D, Ruf A, Gougeon RD, Schmitt-Kopplin P. Integrating analytical resolutions in non-targeted wine metabolomics. Tetrahedron. 2015;71:2983–2990. doi: 10.1016/j.tet.2015.02.054. [DOI] [Google Scholar]
  • 15.Park SE, Yoo SA, Seo SH, Lee KI, Na CS, Son HS. GC-MS based metabolomics approach of Kimchi for the understanding of Lactobacillus plantarum fermentation characteristics. LWT-Food Sci. Technol. 2016;68:313–321. doi: 10.1016/j.lwt.2015.12.046. [DOI] [Google Scholar]
  • 16.Hotelling H. The generalization of Student’s ratio. Ann. Math. Stat. 1931;2:360–378. doi: 10.1214/aoms/1177732979. [DOI] [Google Scholar]
  • 17.Holmes E, Loo RL, Stamler J, Bictash M, Yap IK, Chan Q, Ebbels T, De Iorio M, Brown IJ, Veselkov KA, Daviglus ML, Kesteloot H, Ueshima H, Zhao L, Nicholson JK, Elliott P. Human metabolic phenotype diversity and its association with diet and blood pressure. Nature. 2008;453:396–400. doi: 10.1038/nature06882. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Lücke FK. Fermented meat products. In: Caballero B, Trugo L, Finglas P, editors. Encyclopedia of Food Sciences and Nutrition. Cambridge, MA, USA: Academic Press; 2003. pp. 2338–2344. [Google Scholar]
  • 19.Hammes WP, Bantleon A, Min S. Lactic acid bacteria in meat fermentation. FEMS Microbiol. Lett. 1990;87:165–173. doi: 10.1111/j.1574-6968.1990.tb04886.x. [DOI] [Google Scholar]
  • 20.Bonestroo MH, Kusters BJM, De wit JC, Rombouts FM. Glucose and sucrose fermenting capacity of homofermentative lactic acid bacteria used as starters in fermented salads. Int. J. Food Microbiol. 1992;15:365–376. doi: 10.1016/0168-1605(92)90070-J. [DOI] [PubMed] [Google Scholar]
  • 21.Kargozari M, Moini S, Basti AA, Emam-Djomeh Z, Gandomi H, Martin IR, Ghasemlou M, Carbonell-Barrachina AA. Effect of autochthonous starter cultures isolated from Siahmazgi cheese on physicochemical, microbiological and volatile compound profiles and sensorial attributes of sucuk, a Turkish dry-fermented sausage. Meat Sci. 2014;97:104–114. doi: 10.1016/j.meatsci.2014.01.013. [DOI] [PubMed] [Google Scholar]
  • 22.Yıldız-Turp G, Serdaroğlu M. Effect of replacing beef fat with hazelnut oil on quality characteristics of sucuk–A Turkish fermented sausage. Meat Sci. 2008;78:447–454. doi: 10.1016/j.meatsci.2007.07.013. [DOI] [PubMed] [Google Scholar]
  • 23.Corral S, Leitner E, Siegmund B, Flores M. Determination of sulfur and nitrogen compounds during the processing of dry fermented sausages and their relation to amino acid generation. Food Chem. 2016;190:657–664. doi: 10.1016/j.foodchem.2015.06.009. [DOI] [PubMed] [Google Scholar]
  • 24.Trząskowska M, Kołożyn-Krajewska D, Wójciak K, Dolatowski Z. Microbiological quality of raw-fermented sausages with Lactobacillus casei LOCK 0900 probiotic strain. Food Control. 2014;35:184–191. doi: 10.1016/j.foodcont.2013.07.002. [DOI] [Google Scholar]
  • 25.Arshad ZIM, Amid A, Yusof F, Jaswir I, Ahmad K, Loke SP. Bromelain: An overview of industrial application and purification strategies. Appl. Microbiol. Biot. 2014;98:7283–7297. doi: 10.1007/s00253-014-5889-y. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES