Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Dec 31;25(6):1671–1675. doi: 10.1007/s10068-016-0257-6

Antimicrobial activity of a novel furan fatty acid, 7,10-epoxyoctadeca-7,9-dienoic acid against methicillin-resistant Staphylococcus aureus

Chakradhar Dasagrandhi 1, Joel B Ellamar 1, Young Soon Kim 2, Hak-Ryul Kim 1,3,
PMCID: PMC6049236  PMID: 30263461

Abstract

We analyzed the antimicrobial potential of a novel furan fatty acid, 7,10-epoxyoctadeca-7,9-dienoic acid (7,10-EODA) against methicillin-resistant and -sensitive S. aureus (MRSA and MSSA). The anti-staphylococcal activity of 7,10-EODA and its consequences on cell physiology was determined by disc diffusion, broth microdilution, and flow cytometry. Anti-virulence activity of 7,10-EODA was evaluated by bioassays. 7,10-EODA was anti-staphylococcal with minimum inhibitory concentration (MIC) range of 125-250 mg/L. 7,10-EODA exhibited a dose response and inhibited MRSA 01ST001 by 90.5% and ATCC 29213 (MSSA) by 85.3% at 125 mg/L. MIC of 7,10-EODA permeabilized >95 % of MRSA 01ST001 cells to small molecules. Sublethal dose of 7,10-EODA was non-toxic but markedly reduced the hemolytic, coagulase, and autolytic activities of MRSA and MSSA at 15.6 mg/L. The results provide a lead for the utilization of natural furan fatty acids as novel anti-MRSA agents.

Keywords: furan fatty acids; 7,10-epoxyoctadeca-7,9-dienoic acid; antimicrobial lipids; methicillin-resistant Staphylococcus aureus; virulence inhibition

References

  • 1.Stewart CM, Cole MB, Legan JD, Slade L, Vandeven MH, Schaffner DW. Staphylococcus aureus growth boundaries: Moving mechanistic predictive mode is based on solute-specific effects. Appl. Environ. Microb. 2002;68:1864–1871. doi: 10.1128/AEM.68.4.1864-1871.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 2.O’Brien AM, Hanson BM, Farina SA, Wu JY, Simmering JE, Wardyn SE, Forshey BM, Kulick ME, Wallinga DB, Smith TC. MRSA in conventional and alternative retail pork products. PLoS ONE. 2012;7:e30092. doi: 10.1371/journal.pone.0030092. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 3.Friedman M. Antibiotic-resistant bacteria: Prevalence in food and inactivation by food compatible compounds and plant extracts. J. Agr. Food Chem. 2015;63:3805–3822. doi: 10.1021/acs.jafc.5b00778. [DOI] [PubMed] [Google Scholar]
  • 4.Spiteller G. Furan fatty acids: Occurrence, synthesis, and reactions. Are furan fatty acids responsible for the cardioprotective effects of a fish diet. Lipids. 2005;40:755–771. doi: 10.1007/s11745-005-1438-5. [DOI] [PubMed] [Google Scholar]
  • 5.Ishii K, Okajima H, Okada Y, Watanabe H. Effects of phosphatidylcholines containing furan fatty acid on oxidation in multi lamellar liposomes. Chem. Pharm. Bull. 1989;37:1396–1398. doi: 10.1248/cpb.37.1396. [DOI] [Google Scholar]
  • 6.Graff G, Gellerman JL, Sand DM, Schlenk H. Inhibition of blood platelet aggregation by dioxoene compounds. Biochim. Biophys. Acta. 1984;799:143–150. doi: 10.1016/0304-4165(84)90288-5. [DOI] [PubMed] [Google Scholar]
  • 7.Teixeira A, Cox RC, Egmond MR. Furan fatty acids efficiently rescue brain cells from cell death induced by oxidative stress. Food Funct. 2013;4:1209–1215. doi: 10.1039/c3fo60094g. [DOI] [PubMed] [Google Scholar]
  • 8.Parker RA, Kariya T, Grisar JM, Petrow V. 5-(Tetradecyloxy)-2-furancarboxylic acid and related hypolipidemic fatty acids-like alkyloxyaryl carboxylic acids. J. Med. Chem. 1977;20:781–791. doi: 10.1021/jm00216a009. [DOI] [PubMed] [Google Scholar]
  • 9.Ellamar JB, Song KS, Kim HR. One-step production of a biologically active novel furan fatty acid from 7,10-dihydroxy-8(E)-octadecenoic acid. J. Agr. Food Chem. 2011;59:8175–8179. doi: 10.1021/jf2015683. [DOI] [PubMed] [Google Scholar]
  • 10.de Jonge BLM, de Lancastre H, Tomasz T. Suppression of autolysis and cell wall turnover in hetergenous Tn551 mutant of a methicillin-resistant Staphylococcsu aureus. J. Bacteriol. 1991;173:105–110. doi: 10.1128/jb.173.3.1105-1110.1991. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Navarre WW, Schneewind O. Surface proteins of Gram-positive bacteria and mechanisms of their targeting to the cell envelop. Microbiol. Mol. Biol. R. 1999;63:174–229. doi: 10.1128/mmbr.63.1.174-229.1999. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 12.Zheng CJ, Yoo JS, Lee TG, Cho HY, Kim YH, Kim WG. Fatty acid synthesis is a target for antimicrobial activity of unsaturated fatty acids. FEBS Lett. 2005;579:5157–5162. doi: 10.1016/j.febslet.2005.08.028. [DOI] [PubMed] [Google Scholar]
  • 13.Desbios AP, Lawlor K. Antibacterial activity of long chain poly unsaturated fatty acids against Propionibacterium acnes and Staphylococcus aureus. Mar. Drugs. 2013;11:4544–4557. doi: 10.3390/md11114544. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 14.Sheu CW, Freese E. Lipopolysaccharide layer protection of Gram-negative bacteria against inhibition by long chain fatty acids. J. Bacteriol. 1973;115:869–875. doi: 10.1128/jb.115.3.869-875.1973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Lee JY, Kim YS, Shin DH. Antimicrobial synergistic effect of linolenic acid and monoglyceride against Bacillus cereus and Staphylococcus aureus. J. Agr. Food Chem. 2002;50:2193–2199. doi: 10.1021/jf011175a. [DOI] [PubMed] [Google Scholar]
  • 16.Parsons JB, Yao J, Frank MW, Jackson P, Rock CO. Membrane disruption by antimicrobial fatty acids release low molecular weight proteins from Staphylococcus aureus. J. Bacteriol. 2012;19:5294–5304. doi: 10.1128/JB.00743-12. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 17.Peterson ML, Schlievert PM. Glycerol monolaurate inhibits the effects of Gram-positive select agents on eukaryotic cells. Biochemistry. 2006;45:2387–2397. doi: 10.1021/bi051992u. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Clarke SR, Mohamed R, Bian L, Routh AF, Kokai-Kan JF, Mond JJ, Tarkowski A, Foster J. The Staphylococcus aureus surface protein Isd A mediates resistance to innate defenses of human skin. Cell Host Microbe. 2007;1:199–212. doi: 10.1016/j.chom.2007.04.005. [DOI] [PubMed] [Google Scholar]
  • 19.Arsic B, Zhu Y, Heinrichs DE, McGavin MJ. Induction of the staphylococcal proteolytic cascade by antimicrobial fatty acids in community acquired methicillin resistant Staphylococcus aureus. PLoS ONE. 2012;7:e45952. doi: 10.1371/journal.pone.0045952. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Kenny JG, Ward D, Josefsson E, Jonsson IM, Hinds J, Rees HH, Lindsay TA, Tarkowski A, Horsburgh MJ. The Staphylococcus aureus response to unsaturated fatty acids: Survival mechanisms and virulence implications. PLoS ONE. 2009;4:e4344. doi: 10.1371/journal.pone.0004344. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES