Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Dec 31;25(6):1551–1559. doi: 10.1007/s10068-016-0240-2

Free and bound form bioactive compound profiles in germinated black soybean (Glycine max L.)

Min Young Kim 2, Gwi Yeong Jang 2, Yoonjeong Lee 2, Meishan Li 2, Yeong Mi Ji 2, Nara Yoon 2, Sang Hoon Lee 1, Kyung Mi Kim 1, Junsoo Lee 2, Heon Sang Jeong 2,
PMCID: PMC6049237  PMID: 30263444

Abstract

This study investigated the transition between the free and bound forms of functional compounds in germinated black soybean. Black soybean was germinated at 25°C over 6 days and then the free and bound forms of functional compounds were extracted. Total free polyphenol, flavonoid, and phenolic acid contents in raw black soybean increased from 1.03 mg GAE/g, 0.29 mg CE/g, and 315.67 μg/g to 1.44mg GAE/g, 0.64mg CE/g, and 511.01 μg/g, respectively, by 4 days after germination. Changes to phenolic acid compositions can be divided into four groups, and the germination process can convert compounds to phenolic acid via anabolism and catabolism. The highest total free isoflavone content in germinated black soybean (3,724.40 μg/g) was observed at 4 days. Bound polyphenol, flavonoid, phenolic acid, and isoflavone contents decreased as the germination period increased. These results suggest that the germination process increased compound functionality in black soybean.

Keywords: black soybean, germination, free form, bound form, bioactive compound

References

  • 1.Anderson JW, Major AW. Pulses and lipaemia, short and long-term effect: Potential in the prevention of cardiovascular disease. Brit. J. Nutr. 2002;3:263–271. doi: 10.1079/BJN2002716. [DOI] [PubMed] [Google Scholar]
  • 2.Astadi IR, Astuti M, Santoso U, Nugraheni PS. In vitro antioxidant activity of anthocyanins of black soybean seed coat in human low density lipoprotein (LDL) Food Chem. 2009;112:659–663. doi: 10.1016/j.foodchem.2008.06.034. [DOI] [Google Scholar]
  • 3.Takahashi R, Wakabayashi K. Antioxidant activities of black and yellow soybeans against low density lipoprotein oxidation. J. Agr. Food Chem. 2005;53:4578–4582. doi: 10.1021/jf048062m. [DOI] [PubMed] [Google Scholar]
  • 4.Correa CR, Li L, Aldini G, Carimi M, Chen CYO, Chun HY. Composition and stability of phytochemicals in five varieties of black soybeans (Glycine max) Food Chem. 2010;123:1176–1184. doi: 10.1016/j.foodchem.2010.05.083. [DOI] [Google Scholar]
  • 5.Subba Rao MV, Muralikrishna G. Evaluation of the antioxidant properties of free and bound phenolic acids from native and malted finger millet (ragi, Eleusinecoracana Indaf-15) J. Agr. Food Chem. 2002;50:889–892. doi: 10.1021/jf011210d. [DOI] [PubMed] [Google Scholar]
  • 6.Yao S, Yang T, Zhao L, Xiong S. The variation of c-aminobutyric acid content in germinated brown rice among different cultivars. Sci. Agric. Sinica. 2008;41:3974–3982. [Google Scholar]
  • 7.Nardini M, Ghiselli A. Determination of free and bound phenolic acids in beer. Food Chem. 2004;84:137–143. doi: 10.1016/S0308-8146(03)00257-7. [DOI] [Google Scholar]
  • 8.Wong DWS. Feruloyl esterase: A key enzyme in biomass degradation. Appl. Biochem. Biotech. 2006;133:87–112. doi: 10.1385/ABAB:133:2:87. [DOI] [PubMed] [Google Scholar]
  • 9.Chandrasekara A, Shahidi F. Bioactivities and antiradical properties of millet grains and hulls. J. Agr. Food Chem. 2011;59:9563–9571. doi: 10.1021/jf201849d. [DOI] [PubMed] [Google Scholar]
  • 10.Beatriz A, Acostaa E, Janet AG, Sergio OS. Bound phenolics in foods, a review. Food Chem. 2014;152:46–55. doi: 10.1016/j.foodchem.2013.11.093. [DOI] [PubMed] [Google Scholar]
  • 11.Ana L, Tarek E, Montserrat D, Teresa O, Isabe E, Teresa H, Pilar G, Olga P, Emilia C. Effect of cooking and germination on phenolic composition and biological properties of dark beans (Phaseolus vulgaris L.) Food Chem. 2013;138:547–555. doi: 10.1016/j.foodchem.2012.10.107. [DOI] [PubMed] [Google Scholar]
  • 12.Seo MC, Ko JY, Song SB. Antioxidant compounds and activities of foxtail millet, 93 proso millet and sorghum with different pulverizing methods. J. Korean Soc. Food Sci. Nutr. 2011;40:790–797. doi: 10.3746/jkfn.2011.40.6.790. [DOI] [Google Scholar]
  • 13.Jung KH, Hong HD, Cho CW. Phenolic acid composition and antioxidative activity of red ginseng prepared by high temperature and high pressure process. Korean J. Food Nutr. 2011;25:827–832. doi: 10.9799/ksfan.2012.25.4.827. [DOI] [Google Scholar]
  • 14.Zielinski H, Kozlowska H, Lewczuk B. Bioactive compounds in the cereal grains before and after hydrothermal processing. Innov. Food. Sci. Emerg. 2001;2:159–169. doi: 10.1016/S1466-8564(01)00040-6. [DOI] [Google Scholar]
  • 15.Dewanto V, Wu X, Liu RH. Processed sweet corn has higher antioxidant activity. J. Agr. Food Chem. 2002;50:4959–4964. doi: 10.1021/jf0255937. [DOI] [PubMed] [Google Scholar]
  • 16.Jia Z, Tang M, Wu J. The determination of flavonoid contents in mulberry and their scavenging effects on superoxide radicals. Food Chem. 1999;64:555–559. doi: 10.1016/S0308-8146(98)00102-2. [DOI] [Google Scholar]
  • 17.Wang YI, Sheen LY, Chou CC. Storage effects on the content of anthocyanin, mutagenicity, and antimutagenicity of black soybean koji. LWT-Food Sci. Technol. 2010;43:702–707. doi: 10.1016/j.lwt.2009.12.004. [DOI] [Google Scholar]
  • 18.Lee SJ, Kim JJ, Moon HI, Ahn JK, Chun SC, Jung WS, Lee OK, Chung IM. Analysis of isoflavones and phenolic compounds in Korean soybean [Glycine max (L.) Merrill] seeds of different seed weights. J. Agr. Food. Chem. 2008;56:2751–2758. doi: 10.1021/jf073153f. [DOI] [PubMed] [Google Scholar]
  • 19.Glenda AP, Julian CR, Jose JP, Ana MG. Natural occurrence of free anthocyanin aglycones in beans (Phaseolus vulgaris L.) Food Chem. 2006;94:448–456. doi: 10.1016/j.foodchem.2004.11.038. [DOI] [Google Scholar]
  • 20.Gusti MM, Wrolstad R. Characterization of red radish anthocyaninins. J. Food Sci. 1996;61:322–326. doi: 10.1111/j.1365-2621.1996.tb14186.x. [DOI] [Google Scholar]
  • 21.Choung MH. Optimal HPLC condition for simultaneous determination of anthocyanins in black soybean seed coats. Korean J. Crop. Sci. 2008;54:359–468. [Google Scholar]
  • 22.Lin PY, Lai HM. Bioactive compounds in legumes and their germinated products. J. Agr. Food. Chem. 2006;54:3807–3814. doi: 10.1021/jf060002o. [DOI] [PubMed] [Google Scholar]
  • 23.Naczk M, Shahidi F. The effect of methanol–ammonia–water treatment on the content of phenolic acids of canola. Food Chem. 1989;31:159–164. doi: 10.1016/0308-8146(89)90026-5. [DOI] [Google Scholar]
  • 24.Huihui T, Ruifen Z, Mingwei Z, Qing L, Zhencheng W. Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages. Food Chem. 2014;161:337–344. doi: 10.1016/j.foodchem.2014.04.024. [DOI] [PubMed] [Google Scholar]
  • 25.Gross GG. Biosynthesis and metabolism of phenolic acids and monolignols. In: Higuchi T, editor. Biosynthesis and Biodegradation of Wood Components. Amsterdam, Netherlands: Elsevier; 1985. pp. 229–271. [Google Scholar]
  • 26.Lise B, Charles D, Jean-Francois C. Knockout of the p-coumarate decarboxylase gene from Lactobacillus plantarum reveals the existence of two other inducible enzymatic activities involved in phenolic acid metabolism. Am. Soc. Microb. J. 2002;66:3368–3375. doi: 10.1128/aem.66.8.3368-3375.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 27.Puri M, Banerjee U. Production, purification, and characterization of the debittering enzyme naringinase. Biotechnol. Adv. 2000;18:207–217. doi: 10.1016/S0734-9750(00)00034-3. [DOI] [PubMed] [Google Scholar]
  • 28.Mattila P, Pihlava JM, Hellström J. Contents of phenolic acids, alkyl-and alkenylresorcinols, and avenanthramides in commercial grain products. J. Agr. Food. Chem. 2005;53:8290–8295. doi: 10.1021/jf051437z. [DOI] [PubMed] [Google Scholar]
  • 29.Temple NJ. Antioxidants and disease: More questions than answers. Nutr. Res. 2000;20:449–459. doi: 10.1016/S0271-5317(00)00138-X. [DOI] [Google Scholar]
  • 30.Charlton AJ, Baxter NJ, Lilley TH, Haslam E, McDonald CJ, Williamson MP. Tannin interactions with a full-length human salivary proline-rich protein display a stronger affinity than with single proline-rich repeats. FEBS Lett. 1996;382:289–292. doi: 10.1016/0014-5793(96)00186-X. [DOI] [PubMed] [Google Scholar]
  • 31.Xiya H, Weixi C, Baojun X. Kinetic changes of nutrients and antioxidant capacities of germinated soybean (Glycine max L.) and mung bean (Vigna radiata L.) with germination time. Food Chem. 2014;143:268–276. doi: 10.1016/j.foodchem.2013.07.080. [DOI] [PubMed] [Google Scholar]
  • 32.Fengzhong W, Hifang W, Conghui W, Fang F, Jixiang L, Tao W, Rong T. Isoflavone, γ-aminobutyric acid contents and antioxidant activities are significantly increased during germination of three Chinese soybean cultivars. J. Funct. Foods. 2015;14:596–604. doi: 10.1016/j.jff.2015.02.016. [DOI] [Google Scholar]
  • 33.Kim JS, Kim JG, Kim WJ. Changes in isoflavone and oligosaccharides of soybeans during germination. Korean^J. Food Sci. Technol. 2004;36:294–298. [Google Scholar]
  • 34.Hendrich S. Bioavailability of isoflavones. J. Chromatogr. B. 2002;777:203–210. doi: 10.1016/S1570-0232(02)00347-1. [DOI] [PubMed] [Google Scholar]
  • 35.Long-Ze L, James MH, Marcia SP, Devanand LL. The polyphenolic profiles of common bean (Phaseolus vulgaris L.) Food Chem. 2008;107:399–410. doi: 10.1016/j.foodchem.2007.08.038. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES