Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Dec 31;25(6):1569–1575. doi: 10.1007/s10068-016-0242-0

Protein functionality of concentrates prepared from yellowfin tuna (Thunnus albacares) roe by cook-dried process

Sung Hwan Park 2, Hyun Ji Lee 2, In Seong Yoon 2, Gyoon-Woo Lee 2, Jin-Soo Kim 1, Min Soo Heu 2,
PMCID: PMC6049240  PMID: 30263446

Abstract

Three kinds of roe protein concentrates (RPCs: boil-dried concentrate, BDC; steam-dried concentrate, SDC; freeze-dried concentrate, FDC) were prepared from yellowfin tuna to produce value added products for food applications. The buffer capacities of the RPCs were higher under alkaline than under acidic conditions. The water holding capacities of the RPCs were in range 4.5–4.7 g/g protein at pH 6.0. The protein solubility of the FDC (14.2%) was higher than those of the BDC (5.4%) and SDC (5.5%) at pH 6.0. The foaming capacity of the FDC (156.8%) was higher than those of the BDC (109.7%) and SDC (109.4%); the FDC foam was stable for 60 min. The oil-in-water emulsifying activity index of the FDC (12.2m2/g protein) exceeded those of the BDC and SDC (2.2m2/g protein). Protein concentrates from yellowfin tuna roe may be useful as a potential protein source and as a high-value food ingredient.

Keywords: roe concentrate, yellowfin tuna, protein functionality, cook-dried process

References

  • 1.Ministry of OceanFisheries. Yearbook of marine resource. 2015. [Google Scholar]
  • 2.Benjakul S, Morrissey M. Protein hydrolysates from Pacific whiting solid wastes. J. Agr. Food Chem. 1997;45:3423–3430. doi: 10.1021/jf970294g. [DOI] [Google Scholar]
  • 3.Galla NR, Pamidighantam PR, Akula S, Karakala B. Functional properties and in vitro antioxidant activity of roe protein hydrolysates of Channa striatus and Labeo rohita. Food Chem. 2012;135:1479–1484. doi: 10.1016/j.foodchem.2012.05.098. [DOI] [PubMed] [Google Scholar]
  • 4.Galla NR, Karakala B, Akula S, Pamidighantam PR. Physico-chemical, amino acid composition, functional and antioxidant properties of roe protein concentrates obtained from Channa striatus and Lates calcarifer. Food Chem. 2012;132:1171–1176. doi: 10.1016/j.foodchem.2011.11.055. [DOI] [PubMed] [Google Scholar]
  • 5.Kim SK, Wijesekara I. Development and biological activities of marine-derived bioactive peptides. J. Funct Foods. 2010;2:1–9. doi: 10.1016/j.jff.2010.01.003. [DOI] [Google Scholar]
  • 6.Manni L, Ghorbel-Bellaaj O, Jellouli K, Younes I, Nasri M. Extraction and characterization of chitin, chitosan, and protein hydrolysates prepared from shrimp waste by treatment with crude protease from Bacillus cereus SV1. Appl. Biochem. Biotech. 2010;162:345–357. doi: 10.1007/s12010-009-8846-y. [DOI] [PubMed] [Google Scholar]
  • 7.Ngo DN, Lee SH, Kim MM, Kim SK. Production of chitin oligosaccharides with different molecular weights and their antioxidant effect in RAW 264.7 cells. J. Funct. Foods. 2009;1:188–198. doi: 10.1016/j.jff.2009.01.008. [DOI] [Google Scholar]
  • 8.Kaitaranta JK, Lamppu R, Linko RR. Amino acid content of baltic herring and rainbow trout roe. J. Agr. Food Chem. 1980;28:908–911. doi: 10.1021/jf60231a028. [DOI] [PubMed] [Google Scholar]
  • 9.Sikorski ZE. The contents of proteins and other nitrogenous compounds in marine animals. In: Sikorski ZE, Pan BS, Shahidi F, editors. Seafood Proteins. New York, NY, USA: Chapman and Hall; 1994. pp. 6–12. [Google Scholar]
  • 10.Cordero-de-los-Santos MY, Osuna-Castro JA, Borodanenko A, Paredes-López O. Physicochemical and functional characterisation of amaranth (Amaranthus hypochondriacus) protein isolates obtained by isoelectric precipitation and micellisation. Food Sci. Technol. Int. 2005;11:269–280. doi: 10.1177/1082013205056491. [DOI] [Google Scholar]
  • 11.Pires C, Costa S, Batista AP, Nunes MC, Raymundo A, Batista I. Properties of protein powder prepared from Cape hake by-products. J. Food Eng. 2012;108:268–275. doi: 10.1016/j.jfoodeng.2011.08.020. [DOI] [Google Scholar]
  • 12.Bellagha S, Amami E, Farhat A, Kechaou N. Drying kinetics and characteristic drying curve of lightly salted sardine (Sardinella aurita) Dry. Technol. 2002;20:1527–1538. doi: 10.1081/DRT-120005866. [DOI] [Google Scholar]
  • 13.Bala BK, Mondol MRA. Experimental investigation on solar drying of fish using solar tunnel dryer. Dry. Technol. 2001;19:427–436. doi: 10.1081/DRT-100102915. [DOI] [Google Scholar]
  • 14.Duan ZH, Zhang M, Tang J. Thin layer hot-air drying of bighead carp. Fisheries. Sci. 2004;23:29–32. [Google Scholar]
  • 15.Adebiyi AP, Adebiyi AO, Hasegawa Y, Ogawa T, Muramoto K. Isolation and characterization of protein fractions from deoiled rice bran. Eur. Food Res. Technol. 2009;228:391–401. doi: 10.1007/s00217-008-0945-4. [DOI] [Google Scholar]
  • 16.MacDonald G, Lanier TC, Carvajal PA. Stabilization of proteins in surimi. In: Park JW, editor. Surimi and Surimi Seafood. New York, NY, USA: Marcel Dekker Inc.; 2000. pp. 91–125. [Google Scholar]
  • 17.Sathivel S, Bechtel PJ, Babbitt JK, Prinyawiwatkul W, Negulescu II, Reppond KD. Properties of protein powders from arrowtooth flounder (Atheresthes stomias) and herring (Clupea harengus) byproducts. J. Agr. Food Chem. 2004;52:5040–5046. doi: 10.1021/jf0351422. [DOI] [PubMed] [Google Scholar]
  • 18.Sathivel S, Bechtel PJ. Properties of soluble protein powders from Alaska pollack (Theragra chalcogramma) Int. J. Food Sci. Tech. 2006;41:520–529. doi: 10.1111/j.1365-2621.2005.01101.x. [DOI] [Google Scholar]
  • 19.Chalamaiah M, Balaswamy K, Narsing Rao G, Prabhakara Rao PG, Jyothirmayi T. Chemical composition and functional properties of mrigal (Cirrhinus mrigala) egg protein concentrates and their application in pasta. J. Food Sci. Tech.-Mys. 2013;50:514–520. doi: 10.1007/s13197-011-0357-5. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 20.Lee HJ, Park SH, Yoon IS, Lee GW, Kim JS, Heu MS. Chemical composition of protein concentrate prepared from yellowfin tuna Thunnus albacores roe by cook-dried process. Korean J. Fish. Aquat. Sci. 2016;19:35–42. doi: 10.1186/s41240-016-0036-6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 21.Galla NR, Dubasi GR. Chemical and functional characterization of gum karaya (Sterculia urens L.) seed meal. Food Hydrocolloid. 2010;24:479–485. doi: 10.1016/j.foodhyd.2009.12.003. [DOI] [Google Scholar]
  • 22.Shahidi F, Han XQ, Synowiecki J. Production and characteristics of protein hydrolysates from capelin (Mallotus villosus) Food Chem. 1995;53:285–293. doi: 10.1016/0308-8146(95)93934-J. [DOI] [Google Scholar]
  • 23.Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
  • 24.Thiansilakul Y, Benjakul S, Shahidi F. Compositions, functional properties and antioxidative activity of protein hydrolysates prepared from round scad (Decapterus maruadsi) Food Chem. 2007;103:1385–1394. doi: 10.1016/j.foodchem.2006.10.055. [DOI] [Google Scholar]
  • 25.Pearce KN, Kinsella JE. Emulsifying properties of proteins. Evaluation of a turbidimetric technique. J. Agr. Food Chem. 1978;26:716–723. doi: 10.1021/jf60217a041. [DOI] [Google Scholar]
  • 26.Mohamed BKF, Xia W, Issoufou A, Qixing J. Influence of pH shift on functional propertiesof protein isolated of tilapia (Oreochromis niloticus) muscles and of soy protein isolate. Food Bioprocess Tech. 2012;5:2192–2200. doi: 10.1007/s11947-009-0271-2. [DOI] [Google Scholar]
  • 27.Balaswamy K, Jyothirmayi T, Rao DG. Chemical composition and some functional properties of fish egg (roes) protein concentrate of rohu (Labeo rohita) J. Food Sci. Tech.-Mys. 2007;44:293–296. [Google Scholar]
  • 28.Tan ES, Ngoh YY, Gan CY. A comparative study of physicochemical characteristics and functionalities of pinto bean protein isolate (PBPI) against the soybean protein isolate (SPI) after the extraction optimisation. Food Chem. 2014;152:447–455. doi: 10.1016/j.foodchem.2013.12.008. [DOI] [PubMed] [Google Scholar]
  • 29.Yuan B, Ren JY, Zhao MM, Luo DH, Gu LJ. Effects of limited enzymatic hydrolysis with pepsin and high-pressure homogenization on the functional properties of soybean protein isolate. LWT-Food Sci. Technol. 2012;46:453–459. doi: 10.1016/j.lwt.2011.12.001. [DOI] [Google Scholar]
  • 30.Kinsella JE. Functional properties of soy proteins. J. Am. Oil Chem. Soc. 1979;56:242–258. doi: 10.1007/BF02671468. [DOI] [Google Scholar]
  • 31.Kristinsson HG, Rasco BA. Biochemical and functional properties of Atlantic salmon (Salmo salar) muscle hydrolyzed with various alkaline proteases. J. Agr. Food Chem. 2000;48:657–666. doi: 10.1021/jf990447v. [DOI] [PubMed] [Google Scholar]
  • 32.Sikorski ZE, Naczk M. Modification of technological properties of fish protein concentrates. Crit. Rev. Food Sci. 1981;14:201–230. doi: 10.1080/10408398109527305. [DOI] [PubMed] [Google Scholar]
  • 33.Damodaran S. Protein-stabilised foams and emulsions. In: Damodaran S, Paraf A, editors. Food Proteins and Their Applications. New York, NY, USA: Marcel Dekker; 1997. pp. 57–110. [Google Scholar]
  • 34.Mutilangi WAM, Panyam D, Kilara A. Functional properties of hydrolysates from proteolysis of heat-denatured whey protein isolate. J. Food Sci. 1996;61:270–275. doi: 10.1111/j.1365-2621.1996.tb14174.x. [DOI] [Google Scholar]
  • 35.Chobert JM, Bertrand-Harb C, Nicolus MG. Solubility and emulsifying properties of caseins and whey proteins modified enzymatically by trypsin. J. Agr. Food Chem. 1988;36:883–892. doi: 10.1021/jf00083a002. [DOI] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES