Abstract
The proteolysis in muscle tissues of sea cucumber Stichopus japonicus (sjMTs) was characterized. The proteins from sjMTs were primarily myosin heavy chains (MHCs), paramyosin (Pm), and actin (Ac) having a molecular mass of approximately 200, 98, and 42 kDa, respectively. Based on SDS-PAGE analysis and quantification of trichloroacetic acid (TCA)-soluble peptides released, degradation of muscle proteins from sjMTs was favorable at pH 5 and 50°C. Proteolysis of MHCs was mostly inhibited by cysteine protease inhibitors, including trans-epoxysuccinyl-L-leucyl-amido (4-guanidino) butane (E-64) and antipain (AP). E-64 and AP completely inhibited the degradation of Pm and Ac, while iodoacetic acid showed a partially inhibitory effect. These results indicated that the proteolysis of sjMTs was mainly attributed to cysteine proteases. Avoidance of setting the tissues at 40–50°C and slightly acidic condition and inhibition of cysteine proteases are helpful for decreasing sea cucumber autolysis.
Keywords: sea cucumber, muscle tissues, autolysis, proteolysis, cysteine protease
References
- 1.Anderson SC, Flemming JM, Watson R, Lotze HK. Serial exploitation of global sea cucumber fisheries. Fish Fish. 2011;12:317–339. doi: 10.1111/j.1467-2979.2010.00397.x. [DOI] [Google Scholar]
- 2.Yarnpakdee S, Benjakul S, Visessanguan W, Kijroongrjana K. Autolysis of goatfish (Mulloidichthys martinicus) mince: Characterization and effect of washing and skin inclusion. Food Chem. 2009;114:1339–1344. doi: 10.1016/j.foodchem.2008.11.014. [DOI] [Google Scholar]
- 3.Benjakul S, Leelapongwattana K, Visessanguan W. Comparative study on proteolysis of two species of bigeye snapper, Priacanthus macracanthus and Priacanthus tayenus. J. Sci. Food Agr. 2003;83:871–879. doi: 10.1002/jsfa.1409. [DOI] [Google Scholar]
- 4.Eakpetch P, Benjakul S, Visessanguan W, Kijroongrojana K. Autolysis of pacific white shrimp (Litopenaeus vannamei) meat: Characterization and the effects of protein additives. J. Food Sci. 2008;73:S95–S103. doi: 10.1111/j.1750-3841.2007.00630.x. [DOI] [PubMed] [Google Scholar]
- 5.Hyman LH. The invertebrates: Echinodermata. New York City, USA: McGraw-Hill Press; 1955. pp. 134–135. [Google Scholar]
- 6.Menton DN, Eisen AZ. The structure of the integument of the sea cucumber, Thyone briareus. J. Morphol. 1970;131:17–35. doi: 10.1002/jmor.1051310103. [DOI] [PubMed] [Google Scholar]
- 7.Zhu BW, Dong XP, Zhou DY, Gao Y, Yang JF, Li DM, Zhao XK, Ren TT, Ye WX, Tan H, Wu HT, Yu CX. Physicochemical properties and radical scavenging capacities of pepsin-solubilized collagen from sea cucumber Stichopus japonicus. Food Hydrocolloid. 2012;28:182–188. doi: 10.1016/j.foodhyd.2011.12.010. [DOI] [Google Scholar]
- 8.Wu HT, Li DM, Zhu BW, Sun JJ, Zheng J, Wang FL, Konno K, Jiang X. Proteolysis of noncollagenous proteins in sea cucumber, Stichopus japonicus, body wall: Characterisation and the effects of cysteine protease inhibitors. Food Chem. 2013;141:1287–1294. doi: 10.1016/j.foodchem.2013.03.088. [DOI] [PubMed] [Google Scholar]
- 9.Ladrat C, Verrez-Bagnis V, Noël J, Fleurence J. In vitro proteolysis of myofibrillar and sarcoplasmic proteins of white muscle of sea bass (Dicentrarchus labrax L.): Ef fects of cathepsins B, D and L. Food Chem. 2003;81:517–525. doi: 10.1016/S0308-8146(02)00481-8. [DOI] [Google Scholar]
- 10.Rawdkuen S, Benjakul S, Visessanguan W, Lanier TC. Cysteine proteinase inhibitor from chicken plasma: Fractionation, characterization and autolysis inhibition of fish myofibrillar proteins. Food Chem. 2007;101:1647–1657. doi: 10.1016/j.foodchem.2006.04.035. [DOI] [Google Scholar]
- 11.Funaki J, Tamura T, Nishinoaki M, Misaka T, Eto W, Asakura T. Utilization of oryzacystatin for regulating the ripening of squid shiokara, a traditional Japanese salted and fermented seafood. J. Food Sci. 2010;75:S527–S530. doi: 10.1111/j.1750-3841.2010.01840.x. [DOI] [PubMed] [Google Scholar]
- 12.Chen G, Guttmann RP, Xiong YL, Webster CD, Romaire RP. Protease activity in post-mortem red swamp crayfish (Procambarus clarkii) muscle stored in modified atmosphere packaging. J. Agr. Food Chem. 2008;56:8658–8663. doi: 10.1021/jf8007234. [DOI] [PubMed] [Google Scholar]
- 13.Turk V, Stoka V, Vasiljeva O, Renko M, Sun T, Turk B, Turk D. Cysteine cathepsins: From structure, function and regulation to new frontiers. Biochim. Biophys. Acta. 2012;1824:68–88. doi: 10.1016/j.bbapap.2011.10.002. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 14.Zhu BW, Zheng J, Zhang ZS, Dong XP, Zhao LL, Tada M. Autophagy plays a potential role in the process of sea cucumber body wall “Melting” Induced by UV Irradiation. Wuhan Univ. J. Nat. Sci. 2008;13:232–238. doi: 10.1007/s11859-008-0220-3. [DOI] [Google Scholar]
- 15.Qi H, Dong X P, Cong LN, Gao Y, Liu L, Tada M, Zhu BW. P urif ication and characterization of a cysteine-like protease from the body wall of the sea cucumber Stichopus japonicus. Fish Physiol. Biochem. 2007;33:181–188. doi: 10.1007/s10695-007-9129-6. [DOI] [Google Scholar]
- 16.Zhu BW, Zhao LL, Sun LM, Li DM, Murata Y, Yu L, Zhang L. Purification and characterization of a cathepsin L-like enzyme from the body wall of the sea cucumber Stichopus japonicus. Biosci. Biotech. Bioch. 2008;72:1430–1437. doi: 10.1271/bbb.70741. [DOI] [PubMed] [Google Scholar]
- 17.Zhou DY, Chang XN, Bao SS, Song L, Zhu BW, Dong XP, Zong Y, Li DM, Zhang MM, Liu YX, Murata Y. Purification and partial characterisation of a cathepsin L-like proteinase from sea cucumber (Stichopus japonicus) and its tissue distribution in body wall. Food Chem. 2014;158:192–199. doi: 10.1016/j.foodchem.2014.02.105. [DOI] [PubMed] [Google Scholar]
- 18.Sun LM, Zhu BW, Wu HT, Yu L, Zhou DY, Dong XP. Purification and characterization of cathepsin B from the gut of the sea cucumber (Stichopus japonicus) Food Sci. Biotechnol. 2011;20:919–925. doi: 10.1007/s10068-011-0127-1. [DOI] [Google Scholar]
- 19.Zheng J, Wu HT, Zhu BW, Dong XP, Zhang MM, Li YL. Identification of antioxidative oligopeptides derived from autolysis hydrolysates of sea cucumber (Stichopus japonicus) guts. Eur. Food Res. Technol. 2012;234:895–904. doi: 10.1007/s00217-012-1708-9. [DOI] [Google Scholar]
- 20.Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin-phenol reagents. J. Biol. Chem. 1951;193:265–275. [PubMed] [Google Scholar]
- 21.Wu HT, Jin WG, Sun SG, Li XS, Duan XH, Li Y, Yang YT, Han JR, Zhu BW. Identification of antioxidant peptides from protein hydrolysates of scallop (Patinopecten yessoensis) female gonads. Eur. Food Res. Technol. 2016;242:713–722. doi: 10.1007/s00217-015-2579-7. [DOI] [Google Scholar]
- 22.Jin WG, Wu HT, Zhu BW, Ran XQ. Functional properties of gelation-like protein hydrolysates from scallop (Patinopecten yessoensis) male gonad. Eur. Food Res. Technol. 2012;234:863–872. doi: 10.1007/s00217-012-1700-4. [DOI] [Google Scholar]
- 23.Hurtabo JL, Montero P, Borderias J, An H. Properties of proteolytic enzymes f rom muscle o f o ctopus (Octopus vulgaris) and effects of high hydrostatic pressure. J. Food Sci. 2002;67:2555–2564. doi: 10.1111/j.1365-2621.2002.tb08776.x. [DOI] [Google Scholar]
- 24.Watabe S, Kantha SS, Hashimoto K, Kagawa H. Phosphorylation and immunological cross-reactivity of paramyosin: A comparative study. Comp. Biochem. Phys. B. 1990;96:81–88. [Google Scholar]
- 25.Saito M, Kunisaki N, Urano N, Kimura S. Collagen as the major edible component of sea cucumber (Stichopus japonicus) J. Food Sci. 2002;67:1319–1322. doi: 10.1111/j.1365-2621.2002.tb10281.x. [DOI] [Google Scholar]
- 26.Mourão PA, Pereira MS, Pavão MS, Mulloy B, Tollefsen DM, Mowinckel MC, Abildgaard U. Structure and anticoagulant activity of a fucosylated chondroitin sulfate from echinoderm. Sulfated fucose branches on the polysaccharide account for its high anticoagulant action. J. Biol. Chem. 1996;271:23973–23984. doi: 10.1074/jbc.271.39.23973. [DOI] [PubMed] [Google Scholar]
- 27.Oujifard A, Benjakul S, Ahmad M, Seyfabadi J. Effect of bambara groundnut protein isolate on autolysis and gel properties of surimi from threadfin bream (Nemipterus bleekeri) LWT-Food Sci. Technol. 2012;47:261–266. doi: 10.1016/j.lwt.2012.01.016. [DOI] [Google Scholar]
- 28.Alvarez C, Couso I, Tejada M. Thermal gel degradation (Modori) in sardine surimi gel. J. Food Sci. 1999;64:633–637. doi: 10.1111/j.1365-2621.1999.tb15099.x. [DOI] [Google Scholar]
- 29.Jiang XJ, Zhang ZJ, Cai HN, Hara K, Su WJ, Cao MJ. The effect of soybean trypsin inhibitor on the degradation of myofibrillar proteins by an endogenous serine proteinase of crucian carp. Food Chem. 2006;94:498–503. doi: 10.1016/j.foodchem.2004.11.046. [DOI] [Google Scholar]
- 30.Osatomi K, Sasai H, Cao M, Hara K, Ishihara T. Purification and characterization of myofibril-bound serine proteinase from carp Cyprinus carpio ordinary muscle. Comp. Biochem. Phys. B. 1997;116:183–190. doi: 10.1016/S0305-0491(96)00208-8. [DOI] [PubMed] [Google Scholar]
- 31.Rawdkuen S, Benjakul S. Whey protein concentrate: Autolysis inhibition and effects on the gel properties of surimi prepared from tropical fish. Food Chem. 2008;106:1077–1084. doi: 10.1016/j.foodchem.2007.07.028. [DOI] [Google Scholar]
- 32.Konno K, Fukazawa C. Autolysis of squid mantle muscle protein as affected by storage conditions and inhibitors. J. Food Sci. 1993;58:1198–202. doi: 10.1111/j.1365-2621.1993.tb06147.x. [DOI] [Google Scholar]
- 33.Intarasirisawat R, Benjakul S, Visessanguan W, Prodpran T, Tanaka M, Howell NK. Autolysis study of bigeye snapper (Priacanthus macracanthus) skin and its effect on gelatin. Food Hydrocolloid. 2007;21:537–544. doi: 10.1016/j.foodhyd.2006.05.012. [DOI] [Google Scholar]
- 34.Yongsawatdigul J, Piyadhammaviboon P. Inhibition of autolytic activity of lizardfish surimi by proteinase inhibitors. Food Chem. 2004;87:447–455. doi: 10.1016/j.foodchem.2003.12.019. [DOI] [Google Scholar]
- 35.Klomklao S, Benjakul S, Visessanguan W. Comparative studies on proteolytic activity of spleen extracts from three tuna species commonly used in Thailand. J. Food Biochem. 2004;28:355–372. doi: 10.1111/j.1745-4514.2004.05203.x. [DOI] [Google Scholar]
- 36.Choe Y, Leonetti F, Greenbaum DC, Lecaille F, Bogyo M, Brömme D, Ellman JA, Craik CS. A substrate p rof iling of cysteine p roteases u sing a combinatorial peptide library identifies functionally unique specificities. J. Biol. Chem. 2006;281:12824–12832. doi: 10.1074/jbc.M513331200. [DOI] [PubMed] [Google Scholar]
- 37.Gosalia DN, Salisbury CM, Ellman JA, Diamond SL. High throughput substrate specificity profiling of serine and cysteine proteases using solution-phase fluorogenic peptide microarrays. Mol. Cell. Proteomics. 2005;4:626–636. doi: 10.1074/mcp.M500004-MCP200. [DOI] [PubMed] [Google Scholar]
- 38.An H, Seymour TA, Wu JW, Morrissey MT. Assay systems and characterization of Pacific whiting (Merluccius productus) protease. J. Food Sci. 1994;59:277–281. doi: 10.1111/j.1365-2621.1994.tb06947.x. [DOI] [Google Scholar]
- 39.Visessanguan W, Benjakul S, An H. Purification and characterization of cathepsin L in arrowtooth flounder (Atheresthes stomias) muscle. Comp. Biochem. Phys. B. 2003;134:477–487. doi: 10.1016/S1096-4959(02)00293-2. [DOI] [PubMed] [Google Scholar]