Abstract
The potential use of fed-batch cultivation (FBC) for improvement of the production of Lactobacillus salivarius I 24 biomass for subsequent use as probiotics was studied using a 2-L stirredtank bioreactor. Three different constant feeding rates (0.1, 0.05, and 0.033 L/h) were applied in FBCs and their effect on carbon metabolism was evaluated. The carbon flux for cell built-up with reduction in lactic acid synthesis was observed in the fed-batch as compared to the batch cultivation mode. The viable cell number obtained in the constant FBC (CFBC) operated at a feeding rate of 0.05 L/h was 8 times higher (10.7×1010 CFU/mL) than that recorded in the batch cultivation. This gave the viable cell yield based on glucose consumed for CFBC of 26 times higher (11.3×1012 CFU/gGlucose) than the batch cultivation. This study demonstrated CFBC, which is simple with minimal use of process control equipment, has an industrial potential for improvement of probiotic production.
Keywords: fed-batch cultivation, Lactobacillus salivarius, lactic acid bacteria, probiotics, carbon metabolism
References
- 1.Granato D, Branco GF, Nazzaro F, Cruz AG, Faria JAF. Functional foods and nondairy probiotic food development: Trends, concepts, and products. Compr. Rev. Food. Sci. F. 2010;9:292–302. doi: 10.1111/j.1541-4337.2010.00110.x. [DOI] [PubMed] [Google Scholar]
- 2.Sharma M, Devi M. Probiotics: A comprehensive approach toward health foods. Crit. Rev. Food Sci. 2014;54:537–552. doi: 10.1080/10408398.2011.594185. [DOI] [PubMed] [Google Scholar]
- 3.Dobson A, Cotter P, Ross P, Hill C. Bacteriocin production: A probiotic trait? Appl. Environ. Microb. 2012;78:1–6. doi: 10.1128/AEM.05576-11. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 4.Cárdenas N, Calzada J, Peirotén, Jiménez E, Escudero R, Rodríguez JM, Medina M, Fernández L. Development of a potential probiotic fresh cheese using two Lactobacillus salivarius strains isolated from human milk. Biomed. Res. Int. 2014;2014:1–12. doi: 10.1155/2014/801918. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 5.Dumbrepatil A, Adsul M, Chaudhari S, Khire J, Gokhale D. Utilization of molasses sugar for lactic acid production by Lactobacillus delbrueckii subsp. delbrueckii mutant Uc-3 in batch fermentation. Appl. Environ. Microb. 2008;74:333–335. doi: 10.1128/AEM.01595-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 6.Ben HLB, Pieter M, Brian R. Optimal mode of operation for biomass production. Chem. Eng. Sci. 2002;57:2799–2809. doi: 10.1016/S0009-2509(02)00149-5. [DOI] [Google Scholar]
- 7.Salehmin MNI, Annuar MSM, Chisti Y. High cell density fed-batch fermentations for lipase production: Feeding strategies and oxygen transfer. Bioproc. Biosyst. Eng. 2013;36:1527–1543. doi: 10.1007/s00449-013-0943-1. [DOI] [PubMed] [Google Scholar]
- 8.Callewaert R, de Vuyst L. Bacteriocin production with Lactobacillus amylovorus DCE 471 is improved and stabilized by fed-batch fermentation. Appl. Environ. Microb. 2002;66:606–613. doi: 10.1128/AEM.66.2.606-613.2000. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 9.Park JH, Tae YK, Kwang HL, Sang YL. Fed-batch culture of Escherichia coli for Lvaline production based on in silico flux response analysis. Biotechnol. Bioeng. 2011;108:934–946. doi: 10.1002/bit.22995. [DOI] [PubMed] [Google Scholar]
- 10.Duan Y, Zhu Z, Cai K, Tan X, Lu X. De novo biosynthesis of biodiesel by Escherichia coli in optimized fed-batch cultivation. PLoS ONE. 2011;6:e20265. doi: 10.1371/journal.pone.0020265. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 11.Seo MJ, Choi HJ, Chung KH, Pyun YR. Production of a platelet aggregation inhibitor, Salmosin, by high cell density fermentation of recombinant Escherichia coli. J. Microbiol. Biotechn. 2011;21:1053–1056. doi: 10.4014/jmb.1105.05014. [DOI] [PubMed] [Google Scholar]
- 12.Qu L, Ren LJ, Sun GN, Ji XJ, Nie ZK, Huang H. Batch, fed-batch and repeated fed-batch fermentation processes of the marine thraustochytrid Schizochytrium sp. for producing docosahexaenoic acid. Bioproc. Biosyst. Eng. 2013;36:1905–1912. doi: 10.1007/s00449-013-0966-7. [DOI] [PubMed] [Google Scholar]
- 13.Aleksandra D-V, Ljiljana M, Svetlana N, Jelena P S K-T, Katarina M. Distillery stillage as a new substrate for lactic acid production in batch and fedbatch fermentation. Chem. Eng. Trans. 2013;34:97–102. [Google Scholar]
- 14.Ngoh GC, Masitah H, Andri CK, Chew FL, Margaret T. Production of ethanol by fed-batch fermentation. Pertanika J. Sci. Technol. 2009;17:399–408. [Google Scholar]
- 15.Racin FM, Badal CBC. Production of mannitol by Lactobacillus intermedius NRRL B-3693 in fed-batch and continuous cell-recycle fermentations. Process Biochem. 2007;42:1609–1613. doi: 10.1016/j.procbio.2007.09.001. [DOI] [Google Scholar]
- 16.Hoefnagel MHN, Starrenburg MJC, Martens DE, Hugenholtz J, Kleerebezem M, van Swam II, Bongers R, Westerhoff HV, Snoep JL. Metabolic engineering of lactic acid bacteria, the combined approach: Kinetic modeling, metabolic control and experimental analysis, Microbiology 148: 1003–1013 (2002) [DOI] [PubMed]
- 17.Ning C, Jin H, Zhi-bin F, Lei Y, Qing-yang X, Ting-yi W. Optimization of fermentation conditions for the biosynthesis of L-threonine by Escherichia coli. Appl. Biochem. Biotech. 2009;158:595–604. doi: 10.1007/s12010-008-8385-y. [DOI] [PubMed] [Google Scholar]
- 18.Ramirez OT, Zamora R, Quintero R, Lopez-Munguia A. Exponentially fed-batch cultures as an alternative to chemostats: The case of penicillin acylase production by recombinant E.coli. Enzyme Microb. Tech. 1994;16:895–903. doi: 10.1016/0141-0229(94)90065-5. [DOI] [PubMed] [Google Scholar]
- 19.Jin LZ, Ho YW, Abdullah N, Ali MA, Jalaludin S. Antagonistic effects of intestinal Lactobacillus isolates on pathogens of chicken. Lett. Appl. Microbiol. 1996;23:67–71. doi: 10.1111/j.1472-765X.1996.tb00032.x. [DOI] [PubMed] [Google Scholar]
- 20.Liu J, Wang Q, Zou H, Liu Y, Wang J, Gan K, Xiang J. Glucose metabolic flux distribution of Lactobacillus amylophilus during lactic acid production using kitchen waste saccharified solution. Microb. Biotechnol. 2013;6:685–693. doi: 10.1111/1751-7915.12046. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 21.van de Guchte M, Serror P, Chervaux C, Smokvina T, Ehrlich SD, Maguin E. Stress responses in lactic acid bacteria. A. Van. Leeuw. J. Microb. 2002;82:187–216. doi: 10.1023/A:1020631532202. [DOI] [PubMed] [Google Scholar]
- 22.Khan NS, Singh RP, Prasad B. Studies on substrate inhibition in the microbial production of L-glutamic acid. IJERT. 2013;2:1–7. [Google Scholar]
- 23.Sadhukhan S, Villa R, Sarkar U. Microbial production of succinic acid using crude and purified glycerol from a Crotalaria juncea based biorefinery. Biotechnol. Rep. 2016;10:84–93. doi: 10.1016/j.btre.2016.03.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 24.Hwang CF, Chen JN, Huang YT, Mao ZY. Biomass production of Lactobacillus plantarum LP02 isolated from infant feces with potential cholesterol-lowering ability. Afr. J. Biotechnol. 2011;10:7010–7020. [Google Scholar]
- 25.Tayyba G, Muhammad I, Zahid A, Tahir A, Zubia Z, Asma T, Kamran M, Ehsan N, Mehmood S. Recent trends in lactic acid biotechnology: A brief review on production to purification. J. Radiat. Res. Appl. Sci. 2014;7:222–229. doi: 10.1016/j.jrras.2014.03.002. [DOI] [Google Scholar]
- 26.Liew SL. Pilot-scale production of Lactobacillus rhamnosus ATCC 7469. Serdang, Selangor, Malaysia: Universiti Putra Malaysia; 2004. [Google Scholar]
- 27.Ariff A, Ooi T M, Saud H, Shamsuddin Z. Repeated fed-batch cultivation of nitrogen-fixing bacterium, Bacillus sphaericus UPMB10, using glycerol as the carbon source. Pertanika J. Sci. Technol. 2010;18:365–375. [Google Scholar]
- 28.Abdel-Rahman MA, Tashiro Y, Sonomoto K. Recent advances in lactic acid production by microbial fermentation processes. Biotechnol. Adv. 2013;31:877–902. doi: 10.1016/j.biotechadv.2013.04.002. [DOI] [PubMed] [Google Scholar]