Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Oct 31;25(5):1225–1232. doi: 10.1007/s10068-016-0195-3

Brazilian savannah fruits: Characteristics, properties, and potential applications

Cinthia Aparecida de Andrade Silva 1, Gustavo Graciano Fonseca 1,
PMCID: PMC6049260  PMID: 30263399

Abstract

The Brazilian savannah is the second largest biome of the country, and it displays great biodiversity. The fruits of the native trees have peculiar characteristics and are recognized for their nutritional and therapeutic aspects. However, little is known about their technological and biotechnological potential applications. The existing information concerning these aspects has never been compiled so far. It is known that many of these fruits contain many bioactive compounds of industrial interest, such as carotenoids and phenolic constituents. Another aspect of the fruit is the high fatty acid content of some species. Pequi, bocaiuva, jatoba, baru, amburama, and buriti, for instance, are among those fruits described as being rich in fatty acids, mostly unsaturated ones. Here, we reviewed 18 species from the Brazilian savannah identified to be of interest because of high potencial for sustained medium- and short-term explorations, under the technological and biotechnological aspects, seeking the development of new products from these scarcely studied raw materials.

Keywords: Bocaiuva, buriti, cagaita, guavira, pequi

References

  • 1.Klink CA, Machado RBA. Conservation of the Brazilian savannah. Megadiversidade. 2005;1:147–155. [Google Scholar]
  • 2.Mendonça R, Felfili J, Walter B, Silva JC, Rezende A, Filgueiras T, Nogueira P. Vascular flora of Cerrado. In: Sano SM, de Almeida SP, editors. Cerrado: Environment and Flora. Planaltina, DF, Brazil: Embrapa-CPAC; 1998. pp. 288–556. [Google Scholar]
  • 3.Almeida SP, Proença CEB, Sano SM, Ribeiro JF. Cerrado: Usaged vegetable species. 1998. pp. 1–464. [Google Scholar]
  • 4.Martins BA. Physico-chemical evaluation of in natura and processed Brazilian Savannah fruits to prepare multimixtures. Goiânia, Brazil: Catolic University of Goiás; 2006. [Google Scholar]
  • 5.Ribeiro JF, Walter BMT. Phytophysiognomy of cerrado biome. In: Sano SM, de Almeida SP, editors. Cerrado: Environment and Flora. Planaltina, DF, Brazil: Embrapa-CPAC; 1998. pp. 89–152. [Google Scholar]
  • 6.Eiten G. The Cerrado vegetation of Brazil. Bot. Rev. 1972;38:201–341. doi: 10.1007/BF02859158. [DOI] [Google Scholar]
  • 7.Ratter JA, Ribeiro JF, Bridgewater S. The Brazilian Cerrado vegetation and threats to its biodiversity. Ann. Bot.-London. 1997;80:223–230. doi: 10.1006/anbo.1997.0469. [DOI] [Google Scholar]
  • 8.Carvalho FMV, Júnior PMJ, Ferreira LG. The Cerrado into-pieces: Habitat fragmentation as a function of landscape use in the savannas of Central Brazil. Biol. Conserv. 2009;142:1392–1403. doi: 10.1016/j.biocon.2009.01.031. [DOI] [Google Scholar]
  • 9.Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GAB, Kent J. Biodiversity hotspots for conservation priorities. Nature. 2000;403:853–858. doi: 10.1038/35002501. [DOI] [PubMed] [Google Scholar]
  • 10.Silva JF, Fariñas MR, Felfili JM, Klink CA. Spatial heterogeneity, land use and conservation in the Cerrado region of Brazil. J. Biogeogr. 2006;33:536–548. doi: 10.1111/j.1365-2699.2005.01422.x. [DOI] [Google Scholar]
  • 11.Marris E. Conservation in Brazil: The forgotten ecosystem. Nature. 2005;437:944–945. doi: 10.1038/437944a. [DOI] [PubMed] [Google Scholar]
  • 12.Ribeiro RA, Rodrigues FM. Conservation genetics of plant species in the Cerrado. Rev. Cien. Méd. Biol. 2006;5:253–260. [Google Scholar]
  • 13.Silva MR, Lacerda DBCL, Santos GG, Martins DMO. Chemical characterization of native species of fruits from savanna ecosystem. Ciênc. Rural. 2008;38:1790–1793. doi: 10.1590/S0103-84782008000600051. [DOI] [Google Scholar]
  • 14.Vieira RF, Costa T D, Silva DB, Ferreira FR, Sano SM. Native fruits from Brazilian Southwestern region. Brasília, DF, Brazil: Embrapa Technological Information; 2006. p. 320. [Google Scholar]
  • 15.Silva JA, Silva DB, Junqueira NJ, Andrade LRM. Native fruits from Cerrado. DF, Brazil: Brazilian Agricultural Research Corporation, Brasília; 1994. pp. 50–149. [Google Scholar]
  • 16.Silva DB, Silva JA, Junqueira NTV, Andrade LRM. Cerrado fruits. Brasília, DF, Brazil: Embrapa Technological Information; 2001. pp. 1–178. [Google Scholar]
  • 17.Oliveira DL, Rocha C. Sustainable alternatives for school lunches using cerrado plants, promoting environmental education. Rev. Eletr. Mest. Educ. Amb. 2008;21:35–53. [Google Scholar]
  • 18.Araruna SM, Silva AH, Canuto KM, Silveira ER, Leal LKAM. Influence of process conditions on the physicochemical characteristics of cumaru (Amburana cearensis) powder produced by spray drying. Braz. J. Pharmacogn. 2013;23:132–137. doi: 10.1590/S0102-695X2013000100018. [DOI] [Google Scholar]
  • 19.Roesler R, Malta LG, Carrasco LC, Holanda RB, Sousa CAS, Pastore GM. Antioxidant activity of cerrado fruits. Ciênc. Tecnol. Aliment. 2007;1:53–60. doi: 10.1590/S0101-20612007000100010. [DOI] [Google Scholar]
  • 20.Guimarães RCA, Favaro SP, Souza ADV, Soares CM, Nunes AA, Oliveira LCS, Honer MR. Thermal properties of defatted meal, concentrate, and protein isolate of baru nuts (Dipteryx alata Vog.) Ciênc. Tecnol. Aliment. 2012;32:52–55. doi: 10.1590/S0101-20612012005000031. [DOI] [Google Scholar]
  • 21.Kopper AC, Saraiva APK, Ribani RH, Lorenzi GMAC. Technological use of bocaiúva flour in the preparation of cookies. Alim. Nutr. 2009;20:463–469. [Google Scholar]
  • 22.Lorenzi GMAC, Negrelle RRB. Acrocomia aculeata (Jacq.) Lodd. Ex Mart.: ecological aspects, uses and potentialities. Visão Acad. 2006;7:1–12. [Google Scholar]
  • 23.Albuquerque MLS, Guedes I, Alcantara Júnior P, Moreira S B, Neto NM, Correa DS, Zilio SC. Characterization of buriti (Mauritia flexuosa L.) oil by absorption and emission spectroscopies. J. Brazil. Chem. Soc. 2005;16:1113–1117. doi: 10.1590/S0103-50532005000700004. [DOI] [Google Scholar]
  • 24.Lima TB, Silva ON, Oliveira JTA, Vasconcelos LM, Scalabrina FB, Rocha TL, Grossi-de-Sá MF, Silva LP, Guadagnin RV, Quirino BF, Castor CFS, Leonardecz E, Franco OL. Identification of E.dysenterica laxative peptide: A novel strategy in the treatment chronic constipation and irritable bowel syndrome. Peptides. 2010;31:1426–1433. doi: 10.1016/j.peptides.2010.05.003. [DOI] [PubMed] [Google Scholar]
  • 25.Telles MPC, Silva RSM, Chaves LJ, Coelho ASG, Filho JSFD. Divergence among local populations of Eugenia dysenterica in response to edaphic patterns and spatial distribution. Pes. Agrop. Bras. 2001;36:1387–1394. [Google Scholar]
  • 26.Pulido R, Bravo L, Saura-Calixto F. Antioxidant activity of dietary polyphenols as determined by a modified ferric reducing antioxidant power assay. J. Agr. Food Chem. 2000;48:3396–3402. doi: 10.1021/jf9913458. [DOI] [PubMed] [Google Scholar]
  • 27.Pelloso IAO, Vieira MC, Zarate NAH. Evaluation of the genetic diversity of a guavira (Campomanesia adamantium Cambess, O. Berg, Myrtaceae) population. Rev. Bras. Agroecol. 2008;3:49–52. [Google Scholar]
  • 28.Vallilo MI, Lamardo LCA, Gaberlotti ML, de Oliveira E, Moreno PRH. Chemical composition of Campomanesia adamantium (Cambessédes) O.BERG’ fruits. Ciên. Tecnol. Alimen. 2006;26:805–810. doi: 10.1590/S0101-20612006000400015. [DOI] [Google Scholar]
  • 29.Souza FG, Figueiredo RW, Alves RE, Maia G D-A IA. Postharvest quality of fruits from different mangabeira clones (Hancornia speciosa Gomes) Ciênc. Agrotec. 2007;31:1449–1454. doi: 10.1590/S1413-70542007000500027. [DOI] [Google Scholar]
  • 30.Alves GL, Franco MRB. Headspace gas chromatography–mass spectrometry of volatile compounds in murici (Byrsonima crassifolia L. Rich). J. Chromatogr. A. 2003;985:297–301. doi: 10.1016/S0021-9673(02)01398-5. [DOI] [PubMed] [Google Scholar]
  • 31.Rezende CM, Fraga SR. Chemical and aroma determination of the pulp and seeds of murici (Byrsonima crassifolia L.) J. Brazil. Chem. Soc. 2003;14:425–428. doi: 10.1590/S0103-50532003000300014. [DOI] [Google Scholar]
  • 32.Silva Filho PV. Cerrado plants producing dye matter. Inf. Agrop. 1992;16:28–32. [Google Scholar]
  • 33.Silva SM, Brait JDA, Faria FP, Silva SM, Oliveira SL, Braga P M-d-S FMS. Chemical characteristics of pequi fruits (Caryocar brasiliense Camb.) native of three municipalities in the State of Goiás -Brazil. Ciên. Tecnol. Alimen. 2009;29:771–777. doi: 10.1590/S0101-20612009000400011. [DOI] [Google Scholar]
  • 34.Moura NF, Chaves LJ, Naves RV. Characterization of pequi fruits (Caryocar brasiliense Camb.) from Brazilian cerrado. Rev. Árvore. 2013;37:905–912. doi: 10.1590/S0100-67622013000500013. [DOI] [Google Scholar]
  • 35.Alves EU, Silva KB, Gonçalves EP, Cardoso EA, Alves AU. Germination and vigour of Talisia esculenta (St. Hil) Radlk seeds as a function of different fermentation periods. Semina: Ciên. Agrár. 2009;30:761–770. [Google Scholar]
  • 36.Genovese MI, Pinto M G A, Lajolo FM. Bioactive compounds and antioxidant capacity of exotic fruits and commercial frozen pulps from Brazil. Food Sci. Technol. Int. 2008;14:207–214. doi: 10.1177/1082013208092151. [DOI] [Google Scholar]
  • 37.Lorenzi H. Brazilian trees: Handbook of identification and cultivation of native arboreal plants. 1992. p. 352. [Google Scholar]
  • 38.Correa MP. Ministry of Agriculture/Brazilian Institute of Forest Development. 1969. Dictionary of Brazilian usaged plants and exotic cultivated species; pp. 1–765. [Google Scholar]
  • 39.Silva MR, Silva MS, Martins KA, Borges S. Studies on the use of jatoba flour in biscuits as a source of dietary fibre containing no added simple sugars. Ciên. Tecnol. Alimen. 2001;21:176–182. doi: 10.1590/S0101-20612001000200010. [DOI] [Google Scholar]
  • 40.Hiane PA, Ramos MIL, Ramos Filho MM, Pereira JG. Proximate composition and fatty acids of some native fruit profile of the state of Mato Grosso do Sul. Bol. Cent. Pesqui. Process. Alimen. 1992;10:35–42. [Google Scholar]
  • 41.Roesler R, Malta LG, Carrasco LC, Pastore G. Evaluation of the antioxidant properties of the Brazilian Cerrado fruit Annona crassiflora (Araticum) J. Food Sci. 2006;71:C102–C107. doi: 10.1111/j.1365-2621.2006.tb08882.x. [DOI] [Google Scholar]
  • 42.Togashi M, Sgarbieri VC. Partial chemical characterization of the fruit of baru (Dipteryx alata, Vog.) Ciên. Tecnol. Alimen. 1994;14:85–95. [Google Scholar]
  • 43.Hiane PA, Penteado MVC, Badolato E. Levels of fatty acids and proximate composition of the fruit and flour bocaiuva (Acrocomia mokayáyba Barb. Rodr.). Alim. Nutr. 1990;2:21–26. [Google Scholar]
  • 44.Ramos MIL, Ramos Filho M, Hiane PA, Braga Neto JA, Siqueira EMA. Nutritional quality of the pulp of bocaiuva Acrocomia aculeata (Jacq.) Lodd. Ciên. Tecnol. Alimen. 2008;28:90–94. doi: 10.1590/S0101-20612008000500015. [DOI] [Google Scholar]
  • 45.IBGE. Brazilian Institute of Geography and Statistics. Nacional Study of Family Income: Tables of Food Composition. 5th ed. IBGE, Rio de Janeiro, Brazil (1999)
  • 46.Matuda TG, Netto FM. Partial chemical characterization of jatobá-do-cerrado seeds (Hymenaea stigonocarpa mart.) Ciên. Tecnol. Alimen. 2005;25:353–357. doi: 10.1590/S0101-20612005000200029. [DOI] [Google Scholar]
  • 47.Guimarães MM, Silva MS. Nutritional value and chemical and physical characteristics of dried murici fruits (Byrsonima verbascifolia) Ciên. Tecnol. Alimen. 2008;28:817–821. doi: 10.1590/S0101-20612008000400009. [DOI] [Google Scholar]
  • 48.Mariano RGB, Couri S, Freitas SP. Enzymatic technology to improve oil extraction from Caryocar brasiliense Camb (pequi) pulp. Rev. Bras. Frutic. 2009;31:637–643. doi: 10.1590/S0100-29452009000300003. [DOI] [Google Scholar]
  • 49.Rocha MS, De-Figueiredo RW, Araújo MAM, Moreira-Araújo RSR. Physical and chemical characterization and antioxidant activity (in vitro) of fruit of the piaui savana. Rev. Bras. Frutic. 2013;35:933–941. doi: 10.1590/S0100-29452013000400003. [DOI] [Google Scholar]
  • 50.Barreto GPM, Benassib MT, Mercadante AZ. Bioactive compounds from several tropical fruits and correlation by multivariate analysis to free radical scavenger activity. J. Brazil. Chem. Soc. 2009;20:1856–1861. doi: 10.1590/S0103-50532009001000013. [DOI] [Google Scholar]
  • 51.Oliveira MNS, Gusmão E, Lopes PSN, Simões MOM, Ribeiro LM, Dias BAS. Maturity stage of fruits and factors related to nutritive and texture characters of pequi (Caryocar brasiliense Camb.) pulp. Rev. Brasil. Frutic. 2006;28:58–68. [Google Scholar]
  • 52.Cardoso LM, Reis BL, Oliveira DS, Pinheiro-Sant’ana HM. Mangaba (Hancornia speciosa Gomes) from the Brazilian Cerrado: Nutritional value, carotenoids and antioxidant vitamins. Fruits. 2014;69:89–99. doi: 10.1051/fruits/2013105. [DOI] [Google Scholar]
  • 53.Finco FDBA, Silva IG, De-Oliveira RB. Physicochemical characteristics and antioxidant activity of three native fruits from Brazilian Savannah (Cerrado) Alim. Nutr. 2012;23:179–185. [Google Scholar]
  • 54.Colditz GA, Branch LG, Lipnick RJ, Willett WC, Rosner B, Posner BM, Hennekens HC. Increased green and yellow vegetable intake and lowered cancer death in an elderly population. Am. J. Clin. Nutr. 1985;41:32–36. doi: 10.1093/ajcn/41.1.32. [DOI] [PubMed] [Google Scholar]
  • 55.Rodriguez-Amaya DB. Carotenoids such as vitamin A precursors. Bol. Soc. Bras. Ciên. Tecnol. Alim. 1985;19:227–242. [Google Scholar]
  • 56.Olson JA. Provitamin A function of carotenoids: The conversion of â-carotene into vitamin A. J. Nutr. 1989;119:105–108. doi: 10.1093/jn/119.1.105. [DOI] [PubMed] [Google Scholar]
  • 57.Lima A. Savannah gold. Rev. Minas Ciênc. 2006;27:38–41. [Google Scholar]
  • 58.Mélo EA, Lima VLAG, Nascimento PP. Temperature and the storage of surinam cherries. Sci. Agric. 2000;57:629–634. doi: 10.1590/S0103-90162000000400006. [DOI] [Google Scholar]
  • 59.Lima MAC, Assis JS, Gonzaga Neto L. Characterization of guava fruits and cultivar selections in the submédio São Francisco region of Brazil. Rev. Bras. Frutic. 2002;24:273–276. doi: 10.1590/S0100-29452002000100061. [DOI] [Google Scholar]
  • 60.Andrade RSG, Diniz MC, Neves EA, Nóbrega JA. Determination and distribution of ascorbic acid in three tropical fruits. Eclética Quím. 2002;27:1–9. [Google Scholar]
  • 61.Breda CA, Sanjinez-Argandoña EJ, Correia CAC. Shelf life of powdered Camponesia adamatium pulp in controlled environments. Food Chem. 2012;135:2960–2964. doi: 10.1016/j.foodchem.2012.07.029. [DOI] [PubMed] [Google Scholar]
  • 62.Lima JP, Azevedo L, Souza NJ, Nunes EE, Vilas Boas EVB. First evaluation of the antimutagenic effect of mangaba fruit in vivo and its phenolic profile identification. Food Res. Int. 2015;75:216–224. doi: 10.1016/j.foodres.2015.05.045. [DOI] [PubMed] [Google Scholar]
  • 63.Roesler R, Lorencini M, Pastore G. Brazilian Cerrado antioxidant sources: cytotoxicity and phototoxicity in vitro. Ciênc. Tecnol. Aliment. 2010;30:814–821. doi: 10.1590/S0101-20612010000300038. [DOI] [Google Scholar]
  • 64.Bento APN, Cominetti C S, Filho A, Naves MMV. Baru almond improves lipid profile in mildly hypercholesterolemic subjects: A randomized, controlled, crossover study. Nutr. Metab. Cardiovas. 2014;24:1330–1336. doi: 10.1016/j.numecd.2014.07.002. [DOI] [PubMed] [Google Scholar]
  • 65.Ramos MIL, Siqueira EMA, Isomura CC, Barbosa AMJ, Arruda SF. Bocaiuva (Acrocomia aculeata (Jacq.) Lodd) improved vitamin A status in rats. J. Agr. Food Chem. 2007;55:3186–3190. doi: 10.1021/jf063305r. [DOI] [PubMed] [Google Scholar]
  • 66.Koolen HHF, Da-Silva FMA, Gozzo FC, De-Souza AQL, De-Souza ADL. Antioxidant, antimicrobial activities and characterization of phenolic compounds from buriti (Mauritia flexuosa L.f.) by UPLC–ESI-MS/MS. Food Res. Int. 2013;51:467–473. doi: 10.1016/j.foodres.2013.01.039. [DOI] [Google Scholar]
  • 67.Malta LG, Ghiraldini FG, Reis R, Oliveira MV, Silva LB, Pastore GM. in vivo analysis of antigenotoxic and antimutagenic properties of two Brazilian Cerrado fruits and the identification of phenolic phytochemicals. Food Res. Int. 2012;49:604–611. doi: 10.1016/j.foodres.2012.07.055. [DOI] [Google Scholar]
  • 68.Gonçalves AESS, Lajolo FM, Genovese MI. Chemical composition and antioxidant/antidiabetic potential of Brazilian native fruits and commercial frozen pulps. J. Agr. Food Chem. 2010;58:4666–4674. doi: 10.1021/jf903875u. [DOI] [PubMed] [Google Scholar]
  • 69.Miranda-Vilela AL, Pereira L G C, Grisolia CK. Pequi fruit (Caryocar brasiliense Camb.) pulp oil reduces exercise-induced inflammatory markers and blood pressure of male and female runners. Nutr. Res. 2009;29:850–858. doi: 10.1016/j.nutres.2009.10.022. [DOI] [PubMed] [Google Scholar]
  • 70.Garcia CC, Franco PIBM, Zuppa TO, Antoniosi Filho NR, Leles MIG. Thermal stability studies of some cerrado plant oils. J. Therm. Anal. Calorim. 2007;87:645–648. doi: 10.1007/s10973-006-7769-x. [DOI] [Google Scholar]
  • 71.Segall SD, Artz WE, Raslan DS, Ferraz VP, Takahashi JA. Triacylglycerol analysis of pequi (Caryocar brasiliensis Camb.) oil by electrospray and tandem mass spectrometry. J. Sci. Food Agr. 2006;86:445–452. doi: 10.1002/jsfa.2349. [DOI] [Google Scholar]
  • 72.Hiane PA, Bogo D, Ramos MIL, Ramos Filho MM. Pro-vitamin A carotenoids and fatty acid composition of the fruit and flour of bacuri (Scheelea phalerata Mart.) Ciênc. Tecnol. Aliment. 2003;23:206–209. doi: 10.1590/S0101-20612003000200018. [DOI] [Google Scholar]
  • 73.Takemoto E, Okada IA, Garbelotti ML, Tavares M, Aued-Pimentel S. Chemical composition of seeds and oil of baru (Dipteryx alata Vog.) native from Pirenópolis, State of Goiás, Brazil. Rev. Inst. Adolfo Lutz. 2001;60:113–117. [Google Scholar]
  • 74.Vallilo MI, Tavares M, Aued S. Chemical composition of the pulp and seed of the fruit of cumbaru (Dipteryx alata Vog.) -Characterization of the seed oil. Rev. Inst. Florest. 1990;2:115–125. [Google Scholar]
  • 75.Hiane PA, Ramos Filho MM, Ramos MIL, Macedo MLR. Bocaiuva, Acrocomia Aculeata (Jacq.) Lodd., pulp and kernel oils: Characterization and fatty acid composition. Braz. J. Food Technol. 2005;8:256–259. [Google Scholar]
  • 76.Silva SM, Sampaio KA, Taham T, Rocco SA, Ceriani R, Meirelles AJA. Characterization of oil extracted from buriti fruit (Mauritia flexuosa) grown in the Brazilian Amazon Region. Am. Oil Chem. Soc. 2009;86:611–616. doi: 10.1007/s11746-009-1400-9. [DOI] [Google Scholar]
  • 77.Schlemmer D, Sales MJA. Thermoplastic starch films with vegetable oils of Brazilian Cerrado-Thermal characterization. J. Therm. Anal. Calorim. 2010;99:675–679. doi: 10.1007/s10973-009-0352-5. [DOI] [Google Scholar]
  • 78.Martins H. Study of native oleaginous plants native from Minas Gerais. Vol. 1. Technological Center of Minas Gerais, Belo Horizonte, Brazil. p. 152 (1983)
  • 79.Khouri J, Resck IS, Poças-Fonseca M, Sousa TMM, Pereira LO, Oliveira ABB, Grisolia CK. Anticlastogenic potential and antioxidant effects of an aqueous extract of pulp from the pequi tree (Caryocar brasiliense Camb) Genet. Mol. Biol. 2007;30:442–448. doi: 10.1590/S1415-47572007000300024. [DOI] [Google Scholar]
  • 80.Miranda-Vilela AL, Grisolia CK, Resck IS, Mendonça MA. Characterization of the major nutritional components of Caryocar brasiliense fruit pulp by NMR spectroscopy. Quím. Nova. 2009;32:2310–2313. doi: 10.1590/S0100-40422009000900013. [DOI] [Google Scholar]
  • 81.Pierezan L, Cabral MRP, Martins Neto D, Stropa JM, de Oliveira LCS, Scharf DR, Simionatto EL, da Silva RCL, Simionatto E. Chemical composition and crystallization temperatures of esters obtained of four oils of seeds of the Brazilian Cerrado. Quím. Nova. 2015;38:328–332. [Google Scholar]
  • 82.Silva CAA, Lacerda MPL, Fonseca GG. Biotransformation of pequi and guavira fruit wastes via solid state bioprocess using Pleurotus sajor-caju. Int. J. Biosci. Biochem. Bioinfma. 2013;3:88–92. [Google Scholar]
  • 83.Silva CAA, Lacerda MPF, Leite RSR, Fonseca GG. Physiology of Lichtheimia ramosa obtained by solid-state bioprocess using fruit wastes as substrate. Bioproc. Biosyst. Eng. 2014;37:727–734. doi: 10.1007/s00449-013-1043-y. [DOI] [PubMed] [Google Scholar]
  • 84.Rajesh N, Imelda J, Raj RP. Value addition of vegetable wastes by solid-state fermentation using Aspergillus niger for use in aquafeed industry. Waste Manage. 2010;30:2223–2227. doi: 10.1016/j.wasman.2009.12.017. [DOI] [PubMed] [Google Scholar]
  • 85.Silva CAA, Lacerda MPF, Leite RSR, Fonseca GG. Production of enzymes from Lichtheimia ramosa using Brazilian savannah fruit wastes as substrate on solid state bioprocesses. Electron. J. Biotechn. 2013;16:1–9. [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES