Abstract
The impacts of protein oxidation on the droplet size and microrheology properties of casein emulsions with 20% oil content were investigated. The degree of protein oxidation was indicated by carbonyl concentration. The droplets in the emulsions of different-oxidation-degree casein had bimodal distribution, but their size altered due to oxidation. The effects of protein oxidation on the morphology, motion type, viscoelasticity, and stability of droplets were also investigated by microrheology analysis. The droplet motion was blocked by protein oxidation due to mean square displacement slope results. Solid–liquid balance values provided the liquid behavior dominating these emulsions. Oxidation of carbonyl concentration 16.72 raised the primary droplets, increased the elasticity, decreased the viscosity, and promoted the droplet motion rate, resulting in better stability of emulsions. Further oxidation promoted the aggregation of droplets and resulted in poor stability.
Keywords: casein, protein oxidation, emulsion stability, microrheology, microstructure
Contributor Information
Jianming Wang, Phone: +86-022-60912401, FAX: +86-022-60912401, Email: wangjianming@tust.edu.cn.
Yaoyao Tan, Email: tanyaoyaotyy@163.com.
References
- 1.Matemu AO, Kayahara H, Murasawa H, Katayama S, Nakamura S. Improved emulsifying properties of soy proteins by acylation with saturated fatty acids. Food Chem. 2011;124:596–602. doi: 10.1016/j.foodchem.2010.06.081. [DOI] [Google Scholar]
- 2.Mession JL, Roustel S, Saurel R. Interactions in casein micelle -pea protein system (Part I): Heat-induced denaturation and aggregation. Food hydrocolloid. [Available online] (2015)
- 3.Garnier C, Michon C, Durand S, Cuvelier G, Doublier JL, Launay B. Iotacarrageenan/casein micelles interactions: Evidence at different scales. Colloid. Surface. B. 2003;31:177–184. doi: 10.1016/S0927-7765(03)00137-1. [DOI] [Google Scholar]
- 4.Liu Y, Guo R. Interaction between Casein and the Oppositely Charged Surfactant. Biomacromolecules. 2007;8:2902–2908. doi: 10.1021/bm7006136. [DOI] [PubMed] [Google Scholar]
- 5.Dickinson E. Structure formation in casein-based gels, foams, and emulsions. Colloid. Surface. A. 2006;288:3–11. doi: 10.1016/j.colsurfa.2006.01.012. [DOI] [Google Scholar]
- 6.Shao Y, Tang CH. Characteristics and oxidative stability of soy proteinstabilized oil-in-water emulsions: Influence of ionic strength and heat pretreatment. Food hydrocolloid. 2014;37:149–158. doi: 10.1016/j.foodhyd.2013.10.030. [DOI] [Google Scholar]
- 7.Berton C, Ropers MH, Bertrand D, Viau M, Genot C. Oxidative stability of oilin-water emulsions stabilised with protein or surfactant emulsifiers in various oxidation conditions. Food Chem. 2012;131:1360–1369. doi: 10.1016/j.foodchem.2011.09.137. [DOI] [Google Scholar]
- 8.Qiu C, Zhao M, Decker EA, McClements DJ. Influence of protein type on oxidation and digestibility of fish oil-in-water emulsions: Gliadin, caseinate, and whey protein. Food Chem. 2015;175:249–257. doi: 10.1016/j.foodchem.2014.11.112. [DOI] [PubMed] [Google Scholar]
- 9.Jung T, Hohn A, Grune T. The proteasome and the degradation of oxidized proteins: Part II-protein oxidation and proteasomal degradation. Redox Biol. 2013;2C:99–104. doi: 10.1016/j.redox.2013.12.008. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 10.Semagoto HM, Liu D, Koboyatau K, Hu J, Lu N, Liu X, Regenstein JM, Zhou P. Effects of UV induced photo-oxidation on the physicochemical properties of milk protein concentrate. Food Res. Int. 2014;62:580–588. doi: 10.1016/j.foodres.2014.04.012. [DOI] [Google Scholar]
- 11.Waraho T, McClements DJ, Decker EA. Mechanisms of lipid oxidation in food dispersions. Trends Food Sci. Tech. 2011;22:3–13. doi: 10.1016/j.tifs.2010.11.003. [DOI] [Google Scholar]
- 12.Stadtman ER. Protein oxidation and aging. Free Radical. Res. 2006;257:1250–1258. doi: 10.1080/10715760600918142. [DOI] [PubMed] [Google Scholar]
- 13.Wu W, Wu X, Hua Y. Structural modification of soy protein by the lipid peroxidation product acrolein. LWT-Food Sci. Technol. 2010;43:133–140. doi: 10.1016/j.lwt.2009.05.006. [DOI] [Google Scholar]
- 14.Chen N, Zhao M, Sun W, Ren J, Cui C. Effect of oxidation on the emulsifying properties of soy protein isolate. Food Res. Int. 2013;52:26–32. doi: 10.1016/j.foodres.2013.02.028. [DOI] [Google Scholar]
- 15.Wu W, Zhang C, Kong X, Hua Y. Oxidative modification of soy protein by peroxyl radicals. Food Chem. 2009;116:295–301. doi: 10.1016/j.foodchem.2009.02.049. [DOI] [Google Scholar]
- 16.Sun C, Liu R, Wu T, Liang B, Shi C, Zhang M. Effect of superfine grinding on the structural and physicochemical properties of whey protein and applications for microparticulated proteins. Food Sci. Biotechnol. 2015;24:1637–1643. doi: 10.1007/s10068-015-0212-y. [DOI] [Google Scholar]
- 17.Tisserand C, Fleury M, Brunel L, Bru P, Meunier G. Passive microrheology for measurement of the concentrated dispersions stability. Prog. Coll. Pol. Sci. S. 2012;139:101–105. [Google Scholar]
- 18.Scheidegger D, Radici PM, Vergara-Roig VA, Bosio NS, Pesce SF, Pecora RP, Romano JC, Kivatinitz SC. Evaluation of milk powder quality by protein oxidative modifications. J. Dairy Sci. 2013;96:3414–3423. doi: 10.3168/jds.2012-5774. [DOI] [PubMed] [Google Scholar]
- 19.Liu Q, Lu Y, Han J, Chen Q, Kong B. Structure-modification by moderate oxidation in hydroxyl radical-generating systems promote the emulsifying properties of soy protein isolate. Food Struct. 2015;6:27–28. doi: 10.1016/j.foostr.2015.10.001. [DOI] [Google Scholar]
- 20.Ray M, Rousseau D. Stabilization of oil-in-water emulsions using mixtures of denatured soy whey proteins and soluble soybean polysaccharides. Food Res. Int. 2013;52:298–307. doi: 10.1016/j.foodres.2013.03.008. [DOI] [Google Scholar]
- 21.Slattery CW, Evard R. A model for the formation and structure of casein micelles from subunits of variable composition. Biochim. Biophys. Acta. 1973;317:529–538. doi: 10.1016/0005-2795(73)90246-8. [DOI] [PubMed] [Google Scholar]
- 22.Dickinson E. Milk protein interfacial layers and relationship to the emulsion stability and rheology. Colloid. Surface. B. 2001;20:197–210. doi: 10.1016/S0927-7765(00)00204-6. [DOI] [PubMed] [Google Scholar]
- 23.Walstra P. Principles of emulsion formation. Chem. Eng. Sci. 1992;48:333–349. doi: 10.1016/0009-2509(93)80021-H. [DOI] [Google Scholar]
- 24.Liang Y, Wong SS, Pham SQ, Tan JJ. Effects of globular protein type and concentration on the physical properties and flow behaviors of oil-in-water emulsions stabilized by micellar casein–globular protein mixtures. Food Hydrocolloid. 2016;54:89–98. doi: 10.1016/j.foodhyd.2015.09.024. [DOI] [Google Scholar]
- 25.McCarthy NA, Kelly AL, O’Mahony JA, Fenelon MA. Sensitivity of emulsions stabilised by bovine ß-casein and lactoferrin to heat and CaCl2. Food Hydrocolloid. 2014;35:420–428. doi: 10.1016/j.foodhyd.2013.06.021. [DOI] [Google Scholar]
- 26.Liang Y, Patel H, Matia-Merino L, Ye A, Golding M. Structure and stability of heat-treated concentrated dairy-protein-stabilised oil-in-water emulsions: A stability map characterisation approach. Food Hydrocolloid. 2013;33:297–308. doi: 10.1016/j.foodhyd.2013.03.012. [DOI] [Google Scholar]
- 27.Moakes RJA, Norton ASIT. Preparation and characterisation of whey protein fluid gels: The effects of shear and thermal history. Food Hydrocolloid. 2015;45:227–235. doi: 10.1016/j.foodhyd.2014.11.024. [DOI] [Google Scholar]
- 28.Moschakis T, Murrayb BS, Dickinson E. On the kinetics of acid sodium casein ate g elation usin g particle t rackin g to p robe the m icrorheology. J. Colloid. Interf. Sci. 2010;345:278–285. doi: 10.1016/j.jcis.2010.02.005. [DOI] [PubMed] [Google Scholar]
- 29.Phoon PY, San Martin-Gonzalez MF, Narsimhan G. Effect of hydrolysis of soy ß-conglycinin on the oxidative stability of O/W emulsions. Food Hydrocolloid. 2014;35:429–443. doi: 10.1016/j.foodhyd.2013.06.024. [DOI] [Google Scholar]
- 30.Nishinari K, Fang Y, Guo S, Phillips GO. Soy proteins: A review on composition, aggregation and emulsificatio. Food Hydrocolloid. 2014;39:301–318. doi: 10.1016/j.foodhyd.2014.01.013. [DOI] [Google Scholar]
- 31.Hebishy E, Buffa M, Guamis B, Blasco-Moreno A, Trujillo AJ. Physical and oxidative stability of whey protein oil-in-water emulsions produced by conventional and ultra high-pressure homogenization: Effects of pressure and protein concentration on emulsion characteristics. Innov. Food Sci. Emerg. 2015;32:79–90. doi: 10.1016/j.ifset.2015.09.013. [DOI] [Google Scholar]
- 32.Liang HN, Tang CH. pH-dependent emulsifying properties of pea [Pisum sativum (L.)] proteins. Food Hydrocolloid. 2013;33:309–319. doi: 10.1016/j.foodhyd.2013.04.005. [DOI] [Google Scholar]
- 33.Yousfi M, Sebastien A, Lebeau M, Soulestin J, Lacrampe MF, Krawczak P. Evaluation of rheological properties of non-Newtonian fluids in micro rheology compounder: Experimental procedures for a reliable polymer melt viscosity measurement. Polym. Test. 2014;40:207–217. doi: 10.1016/j.polymertesting.2014.09.010. [DOI] [Google Scholar]
- 34.Sun C, Wu T, Liu R, Liang B, Tian Z, Zhang E, Zhang M. Effects of superfine grinding and microparticulation on the surface hydrophobicity of whey protein concentrate and its relation to emulsions stability. Food Hydrocolloid. 2015;51:512–518. doi: 10.1016/j.foodhyd.2015.05.027. [DOI] [Google Scholar]
- 35.Moschakis T. Microrheology and particle tracking in food gels and emulsions. Curr. Opin. Colloid In. 2013;18:311–323. doi: 10.1016/j.cocis.2013.04.011. [DOI] [Google Scholar]