Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Oct 31;25(5):1413–1419. doi: 10.1007/s10068-016-0220-6

High-yield cycloamylose production from sweet potato starch using Pseudomonas isoamylase and Thermus aquaticus 4-α-glucanotransferase

Sun Chu 1, Jung Sun Hong 1, Shin-Joung Rho 1, Jiyoung Park 2, Sang-Ik Han 3, Young-Wan Kim 4, Yong-Ro Kim 1,
PMCID: PMC6049264  PMID: 30263424

Abstract

An optimal reaction condition for producing cycloamylose (CA) from sweet potato starch was investigated using a combination of isoamylase (from Pseudomonas sp.) and 4-α-glucanotransferase (from Thermus aquaticus, TAαGT). Starch was debranched by isoamylase for 8 h and subsequently reacted with TAαGT for 12 h. The yield and purity of CA products were determined using HPSEC and MALDI-TOFMS, respectively. Consequently, the maximum yield was 48.56%, exhibiting the highest CA production efficiency ever reported from starch. The CA products showed a wide range of the degree of polymerization (DP) with the minimum DP of 5. CA was also produced by simultaneous treatment of isoamylase and TAαGT. The yield was 3.31%, and the final products were contaminated by multiple branched and linear molecules. This result suggests that a former reaction condition (the sequential addition of isoamylase and TAαGT) is preferable for producing CA from sweet potato starch.

Keywords: starch modification, enzymatic conversion, transglycosylation, debranching enzyme, normal starch

References

  • 1.Woolfe JA. Sweet potato: An untapped food resource. New York, NY, USA: Cambridge University Press; 1992. pp. 1–12. [Google Scholar]
  • 2.George NA, Pecota KV, Bowen BD, Schultheis JR, Yencho GC. Root piece planting in sweetpotato—A synthesis of previous research and directions for the future. HortTechnology. 2011;21:703–711. [Google Scholar]
  • 3.Machida S, Ogawa S, Xiaohua S, Takaha T, Fujii K, Hayashi K. Cycloamylose as an efficient artificial chaperone for protein refolding. FEBS Lett. 2000;486:131–135. doi: 10.1016/S0014-5793(00)02258-4. [DOI] [PubMed] [Google Scholar]
  • 4.Toita S, Morimoto N, Akiyoshi K. Functional cycloamylose as a polysaccharidebased biomaterial: application in a gene delivery system. Biomacromolecules. 2009;11:397–401. doi: 10.1021/bm901109z. [DOI] [PubMed] [Google Scholar]
  • 5.Baek HH, Kim DH, Kwon SY, Rho SJ, Kim DW, Choi HG, Kim YR, Yong CS. Development of novel ibuprofen-loaded solid dispersion with enhanced bioavailability using cycloamylose. Arch. Pharm. Res. 2012;35:683–689. doi: 10.1007/s12272-012-0412-4. [DOI] [PubMed] [Google Scholar]
  • 6.Baek HH, Kwon SY, Rho SJ, Lee WS, Yang HJ, Hah JM, Choi HG, Kim YR, Yong CS. Enhanced solubility and bioavailability of flurbiprofen by cycloamylose. Arch. Pharm. Res. 2011;34:391–397. doi: 10.1007/s12272-011-0306-x. [DOI] [PubMed] [Google Scholar]
  • 7.Kim JH, Wang R, Lee WH, Park CS, Lee S, Yoo SH. One-pot synthesis of cycloamyloses from sucrose by dual enzyme treatment: Combined reaction of amylosucrase and 4-a-glucanotransferase. J. Agr. Food Chem. 2011;59:5044–5051. doi: 10.1021/jf2002238. [DOI] [PubMed] [Google Scholar]
  • 8.Lee BH, Oh DK, Yoo SH. Characterization of 4-á-glucanotransferase from Synechocystis sp. PCC 6803 and its application to various corn starches. New Biotechnol. 2009;26:29–36. doi: 10.1016/j.nbt.2009.06.981. [DOI] [PubMed] [Google Scholar]
  • 9.Takaha T, Yanase M, Takata H, Okada S, Smith SM. Potato D-enzyme catalyzes the cyclization of amylose to produce cycloamylose, a novel cyclic glucan. J. Biol. Chem. 1996;271:2902–2908. doi: 10.1074/jbc.271.6.2902. [DOI] [PubMed] [Google Scholar]
  • 10.Yanase M, Takata H, Takaha T, Kuriki T, Smith SM, Okada S. Cyclization reaction catalyzed by glycogen debranching enzyme (EC 2.4. 1.25/EC 3.2. 1.33) and its potential for cycloamylose production. Appl. Environ. Microb. 2002;68:4233–4239. doi: 10.1128/AEM.68.9.4233-4239.2002. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11.Xu Y, Zhou X, Bai Y, Wang J, Wu C, Xu X, Jin Z. Cycloamylose production from amylomaize by isoamylase and Thermus aquaticus 4-a-glucanotransferase. Carbohyd. Polym. 2014;102:66–73. doi: 10.1016/j.carbpol.2013.10.065. [DOI] [PubMed] [Google Scholar]
  • 12.Gidley MJ. Molecular mechanisms underlying amylose aggregation and gelation. Macromolecules. 1989;22:351–358. doi: 10.1021/ma00191a064. [DOI] [Google Scholar]
  • 13.Case S, Capitani T, Whaley J, Shi Y, Trzasko P, Jeffcoat R, Goldfarb H. Physical properties and gelation behavior of a low-amylopectin maize starch and other high-amylose maize starches. J. Cereal Sci. 1998;27:301–314. doi: 10.1006/jcrs.1997.0164. [DOI] [Google Scholar]
  • 14.Yamamoto K, Sawada S, Onogaki T. Properties of rice starch prepared by alkali method with various conditions. J. Jpn. Soc Starch Sci. 1973;20:99–104. doi: 10.5458/jag1972.20.99. [DOI] [Google Scholar]
  • 15.Park JH, Kim HJ, Kim YH, Cha H, Kim YW, Kim TJ, Kim YR, Park KH. The action mode of Thermus aquaticus YT-1 4-á-glucanotransferase and its chimeric enzymes introduced with starch-binding domain on amylose and amylopectin. Carbohyd. Polym. 2007;67:164–173. doi: 10.1016/j.carbpol.2006.05.018. [DOI] [Google Scholar]
  • 16.Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. [DOI] [PubMed] [Google Scholar]
  • 17.Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976;72:248–254. doi: 10.1016/0003-2697(76)90527-3. [DOI] [PubMed] [Google Scholar]
  • 18.Liebl W, Feil R, Gabelsberger J, Kellermann J, Schleifer KH. Purification and characterization of a novel thermostable 4-a-glucanotransferase of Thermotoga maritima cloned in Escherichia coli. Eur. J. Biochem. 1992;207:81–88. doi: 10.1111/j.1432-1033.1992.tb17023.x. [DOI] [PubMed] [Google Scholar]
  • 19.Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 1959;31:426–428. doi: 10.1021/ac60147a030. [DOI] [Google Scholar]
  • 20.Juliano B, Perez C, Blakeney A, Castillo T, Kongseree N, Laignelet B, Lapis E, Murty V, Paule C, Webb B. International cooperative testing on the amylose content of milled rice. Starch-Stärke. 1981;33:157–162. doi: 10.1002/star.19810330504. [DOI] [Google Scholar]
  • 21.Abegunde OK, Mu TH, Chen JW, Deng FM. Physicochemical characterization of sweet potato starches popularly used in Chinese starch industry. Food Hydrocolloid. 2013;33:169–177. doi: 10.1016/j.foodhyd.2013.03.005. [DOI] [Google Scholar]
  • 22.Cai L, Shi YC, Rong L, Hsiao BS. Debranching and crystallization of waxy maize starch in relation to enzyme digestibility. Carbohyd. Polym. 2010;81:385–393. doi: 10.1016/j.carbpol.2010.02.036. [DOI] [Google Scholar]
  • 23.Pohu A, Planchot V, Putaux J, Colonna P B A. Split crystallization during debranching of maltodextrins at high concentration by isoamylase. Biomacromolecules. 2004;5:1792–1798. doi: 10.1021/bm049881i. [DOI] [PubMed] [Google Scholar]
  • 24.Duan X, Chen S, Chen J, Wu J. Enhancing the cyclodextrin production by synchronous utilization of isoamylase and a-CGTase. Appl. Microbiol. Biot. 2013;97:3467–3474. doi: 10.1007/s00253-012-4292-9. [DOI] [PubMed] [Google Scholar]
  • 25.Fujii K, Minagawa H, Terada Y, Takaha T, Kuriki T, Shimada J, Kaneko H. Protein engineering of amylomaltase from Thermus aquaticus with random and saturation mutagenesis. Biologia. 2005;60:97–102. [Google Scholar]
  • 26.Koizumi K, Sanbe H, Kubota Y, Terada Y, Takaha T. Isolation and characterization of cyclic a-(1-4)-glucans having degrees of polymerization 9–31 and their quantitative analysis by high-performance anion-exchange chromatography with pulsed amperometric detection. J. Chromatogr. A. 1999;852:407–416. doi: 10.1016/S0021-9673(99)00643-3. [DOI] [PubMed] [Google Scholar]
  • 27.Taira H, Nagase H, Endo T, Ueda H. Isolation, Purification and Characterization of Large-Ring Cyclodextrins (CD36~~CD39) J. Incl. Phenom. Macro. 2006;56:23–28. doi: 10.1007/s10847-006-9055-8. [DOI] [Google Scholar]
  • 28.Sundararajan P, Rao V. Conformational studies on cycloamyloses. Carbohyd. Res. 1970;13:351–358. doi: 10.1016/S0008-6215(00)80592-3. [DOI] [Google Scholar]
  • 29.Takeda Y, Tokunaga N, Takeda C, Hizukuri S. Physicochemical properties of sweet potato starches. Starch-Stärke. 1986;38:345–350. doi: 10.1002/star.19860381006. [DOI] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES