Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Oct 31;25(5):1299–1304. doi: 10.1007/s10068-016-0204-6

Phenolic composition, enzyme inhibitory, and antioxidant activity of Bituminaria bituminosa

Cengiz Sarikurkcu 1,, Mustafa Cengiz 2, Mehmet Cemil Uren 3, Olcay Ceylan 4, Tuba Orenc 2, Bektas Tepe 5
PMCID: PMC6049266  PMID: 30263408

Abstract

This study aimed to evaluate the in vitro antioxidant and enzyme inhibitory activities of ethyl acetate, methanol, and water extracts of Bituminaria bituminosa. In phosphomolybdenum assay, the methanol extract showed the highest activity (166.78 μmol TEs/g dry plant). The water extract exhibited the highest scavenging activity on 1,1-diphenyl-2-picrylhydrazyl (DPPH) and 2,2-azino-bis (3-ethylbenzothiazloine-6-sulphonic acid) (ABTS∙+). In addition, it exhibited the highest activity in cupric ion reducing (CUPRAC) and ferric reducing antioxidant power (FRAP) assays (41.26 and 46.82 μmol TEs/g dry plant). The extracts did not show cholinesterase and tyrosinase inhibitory activity. However, α-glucosidase inhibition assay resulted in the superiority of water extract (1233.86 μmol ACEs/g dry plant). In the case of α-amylase inhibitory assay, the ethyl acetate extract showed the highest activity (53.65 μmol ACEs/g dry plant). The water extract exhibited the highest phenolic content (31.70 μmol GAEs/g dry plant). In contrast, the methanol extract was found rich in flavonoid compounds (5.29 μmol REs/g dry plant). The water extract contained considerable amounts of rosmarinic acid, luteolin, quercetin, and rutin. Therefore, it can be used as a source of new and alternative antioxidant and enzyme inhibitory agents.

Keywords: Bituminaria bituminosa, antioxidant activity, enzyme inhibitory activity, phytochemistry

References

  • 1.Llorent-Martinez EJ, Spinola V, Gouveia S, Castilho PC. HPLC-ESI-MSn characterization of phenolic compounds, terpenoid saponins, and other minor compounds in Bituminaria bituminosa. Ind. Crop. Prod. 2015;69:80–90. doi: 10.1016/j.indcrop.2015.02.014. [DOI] [Google Scholar]
  • 2.Permender R, Hema C, Sushila R, Dharmender R, Vikash K. Antidiabetic potential of Fabaceae family: An overview. Curr. Nutr. Food Sci. 2010;6:161–175. doi: 10.2174/157340110792389163. [DOI] [Google Scholar]
  • 3.Pecetti L, Tava A, Pagnotta MA, Russi L. Variation in forage quality and chemical composition among Italian accessions of Bituminaria bituminosa (L.) Stirt. J. Sci. Food. Agr. 2007;87:985–991. doi: 10.1002/jsfa.2792. [DOI] [Google Scholar]
  • 4.Ventura MR, Castanon JIR, Pieltain MC, Flores MP. Nutritive value of forage shrubs: Bituminaria bituminosa, Rumex lunaria, Acacia salicina, Cassia sturtii and Adenocorpus foliosus. Small Ruminant Res. 2004;52:13–18. doi: 10.1016/S0921-4488(03)00225-6. [DOI] [Google Scholar]
  • 5.Darias V, Martin-Herrera D, Abdala S, de la Fuente D. Plants used in urinary pathologies in the Canary Islands. Pharm. Biol. 2001;39:170–180. doi: 10.1076/phbi.39.3.170.5937. [DOI] [Google Scholar]
  • 6.Rivera D, Obon C. The ethnopharmacology of Madeira and Porto-Santo Islands, a review. J. Ethnopharmacol. 1995;46:73–93. doi: 10.1016/0378-8741(95)01239-A. [DOI] [PubMed] [Google Scholar]
  • 7.Azzouzi S, Zaabat N, Medjroubi K, Akkal S, Benlabed K, Smati F, Dijoux-Franca MG. Phytochemical and biological activities of Bituminaria bituminosa L. (Fabaceae). Asian Pac. J. Trop. Med. 2014;7:481–484. doi: 10.1016/S1995-7645(14)60278-9. [DOI] [PubMed] [Google Scholar]
  • 8.Maurich T, Iorio M, Chimenti D, Turchi G. Erybraedin C and bitucarpin A, two structurally related pterocarpans purified from Bituminaria bituminosa, induced apoptosis in human colon adenocarcinoma cell lines MMR-and p53-proficient and -deficient in a dose-, time-, and structure-dependent fashion. Chem-Biol. Interact. 2006;159:104–116. doi: 10.1016/j.cbi.2005.10.103. [DOI] [PubMed] [Google Scholar]
  • 9.Walker DJ, Martinez-Fernandez D, Correal E, Romero-Espinar P, del Rio JA. Accumulation of furanocoumarins by Bituminaria bituminosa in relation to plant development and environmental stress. Plant Physiol. Bioch. 2012;54:133–139. doi: 10.1016/j.plaphy.2012.03.001. [DOI] [PubMed] [Google Scholar]
  • 10.Kahkonen MP, Hopia AI, Vuorela HJ, Rauha JP, Pihlaja K, Kujala TS, Heinonen M. Antioxidant activity of plant extracts containing phenolic compounds. J. Agr. Food Chem. 1999;47:3954–3962. doi: 10.1021/jf990146l. [DOI] [PubMed] [Google Scholar]
  • 11.Serafini M, Maiani G, Ferro-Luzzi A. Alcohol-free red wine enhances plasma antioxidant capacity in humans. J. Nutr. 1998;128:1003–1007. doi: 10.1093/jn/128.6.1003. [DOI] [PubMed] [Google Scholar]
  • 12.Carbonneau MA, Leger CL, Descomps B, Michel F, Monnier L. Improvement in the antioxidant status of plasma and low-density lipoprotein in subjects receiving a red wine phenolics mixture. J. Am. Oil Chem. Soc. 1998;75:235–240. doi: 10.1007/s11746-998-0036-5. [DOI] [Google Scholar]
  • 13.Çokugras AN. Butyrylcholinesterase: Structure and physiological importance. Turk. J. Biochem. 2003;28:54–61. [Google Scholar]
  • 14.Murata T, Selenge E, Oikawa S, Ageishi K, Batkhuu J, Sasaki K, Yoshizaki F. Cholinesterase-inhibitory diterpenoids and chemical constituents from aerial parts of Caryopteris mongolica. J. Nat. Med. 2015;69:471–478. doi: 10.1007/s11418-015-0908-6. [DOI] [PubMed] [Google Scholar]
  • 15.Darvesh S, Cash MK, Reid GA, Martin E, Mitnitski A, Geula C. Butyrylcholinesterase is aßsociated with ß-amyloid plaques in the transgenic APPSWE/PSEN1dE9 mouse model of Alzheimer disease. J. Neuropath. Exp. Neur. 2012;71:2–14. doi: 10.1097/NEN.0b013e31823cc7a6. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 16.Campiani G, Fattorusso C, Butini S, Gaeta A, Agnusdei M, Gemma S, Persico M, Catalanotti B, Savini L, Nacci V, Novellino E, Holloway HW, Greig NH, Belinskaya T, Fedorko JM, Saxena A. Development of molecular probes for the identification of extra interaction sites in the mid-gorge and peripheral sites of butyrylcholinesterase (BuChE) Rational design of novel, selective, and highly potent BuChE inhibitors. J. Med. Chem. 2005;48:1919–1929. doi: 10.1021/jm049510k. [DOI] [PubMed] [Google Scholar]
  • 17.Bajpai VK, Park YH, Na M, Kang SC. a-Glucosidase and tyrosinase inhibitory effects of an abietane type diterpenoid taxoquinone from Metasequoia glyptostroboides. BMC Complem. Altern. M. 2015;15:84. doi: 10.1186/s12906-015-0626-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 18.Fatmawati S, Shimizu K, Kondo R. Ganoderol B: A potent a-glucosidase inhibitor isolated from the fruiting body of Ganoderma lucidum. Phytomedicine. 2011;18:1053–1055. doi: 10.1016/j.phymed.2011.03.011. [DOI] [PubMed] [Google Scholar]
  • 19.Liu L, Deseo MA, Morris C, Winter KM, Leach DN. Investigation of a-glucosidase inhibitory activity of wheat bran and germ. Food Chem. 2011;126:553–561. doi: 10.1016/j.foodchem.2010.11.041. [DOI] [Google Scholar]
  • 20.Momtaz S, Mapunya BM, Houghton PJ, Edgerly C, Hussein A, Naidoo S, Lall N. Tyrosinase inhibition by extracts and constituents of Sideroxylon inerme L. stem bark, used in South Africa for skin lightening. J. Ethnopharmacol. 2008;119:507–512. doi: 10.1016/j.jep.2008.06.006. [DOI] [PubMed] [Google Scholar]
  • 21.Pieroni A, Quave CL, Villanelli ML, Mangino P, Sabbatini G, Santini L, Boccetti T, Profili M, Ciccioli T, Rampa LG. Ethnopharmacognostic survey on the natural ingredients used in folk cosmetics, cosmeceuticals and remedies for healing skin diseases in the inland Marches, Central-Eastern Italy. J. Ethnopharmacol. 2004;91:331–344. doi: 10.1016/j.jep.2004.01.015. [DOI] [PubMed] [Google Scholar]
  • 22.Sarikurkcu C, Uren MC, Tepe B, Cengiz M, Kocak MS. Phenolic content, enzyme inhibitory and antioxidative activity potentials of Phlomis nissolii and P. pungens var. pungens. Ind. Crop. Prod. 2014;62:333–340. doi: 10.1016/j.indcrop.2014.09.002. [DOI] [Google Scholar]
  • 23.Zengin G, Sarikurkcu C, Aktumsek A, Ceylan R, Ceylan O. A comprehensive study on phytochemical characterization of Haplophyllum myrtifolium Boiss. endemic to Turkey and its inhibitory potential against key enzymes involved in Alzheimer, skin diseases and type II diabetes. Ind. Crop. Prod. 2014;53:244–251. [Google Scholar]
  • 24.Zengin G, Sarikurkcu C, Aktumsek A, Ceylan R. Sideritis galatica Bornm.: A source of multifunctional agents for the management of oxidative damage, Alzheimer’s’s and diabetes mellitus. J. Funct. Foods. 2014;11:538–547. doi: 10.1016/j.jff.2014.08.011. [DOI] [Google Scholar]
  • 25.Sarikurkcu C. Antioxidant activities of solvent extracts from endemic Cyclamen mirabile Hildebr. tubers and leaves. Afr. J. Biotechnol. 2011;10:831–839. [Google Scholar]
  • 26.Apak R, Guclu K, Ozyurek M, Karademir SE, Ercag E. The cupric ion reducing antioxidant capacity and polyphenolic content of some herbal teas. Int. J. Food Sci. Nutr. 2006;57:292–304. doi: 10.1080/09637480600798132. [DOI] [PubMed] [Google Scholar]
  • 27.Tesauro C, Fiorani P, D’Annessa I, Chillemi G, Turchi G, Desideri A. Erybraedin C, a natural compound from the plant Bituminaria bituminosa, inhibits both the cleavage and religation activities of human topoisomerase I. Biochem. J. 2010;425:531–539. doi: 10.1042/BJ20091127. [DOI] [PubMed] [Google Scholar]
  • 28.Maurich T, Pistelli L, Turchi G. Anti-clastogenic activity of two structurally related pterocarpans purified from Bituminaria bituminosa in cultured human lymphocytes. Mutat. Res.-Gen. Tox. En. 2004;561:75–81. doi: 10.1016/j.mrgentox.2004.03.006. [DOI] [PubMed] [Google Scholar]
  • 29.Pistelli L, Noccioli C, Appendino G, Bianchi F, Sterner O, Ballero M. Pterocarpans from Bituminaria morisiana and Bituminaria bituminosa. Phytochemistry. 2003;64:595–598. doi: 10.1016/S0031-9422(03)00190-0. [DOI] [PubMed] [Google Scholar]
  • 30.Tava A, Pecetti L, Ricci M, Pagnottal MA, Russi L. Volatile compounds from leaves and flowers of Bituminaria bituminosa (L.) Stirt. (Fabaceae) from Italy. Flavour Frag. J. 2007;22:363–370. doi: 10.1002/ffj.1806. [DOI] [Google Scholar]
  • 31.Sharma V, Arora EK, Cardoza S. 4-Hydroxy-benzoic acid (4-diethylamino-2-hydroxy-benzylidene)hydrazide: DFT, antioxidant, spectroscopic and molecular docking studies with BSA. Luminescence. 2016;31:738–745. doi: 10.1002/bio.3018. [DOI] [PubMed] [Google Scholar]
  • 32.Tuyen PT, Khang DT, Thu Ha PT, Hai TN, Elzaawely AA, Xuan TD. Antioxidant capacity and phenolic contents of three Quercus species. Int. Lett. Nat. Sci. 2016;54:85–99. doi: 10.18052/www.scipress.com/ILNS.54.85. [DOI] [Google Scholar]
  • 33.Sevgi K, Tepe B, Sarikurkcu C. Antioxidant and DNA damage protection potentials of selected phenolic acids. Food Chem. Toxicol. 2015;77:12–21. doi: 10.1016/j.fct.2014.12.006. [DOI] [PubMed] [Google Scholar]
  • 34.Sarikurkcu C, Kocak MS, Tepe B, Uren MC. An alternative antioxidative and enzyme inhibitory agent from Turkey: Robinia pseudoacacia L. Ind. Crop. Prod. 2015;78:110–115. doi: 10.1016/j.indcrop.2015.10.017. [DOI] [Google Scholar]
  • 35.Sarikurkcu C, Uren MC, Tepe B, Cengiz M, Kocak MS. Phlomis armeniaca: Phenolic compounds, enzyme inhibitory and antioxidant activities. Ind. Crop. Prod. 2015;78:95–101. doi: 10.1016/j.indcrop.2015.10.016. [DOI] [Google Scholar]
  • 36.Sarikurkcu C, Ozer MS, Tepe B, Dilek E, Ceylan O. Phenolic composition, antioxidant and enzyme inhibitory activities of acetone, methanol and water extracts of Clinopodium vulgare L. subsp vulgare L. Ind. Crop. Prod. 2015;76:961–966. doi: 10.1016/j.indcrop.2015.08.011. [DOI] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES