Skip to main content
Food Science and Biotechnology logoLink to Food Science and Biotechnology
. 2016 Oct 31;25(5):1275–1281. doi: 10.1007/s10068-016-0201-9

Phenolics, acyl galactopyranosyl glycerol, and lignan amides from Tetragonia tetragonioides (Pall.) Kuntze

Hwan Seong Choi 1, Jeong-Yong Cho 1,2, Mi Rim Jin 1, Yu Geon Lee 1, Seon-Jae Kim 3, Kyung-Sik Ham 2, Jae-Hak Moon 1,
PMCID: PMC6049267  PMID: 30263405

Abstract

Eleven antioxidative compounds, including five lignin amides, were isolated from the aerial part of Tetragonia tetragonioides (New Zealand spinach) using 1,1-diphenyl-2-picrylhydrazyl radicalscavenging assay-guided purification. The structures were determined by nuclear magnetic resonance and electrospray ionization-mass spectroscopy. These compounds were identified as methyl linoleate (1), methyl coumarate (2), methyl ferulate (3), 1-O-stearoyl-3-O-β-D-galactopyranosyl-sn-glycerol (4), 1-O-caffeoyl-β-D-glucopyranoside (5), N-trans-caffeoyltyramine (6), cannabisin B (7), cannabisin A (8), Ntrans-feruloyltyramine (9), N-cis-feruloyltyramine (10), and N-trans-sinapoyltyramine (11). Compounds 1, 2, 4, 5, and 8-11 were isolated for the first time from this plant.

Keywords: Tetragonia tetragonioides, halophyte, lignan amide, phenolics, acyl galactopyranosyl glycerol

References

  • 1.Lin HE, Wang W, Lin G. Effects of salinity on the growth and photosynthetic characteristics of a coastal wetland plant species Tetragonia tetragonoides (Pall.) Kuntze. Chinese J. Ecol. 2012;31:3044–3049. [Google Scholar]
  • 2.Rezende ACB, Igarashi MC, Destro MT, Franco BDGM, Landgraf M. Effect of gamma radiation on the reduction of Salmonella strains, Listeria monocytogenes, and Shiga toxin-producing Escherichia coli and sensory evaluation of minimally processed spinach (Tetragonia expansa) J. Food Protect. 2014;77:1768–1772. doi: 10.4315/0362-028X.JFP-14-108. [DOI] [PubMed] [Google Scholar]
  • 3.Choo YS, Do JW, Song SD. Free amino acid and nitrogen contents of the coastal plants in Korea. J. Ecol. Environ. 1999;22:109–117. [Google Scholar]
  • 4.Lee KH, Park KM, Kim KR, Hong J, Kwon HC, Lee KR. Three new flavonol glycosides from the aerial parts of Tetragonia tetragonoides. Heterocycles. 2008;75:419–426. doi: 10.3987/COM-07-11227. [DOI] [Google Scholar]
  • 5.Okuyama E, Yamazaki M. The principles of Tetragonia tetragonoides having anti-ulcerogenic activity. II. Isolation and structure of cerebrosides. Chem. Pharm. Bull. 1983;31:2209–2219. doi: 10.1248/cpb.31.2209. [DOI] [PubMed] [Google Scholar]
  • 6.Emi O, Mikio Y. The principles of Tetragonia tetragonioides having antiulcergenic activity. Isolation and identification of a sterol glucoside mixture (compound A). Yakugaku Zasshi. 1983;103:43–48. doi: 10.1248/yakushi1947.103.1_43. [DOI] [PubMed] [Google Scholar]
  • 7.Singh NP, Schmidt RR. Glycosyl imidates.Part 36.Synthesis of a (4E,8Z)-sphingadienine moiety containing cerebroside from Tetragonia tetragonoides with antiulcerogenic activity. J. Carbohyd. Chem. 1989;8:199–216. doi: 10.1080/07328308908048004. [DOI] [Google Scholar]
  • 8.Choi HJ, Park MR, Kang JS, Choi YW, Jeong YK, Joo WH. Antimicrobial activity of four solvent fractions of Tetragonia tetragonioides. Cancer Prev. Res. 2008;13:205–211. [Google Scholar]
  • 9.Lee MA, Choi HJ, Kang JS, Choi YW, Joo WH. Antioxidant activities of the solvent extracts from Tetragonia tetragonioides. J. Life Sci. 2008;18:220–227. doi: 10.5352/JLS.2008.18.2.220. [DOI] [Google Scholar]
  • 10.Choi HJ, Kang JS, Choi YW, Jeong YK, Joo WH. Inhibitory activity on the diabetes related enzymes of Tetragonia tetragonioides. Korean Soc. Biotechnol. Bioeng. 2008;23:419–424. [Google Scholar]
  • 11.Kemp MS, Burden RS, Brown C. A new naturally occurring flavanone from Tetragonia expansa. Phytochemistry. 1979;18:1765–1766. doi: 10.1016/0031-9422(79)80215-0. [DOI] [Google Scholar]
  • 12.Aoki T, Hirata T, Suga T. Two naturally occurring acyclic diterpene and norditerpene aldehydes from Tetragonia tetragonoides. Phytochemistry. 1982;21:1361–1363. doi: 10.1016/0031-9422(82)80142-8. [DOI] [Google Scholar]
  • 13.Lima GPP, Vianello F, Correa CR, da Silva Compos RA, Borguini MG. Polyphenols in fruits and vegetables and its effect on human health. Food Nutr. Sci. 2014;5:1065–1082. doi: 10.4236/fns.2014.511117. [DOI] [Google Scholar]
  • 14.Boeing H, Bechthold A, Bub A, Ellinger S, Haller D, Kroke A, Leschik-Bonner E, Muller M, Oberritter H, Achulze M, Stehle P, Waltzl B. Critical review: Vegetables and fruit in the prevention of chronic diseases. Eur. J. Nutr. 2012;51:637–663. doi: 10.1007/s00394-012-0380-y. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 15.Kim JY, Cho JY, Ma YK, Park KY, Lee SH, Ham KS, Lee HJ, Park KH, Moon JH. Dicaffeoylquinic acid derivatives and flavonoid glucosides from glasswort (Salicornia herbacea L.) and their antioxidative activity. Food Chem. 2011;125:55–62. doi: 10.1016/j.foodchem.2010.08.035. [DOI] [Google Scholar]
  • 16.Masuda T, Yamada K, Maekawa T, Takeda Y, Yamaguchi H. Antioxidant mechanism studies on ferulic acid: Isolation and structure identification of the main antioxidation product from methyl ferulate. Food Sci. Technol. Res. 2006;12:173–177. doi: 10.3136/fstr.12.173. [DOI] [PubMed] [Google Scholar]
  • 17.Lee DG, Park Y, Kim MR, Jung HJ, Seu YB, Hahm KS, Woo ER. Anti-fungal effects of phenolic amides isolated from the root bark of Lycium chinese. Biotechnol. Lett. 2004;26:1125–1130. doi: 10.1023/B:BILE.0000035483.85790.f7. [DOI] [PubMed] [Google Scholar]
  • 18.Sakakibara I, Ikeya Y, Hayashi K, Mitsuhashi H. Three phenyldihydronaphthalene lignanamides from fruits of Cannabis sativa. Phytochemistry. 1992;31:3219–3223. doi: 10.1016/0031-9422(92)83479-I. [DOI] [Google Scholar]
  • 19.Díaz MF, Gavín JA. Characterization by NMR of ozonized methyl linoleate. J. Brazil. Chem. Soc. 2007;18:513–518. doi: 10.1590/S0103-50532007000300003. [DOI] [Google Scholar]
  • 20.Lee YG, Cho JY, Kim CM, Lee SH, Kim WS, Jeon TI, Park KH, Moon JH. Coumaroyl quinic acid derivatives and flavonoids from immature pear (Pyrus pyrifolia Nakai) fruit. Food Sci. Biotechnol. 2013;22:803–810. doi: 10.1007/s10068-013-0148-z. [DOI] [Google Scholar]
  • 21.Björkling F, Godtfredsen SE. New enzyme catalyzed synthesis of monoacyl galactoglycerides. Tetrahedron. 1988;44:2957–2962. doi: 10.1016/S0040-4020(88)90033-6. [DOI] [Google Scholar]
  • 22.Gouda YG. Flavonoids and phenylpropanoids from Spathodea campanulata P. Beauvais leaves. Bull. Pharm. Sci. Assiut Univ. 2009;32:301–309. [Google Scholar]
  • 23.Sakakibara I, Katsuhar T, Ikeya Y, Hayashi K, Mitsuhashi H. Cannabisin A, an arylnaphthalene lignanamides from fruits of Cannabis sativa. Phytochemistry. 1991;30:3013–3016. doi: 10.1016/S0031-9422(00)98242-6. [DOI] [Google Scholar]
  • 24.Yoshihar T, Yamaguchi K, Takamatsu S, Sakamura S. A new lignin, grossamide, from bell pepper (Capsicum annuum var. grossurri). Agr. Biol. Chem. Tokyo. 1981;45:2593–2598. [Google Scholar]
  • 25.Park JB. Identification and quantification of a major anti-oxidant and antiinflammatory phenolic compound found in basil, lemon thyme, mint, oregano, rosemary, sage, and thyme. Int. J. Food Sci. Nutr. 2011;62:577–584. doi: 10.3109/09637486.2011.562882. [DOI] [PubMed] [Google Scholar]
  • 26.Chang YC, Chen CY, Chang FR, Wu YC. Alkaloids from Lindera gluaca. J. Chin. Chem. Soc.-Taip. 2001;48:811–815. doi: 10.1002/jccs.200100116. [DOI] [Google Scholar]
  • 27.Rice-Evans C A, Miller N J, Paganga G. Stru ctu r e a ntioxidant activity relationships of flavonoids and phenolic acids. Free Radical Bio. Med. 1996;20:933–956. doi: 10.1016/0891-5849(95)02227-9. [DOI] [PubMed] [Google Scholar]
  • 28.Chen T, He J, Zhang J, Li X, Zhang H, Hao J, Li L. The isolation and identification of two compounds with predominant radical scavenging activity in hempseed (seed of Cannabis sativa L.) Food Chem. 2012;134:1030–1037. doi: 10.1016/j.foodchem.2012.03.009. [DOI] [PubMed] [Google Scholar]
  • 29.Chen T, Hao J, He J, Zhang J, Li Y, Liu R, Li L. Cannabisin B induces autophagic cell death by inhibiting the AKT/mTOR pathway and S phase cell cycle arrest in HepG2 cells. Food Chem. 2013;138:1034–1041. doi: 10.1016/j.foodchem.2012.11.102. [DOI] [PubMed] [Google Scholar]

Articles from Food Science and Biotechnology are provided here courtesy of Springer

RESOURCES