Abstract
An immunomagnetic separation method using antibody-coated Dynabeads® Protein G was developed for specific and efficient separation of Staphylococcus aureus in lettuce and whole milk. The amount of immunomagnetic beads (IMBs) and conjugation conditions were optimized. A high capture efficiency was obtained with 0.4 mg of IMBs, an immunoreaction time of 20 min, and a separation time of 1 min without wash. Under optimal conditions, the capture efficiency (CE) for 100-105 CFU/mL of S. aureus was higher than 91.46%. The IMBs showed high specificity even with a high constant number (107 CFU/mL) of Bacillus cereus, Micrococcus luteus, and Lactobacillus plantarum. The CE of IMBs against S. aureus at concentrations from 102 to 105 CFU/mL ranged from 78.70 to 94.77% for lettuce and 60.0 to 73.27% for milk samples. This IMS can be an appropriate selection for combining with bacterial detection method or efficient isolation procedure for S. aureus from foods.
Keywords: Staphylococcus aureus, immunomagnetic separation, Dynabeads® Protein G
References
- 1.Le Loir Y, Baron F, Gautier M. Staphylococcus aureus and food poisoning. Genet. Mol. Res. 2003;2:63–76. [PubMed] [Google Scholar]
- 2.Centers for Disease Control and Prevention (CDC). Surveillance for Foodborne Disease Outbreaks, United States, 2014, Annual report. Atlanta, Georgia: US Department of Health and Human Services, CDC (2016)
- 3.Oliver SP, Boor KJ, Murphy SC, Murinda SE. Food safety hazards associated with consumption of raw milk. Foodborne Pathog. Dis. 2009;6:793–806. doi: 10.1089/fpd.2009.0302. [DOI] [PubMed] [Google Scholar]
- 4.Tamarapu S, McKillip JL, Drake M. Development of a multiplex polymerase chain reaction assay for detection and differentiation of Staphylococcus aureus in dairy products. J. Food Protect. 2001;64:664–668. doi: 10.4315/0362-028x-64.5.664. [DOI] [PubMed] [Google Scholar]
- 5.Ethelberg S, Lisby M, Bottiger B, Schultz AC, Villif A, Jensen T, Olsen K, Scheutz F, Kjelso C, Muller L. Outbreaks of gastroenteritis linked to lettuce, Denmark, January 2010. Eurosurveill. 2010;15:1–3. [PubMed] [Google Scholar]
- 6.Kadariya J, Smith TC, Thapaliya D. BioMed Res. Int. 2014. Staphylococcus aureus and staphylococcal food-borne disease: An ongoing challenge in public health; p. 827965. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 7.Kondo N, Murata M, Isshiki K. Efficiency of sodium hypochlorite, fumaric acid, and mild heat in killing native microflora and Escherichia coli O157:H7, Salmonella Typhimurium DT104, and Staphylococcus aureus attached to fresh-cut lettuce. J. Food Protect. 2006;69:323–329. doi: 10.4315/0362-028x-69.2.323. [DOI] [PubMed] [Google Scholar]
- 8.Halablab M, Sheet I, Holail H. Microbiological quality of raw vegetables grown in Bekaa Valley, Lebanon. Am. J. Food Technol. 2011;6:129–139. doi: 10.3923/ajft.2011.129.139. [DOI] [Google Scholar]
- 9.Abdullahi I, Abdulkareem S. Bacteriological quality of some ready to eat vegetables as retailed and consumed in Sabon-Gari, Zaria, Nigeria. Bayero J. Pure Appl. Sci. 2010;3:173–175. [Google Scholar]
- 10.Fedio WM, Jinneman KC, Yoshitomi KJ, Zapata R, Wendakoon CN, Browning P, Weagant SD. Detection of E.coli O157:H7 in raw ground beef by Pathatrix™ immunomagnetic-separation, real-time PCR and cultural methods. Int. J. Food Microbiol. 2011;148:87–92. doi: 10.1016/j.ijfoodmicro.2011.05.005. [DOI] [PubMed] [Google Scholar]
- 11.Weagant SD, Jinneman KC, Yoshitomi KJ, Zapata R, Fedio WM. Optimization and evaluation of a modified enrichment procedure combined with immunomagnetic separation for detection of E.coli O157:H7 from artificially contaminated alfalfa sprouts. Int. J. Food Microbiol. 2011;149:209–217. doi: 10.1016/j.ijfoodmicro.2011.06.008. [DOI] [PubMed] [Google Scholar]
- 12.Xiong Q, Cui X, Saini JK, Liu D, Shan S, Jin Y, Lai W. Development of an immunomagnetic separation method for efficient enrichment of Escherichia coli O157:H7. Food Control. 2014;37:41–45. doi: 10.1016/j.foodcont.2013.08.033. [DOI] [Google Scholar]
- 13.Hochel I, Škvor J. Characterisation of antibodies for the immunochemical detection of Enterobacter sakazakii. Czech J. Food Sci. 2009;27:66–74. [Google Scholar]
- 14.Hibi K, Abe A, Ohashi E, Mitsubayashi K, Ushio H, Hayashi T, Ren H, Endo H. Combination of immunomagnetic separation with flow cytometry for detection of Listeria monocytogenes. Anal. Chim Acta. 2006;573:158–163. doi: 10.1016/j.aca.2006.03.022. [DOI] [PubMed] [Google Scholar]
- 15.Bushon R, Brady A, Likirdopulos C, Cireddu J. Rapid detection of Escherichia coli and enterococci in recreational water using an immunomagnetic separation/adenosine triphosphate technique. J. Appl. Microbiol. 2009;106:432–441. doi: 10.1111/j.1365-2672.2008.04011.x. [DOI] [PubMed] [Google Scholar]
- 16.Schlosser G, Kaèer P, Kuzma M, Szilágyi Z, Sorrentino A, Manzo C, Pizzano R, Malorni L, Pocsfalvi G. Coupling immunomagnetic separation on magnetic beads with matrix-assisted laser desorption ionization-time of flight mass spectrometry for detection of staphylococcal enterotoxin B. Appl. Environ. Microbiol. 2007;73:6945–6952. doi: 10.1128/AEM.01136-07. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 17.Weagant SD, Bound AJ. Evaluation of techniques for enrichment and isolation of Escherichia coli O157:H7 from artificially contaminated sprouts. Int. J. Food Microbiol. 2001;71:87–92. doi: 10.1016/S0168-1605(01)00558-X. [DOI] [PubMed] [Google Scholar]
- 18.Varshney M, Yang L, Su X-L, Li Y. Magnetic nanoparticle-antibody conjugates for the separation of Escherichia coli O157:H7 in ground beef. J. Food Protect. 2005;68:1804–1811. doi: 10.4315/0362-028x-68.9.1804. [DOI] [PubMed] [Google Scholar]
- 19.Shukla S, Lee G, Song X, Park S, Kim M. Immunoliposome-based immunomagnetic concentration and separation assay for rapid detection of Cronobacter sakazakii. Biosens. Bioelectron. 2016;77:986–994. doi: 10.1016/j.bios.2015.10.077. [DOI] [PubMed] [Google Scholar]
- 20.Sun W, Khosravi F, Albrechtsen H, Brovko L, Griffiths M. Comparison of ATP and in vivo bioluminescence for assessing the efficiency of immunomagnetic sorbents for live Escherichia coli O157:H7 cells. J. Appl. Microbiol. 2002;92:1021–1027. doi: 10.1046/j.1365-2672.2002.01639.x. [DOI] [PubMed] [Google Scholar]
- 21.Linda S, Uknalis J, Tu S-I. Immunomagnetic separation methods for the isolation of Campylobacter jejuni from ground poultry meats. J. Immunol. Methods. 2001;256:11–18. doi: 10.1016/S0022-1759(01)00372-6. [DOI] [PubMed] [Google Scholar]
- 22.Yang H, Qu L, Wimbrow AN, Jiang X, Sun Y. Rapid detection of Listeria monocytogenes by nanoparticle-based immunomagnetic separation and realtime PCR. Int. J. Food Microbiol. 2007;118:132–138. doi: 10.1016/j.ijfoodmicro.2007.06.019. [DOI] [PubMed] [Google Scholar]
- 23.Shan S, Zhong Z, Lai W, Xiong Y, Cui X, Liu D. Immunomagnetic nanobeads based on a streptavidin-biotin system for the highly efficient and specific separation of Listeria monocytogenes. Food Control. 2014;45:138–142. doi: 10.1016/j.foodcont.2014.04.036. [DOI] [Google Scholar]
- 24.Mao Y, Huang X, Xiong S, Xu H, Aguilar ZP, Xiong Y. Large-volume immunomagnetic separation combined with multiplex PCR assay for simultaneous detection of Listeria monocytogenes and Listeria ivanovii in lettuce. Food Control. 2016;59:601–608. doi: 10.1016/j.foodcont.2015.06.048. [DOI] [Google Scholar]
- 25.Rida A, Gijs M. Manipulation of self-assembled structures of magnetic beads for microfluidic mixing and assaying. Anal. Chem. 2004;76:6239–6246. doi: 10.1021/ac049415j. [DOI] [PubMed] [Google Scholar]
- 26.Wang H, Li Y, Wang A, Slavik M. Rapid, sensitive, and simultaneous detection of three foodborne pathogens using magnetic nanobead-based immunoseparation and quantum dot-based multiplex immunoassay. J. Food Protect. 2011;74:2039–2047. doi: 10.4315/0362-028X.JFP-11-144. [DOI] [PubMed] [Google Scholar]
- 27.Tu S-I, Reed S, Gehring A, He Y, Paoli G. Capture of Escherichia coli O157:H7 using immunomagnetic beads of different size and antibody conjugating chemistry. Sensors. 2009;9:717–730. doi: 10.3390/s90200717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 28.Parham N, Spencer J, Taylor D, Ternent H, Innocent G, Mellor D, Roberts M, Williams A. An adapted immunomagnetic cell separation method for use in quantification of Escherichia coli O157:H7 from bovine faeces. J. Microbiol. Meth. 2003;53:1–9. doi: 10.1016/S0167-7012(02)00206-3. [DOI] [PubMed] [Google Scholar]
- 29.Zhu P, Shelton DR, Li S, Adams DL, Karns JS, Amstutz P, Tang C-M. Detection of E.coli O157:H7 by immunomagnetic separation coupled with fluorescence immunoassay. Biosens. Bioelectron. 2011;30:337–341. doi: 10.1016/j.bios.2011.09.029. [DOI] [PubMed] [Google Scholar]
- 30.Prentice N, Murray JS, Scott MF, Coombs JP, Parton A. Rapid isolation and detection of Escherichia coli O157:H7 in fresh produce. J. Rapid Meth. Aut. Mic. 2006;14:299–308. doi: 10.1111/j.1745-4581.2006.00069.x. [DOI] [Google Scholar]
